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Abstract

The training process of end-to-end keyword spotting (KWS)

suffers from critical data imbalance problem that positive sam-

ples are far less than negative samples where different nega-

tive samples are not of equal importances. During decoding,

false alarms are mainly caused by a small number of impor-

tant negative samples having pronunciation similar to the key-

word; however, the training loss is dominated by the majority of

negative samples whose pronunciation is not related to the key-

word, called unimportant negative samples. This inconsistency

greatly degrades the performance of KWS and existing meth-

ods like focal loss don’t discriminate between the two kinds

of negative samples. To deal with the problem, we propose a

novel re-weighted interval loss to re-weight sample loss consid-

ering the performance of the classifier over local interval of neg-

ative utterance, which automatically down-weights the losses of

unimportant negative samples and focuses training on important

negative samples that are prone to produce false alarms during

decoding. Evaluations on Hey Snips dataset demonstrate that

our approach has yielded a superior performance over focal loss

baseline with 34% (@0.5 false alarm per hour) relative reduc-

tion of false reject rate.

Index Terms: keyword spotting, end-to-end, data imbalance,

re-weighting, speech recognition

1. Introduction

Keyword spotting (KWS) aims at detecting a pre-defined key-

word from a stream of audio. Most voice interface-based smart

devices rely on KWS techniques to start human-machine in-

teractions (e.g. “Okay Google” for Android, “Hi Siri” for

iPhone). Early researches exploit speech recognition tech-

niques such as large vocabulary continuous speech recognition

(LVCSR) [1, 2], keyword/filler hidden Markov models (HMMs)

[3, 4] for KWS. With the great breakthroughs of deep learn-

ing, KWS models based on deep neural networks (DNNs) have

been proposed, including DNNs [5, 6, 7, 8], convolutional neu-

ral networks (CNNs) [9], time delay neural networks (TDNNs)

[10, 11]. The neural networks read a narrow input window and

predict posteriors of sub-keyword (syllable, word, etc.) and

filler (non-keyword speech) targets, called multi-class models.
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The posterior handling is further used to produce a confidence

score and the system triggers if the confidence score exceeds

a preset threshold. The Deep KWS above has significant out-

performance over LVCSR and HMM-based methods. How-

ever, using sub-keyword targets requires a well-trained acoustic

model to obtain frame-level alignments for labeling and com-

plicated posterior handling for decoding. Recently several end-

to-end KWS models [12, 13] have been proposed, which di-

rectly predict the posteriors of binary targets (complete keyword

or filler) in an end-to-end manner without necessity for forced-

alignment labeling and complicated posterior handling.

However, the training of end-to-end keyword spotting

(KWS) suffers from critical data imbalance problem that pos-

itive samples are far less than negative samples [14]. Models

trained on this data distribution perform poorly on the class with

fewer samples. The most effective solution is re-weighing the

training loss, also called cost-sensitive learning [15], which can

be divided into two regimes: class balanced re-weighting and

sample importance re-weighting. Formally, the loss function

of a sample x with label y can be re-weighted by class balanced

weight Wc and sample importance weight Ws simultaneously:

LRE = Wc ·Ws · L(ŷ, y) (1)

where ŷ is the prediction of the model and L(ŷ, y) is the raw

classification loss (e.g. cross-entropy). For class balanced re-

weighting, the weight value Wc is calculated according to the

label of samples. The most common practice is setting Wc to in-

verse class frequency or inverse square root of class frequency.

A more advanced approach is proposed in [16] to quantize the

effective number of samples in certain class for class balanced

re-weighting.

In this work, we focus on sample importance re-weighting

to handle the data imbalance problem of end-to-end KWS.

While class balanced re-weighting balances the importance of

positive/negative samples according to the number of samples

of each class, sample importance re-weighting discriminates

between samples of different importance considering the sam-

ple difficulty (the performance of the classifier on the sam-

ple). A typical instance of sample importance re-weighting is

focal loss, which is first proposed to address the data imbal-

ance problem of dense object detection [17] and later applied to

multi-class KWS model [18]. By adding a dynamically scaled

factor to the cross-entropy loss, focal loss can automatically
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down-weight gradient backpropagation of well-classified sam-

ples during training and focus the model on hard samples. As

for end-to-end KWS, during decoding, false alarms are mainly

caused by a small number of negative samples having pronun-

ciation similar to the keyword (important negative samples),

which cause continuous false positive predictions; however, the

training loss of end-to-end KWS is dominated by the major-

ity of negative samples producing discrete false positive predic-

tions, of which the pronunciation is not related to the keyword

(unimportant negative samples). This inconsistency greatly

degrades the performance of KWS. Focal loss doesn’t discrim-

inate between them because it uses frame loss as re-weighting

unit to calculates sample importance weight according to frame

sample difficulty.

To deal with the problem, we propose a novel re-weighted

interval loss to re-weight sample loss considering local sam-

ple difficulty (the performance of the classifier over samples

within a local interval of negative utterance), which automat-

ically down-weights the losses of unimportant negative sam-

ples and focus training on important negative samples which

are prone to produce false alarms during decoding.

2. Related Work and Problem Analysis

2.1. Interval labeling mechanism
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Figure 1: Labeling mechanism for positive utterance and nega-

tive utterance.

The most important feature of end-to-end KWS is the use of

Voice Activity Detection (VAD) technique to decide the bound-

ary of positive sample rather than costly forced-alignment with

well-trained acoustic model. In [12], a labeling interval around

VAD end of the keyword is adopted to deal with the VAD de-

tection error. Specifically, take keyword “Hey Snips” as an

example, the labeling of positive utterance consists of three

steps as shown in Figure 1(a). First, VAD is used to decide

the end of keyword (VAD end). Second, positive label is as-

signed to frames within a labeling interval of length N around

the VAD end to make sure the receptive field or input win-

dow of the KWS model covers the complete keyword speech.

Frames outside of the labeling interval are not considered. Fi-

nally, N Receptive Field (from RF1 sliding to RFN ) ending

with the labeled frames within the labeling interval constitute

the N positive samples of the positive utterance. Due to the

interval labeling above, the model learns a pattern of keyword

speech with time shift invariance within labeling interval, mean-

ing the model tends to make continuous true positive predictions

around the end of well-classified keyword speech.

As for the labeling of negative utterance, receptive field can

be slided along the timeline, as shown in Figure 1(b). Same as

positive samples, the frame at the end of the receptive field are

labeled as negative. For the convenience of description, we refer

to the classification loss of the receptive field as frame loss.

2.2. Problem Analysis
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Figure 2: Important (“I”) and unimportant (“U”) negative

samples of end-to-end KWS

During decoding of KWS, the false alarms are mainly caused by

a small number of important negative samples having pronunci-

ation similar to the keyword. When important negative samples

are mistaken for keyword by the model, continuous false posi-

tive predictions are produced around the end of the speech like

the true positive case. Take the negative utterance (“i want to

be a spaceman”) as an example as shown in Figure 2. The pro-

nunciation of “spaceman” is similar to that of the keyword “hey

snips”, which makes it an important negative sample causing

continuous false positive predictions around its end (red frames

labeled with “I” in Figure 2). The pronunciations of unimpor-

tant negative samples like “i want to be a” are not related to that

of keyword, and may produce occasional discrete false positive

predictions (red frames labeled with “U” in Figure 2) due to

the reason that outputs of neural network model are not smooth

with respect to its inputs [19, 20]. During training, unimportant

negative samples constitute the majority of the loss and domi-

nate the gradient.

The “I” and “U” false positive predictions caused by impor-

tant and unimportant negative samples respectively in Figure 2

are not differentiated by the focal loss[17, 18], since it treats all

such false positive frames equally and uses single frame loss as

re-weighting unit to calculate Ws considering the frame sample

difficulty:

FL(pt) = (1− pt)
γ · − log pt (2)

in which pt is the posterior corresponding to the groundtruth

output by the model, − log pt is the standard cross-entropy loss

and (1 − pt)
γ is the modulating factor, i.e. sample importance

weight Ws. When the sample is well-classified (blue frames

in Figure 2), pt approaches to 1, hence the sample importance

weight (1−pt)
γ is close to 0 and the loss is down-weighted. For

misclassified frames (the red frames including both “I” and “U”

in Figure 2), pt approaches to 0, hence the sample importance

weight (1− pt)
γ goes to 1 and the loss is less affected.

3. Methodology

In this section, we introduce a novel re-weighted interval loss

to automatically down-weight the losses of unimportant nega-

tive samples and focus training on important negative samples.
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Rather than using frame loss as re-weighting unit like focal loss,

re-weighted interval loss merges frame losses within the label-

ing interval into single interval loss and re-weights the interval

loss considering the local sample difficulty, i.e. the proportion

of false positive predictions within the labeling interval.

3.1. Interval loss

sliding

...Frames

i                want                to           be           a                    spacemanText Transcribes
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1st labeling interval 2nd labeling interval

II I

3rd labeling interval

RF

Figure 3: Sample importance re-weighting base on local sample

difficulty

We label the negative utterance in a way similar to the positive

utterance as shown in Figure 3. The receptive field slides over

frames within the labeling interval of length N , and the last

frame of the receptive field is labeled as negative. The spacing

between adjacent labeling intervals helps to down-sample the

negative samples. There may be multiple labeling intervals for

single negative utterance because it’s usually much longer than

the keyword. For each labeling interval of the negative utter-

ance, we merge N frame losses, i.e. the classification losses

of N receptive fields, into single interval loss LI by average

pooling (ave-pooling):

LI =
1

N

N
∑

i=1

L(ŷi, yi) (3)

where L(ŷi, yi) is the cross-entropy loss of i-th receptive field.

3.2. Sample importance re-weighting based on local sample

difficulty

We use interval loss above as re-weighting unit instead of sin-

gle frame loss in focal loss. The sample importance weight of

the interval loss is calculated considering the local sample dif-

ficulty, i.e. the performance of the classifier over local inter-

val of negative utterance, which is formally represented by the

proportion of false positive predictions (red frames in Figure

3) in all N frames of the labeling interval. The false positive

prediction means that the output positive posterior probability

P{y = 1|x} of the receptive field exceeds 0.5 while the last

frame of the receptive field is labeled as negative. Specifically,

the number of false alarm predictions within the labeling inter-

val is NFP , and we have the proportion of false positive predic-

tions PFP = NFP

N
. The sample importance weight Ws of the

interval loss LI is as follows:

Ws = max{1,
a

1 + e−b(PFP−PT )
} (4)

where PT is the proportion threshold, a is the upper bound

of the weight and b decides the function gradient around pro-

portion threshold PT . The visualization of sample importance

weight function Ws (PT = 0.7) is shown in Figure 4, which

demonstrates the effects of the hyparameters a and b.

Take the negative utterance (“i want to be a spaceman”) as

an example as shown in Figure 3. The 1st labeling interval and

FP
P

(a)

FP
P

(b)

Figure 4: The visualization of sample importance weight func-

tion Ws (PT = 0.7) derived from sigmoid function: (a) a is the

upper bound of the weight; (b) b decides the function gradient

around proportion threshold PT .

the 2nd labeling interval covers only unimportant negative sam-

ples (“i want to be a”), where the proportion of false positive

predictions (red frames labeled with “U”) is small and the inter-

val loss is down-weighted. The 3rd labeling interval covers im-

portant negative samples (“spaceman”), where the proportion of

false positive predictions (red frames labeled with “I”) is large

and the interval loss is less affected. In this way, our approach

can discriminate the two kinds of negative samples by differ-

encing the importance between them.

3.3. Re-weighted interval loss

The final re-weighted interval loss LRE of negative samples is

as follows:

LRE = Wc ·max{1,
a

1 + e−b(PFP−PT )
} · LI (5)

where Wc is the class balanced weight. As for positive samples,

the sample importance weight Ws is set to 1, and corresponding

re-weighted interval loss is LRE = Wc · LI .

4. Experiment

4.1. Data

We evaluate our re-weighted interval loss on an open dataset

[12] whose keyword is “Hey Snips”. The dataset consists of

about 11K keyword utterances and 86.5K (96 hours) negative

non-keyword utterances. Negative utterances have been col-

lected in the same conditions (speaker, hardware, environment,

etc.) with keyword utterances. The acoustic features are 20-

dimensional log-Mel filterbank energies (LFBEs), which is ex-

tracted from the input audio every 10ms over a window of 25ms.

4.2. Experimental setup

We choose two end-to-end KWS models based on CNNs to

evaluate our proposed method: dilated CNNs [12] and trad

fpool3 CNNs [9]. Our experiments are conducted based on

TensorFlow and ADAM optimizer [21] with a learning rate of

10−3 and a batch size of 256. We impose a class balanced re-

weighting with the same weight ratio (Positive : Negative =
10 : 1) on all the compared methods. All the hyperparameters

are tuned on the dev set (a = 10, b = 10, PT = 0.7, N = 31).

The compared methods are described as follows:

2569



1) Cross-Entropy Loss (CEL): cross-entropy loss with no

sample importance re-weighting;

2) Focal Loss (FL): focal loss in [18] (α = 0.5, γ = 1);

3) Continuous Re-weighted Interval Loss (C-RIL): re-

weighed interval loss with continuous weight function in Equa-

tion (4);

4) Piecewise Re-weighted Interval Loss (P-RIL): re-

weighted interval loss with piecewise weight function in Equa-

tion (6), by approximating b → ∞:

Ws =

{

W1, PFP ≥ PT ,

W2, PFP < PT

(6)

where W1 and W2 are upper and lower bounds respectively

which are tuned on dev set (W1 = 10 and W2 = 1).

4.3. Experimental results

(a) dilated CNNs (b) trad fpool3 CNNs

Figure 5: DET curves for different model architectures

Figure 5 provides the Detection Error Tradeoff (DET) curves of

dilated CNNs and trad fpool3 CNNs for all the compared loss

functions. We can see from the curves that C-RIL outperforms

other baselines at almost all the values of the threshold, which

proves that re-weighted interval loss helps model focus on im-

portant negative samples and improves significantly the perfor-

mance of end-to-end KWS under the data imbalance condition.

Additionally, it can be seen that FL has yielded a superior per-

formance over CEL but is still weaker than C-RIL because using

frame as re-weighting unit and it doesn’t discriminate between

important and unimportant negative samples during training.

We evaluate False Reject Rate (FRR) by tuning threshold to

fix the False Alarms at 0.5 and 1.0 per hour, as shown in Table 1.

The proposed C-RIL performs the best and yields a lower FRR

than FL baseline with a 34% (@0.5 False Alarm per hour) and

16% relative reduction on dilated CNNs. Another interesting

observation is that continuous weight function (C-RIL) is better

than the piecewise one (P-RIL), we guess the reason is continu-

ous weight function makes sample importance weight Ws more

differentiated with respect to the local sample difficulty PFP

.The result also demonstrates that C-RIL on trad fpool3 CNNs

performs better than C-RIL on dilated CNNs, we think the rea-

son is the former has used more parameters and calculations.

4.4. Methods of merging losses: ave-pooling vs. max-

pooling

In our method, we have proposed to use ave-pooling to calculate

the interval loss as in Equation (3). Another way to merge frame

Table 1: False Reject Rate (FRR) (%) calculated at 0.5/1.0 false

alarm per hour

0.5/1.0 false alarm CEL FL P-RIL C-RIL

dilated CNNs 8.09/5.63 6.42/4.44 5.07/4.20 4.21/3.73

trad fpool3 CNNs 6.07/5.71 4.05/3.73 5.48/4.62 3.53/2.82

Figure 6: P-Max (P-RIL with Max-pooling), C-Max (C-RIL

with Max-pooling), P-Ave (P-RIL with Ave-pooling) and C-Ave

(C-RIL with Ave-pooling).

losses into interval loss is max-pooling inspired by [22]. For-

mally, we can get the merged interval loss LI by max-pooling:

LI = max
1≤i≤N

L(ŷi, yi) (7)

where L(ŷi, yi) is the cross-entropy loss of i-th receptive field.

The DET curves of re-weighted interval loss (both C-RIL and

P-RIL) using max-pooling and ave-pooling on dilated CNNs

is shown in Figure 6. It’s clear that ave-pooling significantly

outperforms max-pooling in both C-RIL and P-RIL. The pos-

sible reason is merging frame losses by max-pooling discards

all other frame losses within the labeling interval except the

maximum, which makes model under-fitting. We also find that

max-pooling method greatly slows the convergence of training

process since there is only one frame loss left for the back prop-

agation of gradients.

5. Conclusion

In this paper, we explore the re-weighted interval loss for han-

dling the data imbalance problem of end-to-end KWS. The pro-

posed re-weighted loss is intended to use the interval loss as

re-weighting unit and calculates sample importance weight con-

sidering the local sample difficulty. Evaluations on Hey Snips

dataset demonstrate that our approach has yielded a lower FRR

than focal loss baseline.
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