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Abstract
With the development of sequence-to-sequence modeling algo-
rithms, Text-to-Speech (TTS) techniques have achieved signif-
icant improvement in speech quality and naturalness. These
deep learning algorithms, such as recurrent neural networks
(RNNs) and its memory enhanced variations, have shown
strong reconstruction ability from input linguistic features to
acoustic features. However, the efficiency of these algorithms
is limited for its sequential process in both training and infer-
ence. Recently, Transformer with superiority in parallelism
is proposed to TTS. It employs the positional embedding in-
stead of recurrent mechanism for position modeling and sig-
nificantly boosts training speed. However, this approach lacks
monotonic constraint and is deficient with issues like pronun-
ciation skipping. Therefore, in this paper, we propose a mono-
tonicity enhancing approach with the combining use of Step-
wise Monotonic Attention (SMA) and multi-head attention for
Transformer based TTS system. Experiments show the pro-
posed approach can reduce bad cases from 53 of 500 sentences
to 1, together with an improvement on MOS from 4.09 to 4.17
in the naturalness test.
Index Terms: Text-to-Speech, Transformer, Monotonic atten-
tion

1. Introduction
Text-to-speech (TTS), as one essential component in human-
computer speech interaction, aiming to synthesize speech on
human-parity quality, has attracted increasing research inter-
ests. Conventional statistical parametric speech synthesis ap-
proaches, such as hidden Markov models (HMMs) [1], can pro-
duce speech with good naturalness and controllability, but are
suffered from low quality, complex training pipelines and huge
requirement for expertly labeled data.

Recently, neural end-to-end approaches are proposed to
lower the barriers for developing high-quality text-to-speech
systems [2, 3, 4, 5]. Most of these approaches are constructed
with recurrent neural networks (RNNs) and its memory en-
hanced variations following sequence-to-sequence structures
[3, 6]. These approaches generally encode the input to inter-
mediate states for linguistic information extraction, then de-
code the encoded states to targeted acoustic parameters. An
additional vocoder [7, 8, 9] is then employed to produce wave-
forms with the generated features. An attention mechanism is
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generally employed to align the encoder and decoder states for
source-target correspondence, contributes crucial influence on
the naturalness and robustness of the synthetic speech.

To achieve better performance, many researches have been
done to explore different attention mechanisms for RNN based
TTS systems. Tacotron2 [3] adopts a location-sensitive atten-
tion [10] to exploit alignment information from previous steps
to current inference, which could mitigate repetition and omit-
ting problems compared with conventional additive attention
mechanism [11]. Forward attention [12], monotonic atten-
tion [13] and dynamic convolution attention [14] are also pro-
posed with their properties in modeling monotonic information
in TTS. However, being proposed with RNN structure, these
mechanisms are based on bringing in additional sequential de-
pendence and thus have limited computing efficiency.

To optimize the efficiency of TTS system, a none-recurrent
Transformer based TTS system is proposed [15]. Trans-
former [16] is solely developed with attention mechanisms
and dispensed with recurrences and convolutions entirely and
shows extraordinary performance on neural machine transla-
tion (NMT) task compared with conventional RNN-based ap-
proaches. Being free from recurrent structure, Transformer
based TTS benefits from parallel computing in training, and
with multi-head attention mechanism it can learn long-distance
dependency to produce speech with natural prosody [17, 18].
However, different from the source-target mapping in NMT
tasks, the modeling from linguistic feature to acoustic feature
in TTS is of monotonic essence, which is weak in the original
design of Transformer. This weakness makes the system suffer
from robust issues, such as word skipping and repeating, which
further results in lower perception satisfaction to users.

Alleviating these issues requires the monotonicity enhance-
ment for Transformer. However, considering the parallel com-
putation property, conventional monotonicity enhancing mech-
anisms for RNN structures cannot be simply integrated with
Transformer. In this paper, we propose a novel monotonic-
ity enhanced attention with the combining usage of multi-head
attention and Stepwise Monotonic Attention (SMA) [19]. In
the proposed method, we detect those heads with diagonal pat-
terns in pre-trained multi-head attention and then employ SMA
to tune these heads to get more focused and accurate mono-
tonic alignments. This helps to improve the system’s robust-
ness while retaining other heads with scattered alignments for
improving naturalness of speech. With the proposed attention
mechanism, experimental results show the proposed approach
is more robust compared with baseline Transformer-TTS, with
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bad case counts from 53 of 500 sentences to 1. Furthermore,
the proposed model has also achieved better evaluation results
in MOS test, from 4.09 to 4.17 in naturalness with the baseline
model.

The contributions of this paper can be summarized as:

1. Propose a novel monotonicity enhanced attention ap-
proach with the combining use of multi-head attention
and Stepwise Monotonic Attention for Transformer.

2. Significantly alleviate the robust issues in Transformer
based TTS systems.

3. Further improve the naturalness of synthetic speech.

4. Provide more precise alignments for knowledge distilla-
tion models, such as FastSpeech [20] student models.

2. Methodology
2.1. Multi-head Attention

Transformer[16] is a transduction model entirely constructed
with multi-head self-attention for input representations extrac-
tion and target features reconstruction without any recurrence
or convolution. For the encoder in Transformer based TTS
system, the core self-attention mechanism is employed to ex-
tract the long-time dependency between input features with the
consideration of the sentence-level contextual information. For
the decoder, the self-attention mechanism can model the depen-
dency between any frame pair to enable high-quality acoustic
features prediction. These properties are essential for natural
speech production, especially for long speeches. To align un-
paralleled encoded input and targeted output, multi-head atten-
tion is also employed for encoder-decoder alignment.

For given query matrix Q ∈ Rn×d , key matrix K ∈ Rl×d,
and value matrix V ∈ Rl×d, where n, l, d represents the length
of target sequence, the length of source sequence, and the di-
mension of each sequence respectively, the muti-head attention
algorithm computes the hidden output Hi as following:

Hi = Attention(QWQ
i ,KW

K
i , V WV

i ) (1)

where Q,K, V are projected to h sub-spaces for computation
by multiplying trainable projection matrix WQ

i ,W
K
i ,WV

i (i =
1, 2, ..., h). For each sub-space, Scaled Dot-Product Attention
(SDA) is employed to compute the attention output:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (2)

By concatenating outputs from all sub-spaces and passing
through a linear projection with weight WO , the final output
is computed as:

MultiHead(Q,K, V ) = Concat(H1, ..., Hh)W
O (3)

In Transformer TTS, stacked multi-head attention layers are
employed to extract input linguistic representation in encoder
progressively, and to reconstruct target acoustic features in the
decoder gradually. The model can also benefit from multi-head
attention since each sub-space can represent a different aspect
for the modeling. This mechanism can enhance the robustness
and naturalness of the synthetic speech.

However, limitations still exist in these Transformer based
TTS approaches: the weakness in modeling location sensitive
information and the lacking of monotonic constraints. Unlike
RNN based approaches using recurrent attention to produce

consistent attention, the recurrence and convolution free Trans-
former cannot model the position information, results in ignor-
ing the orders for both input and output sequence. However,
for TTS task, the order information of input linguistic features
and output acoustic features are vital for speech generation. To
alleviate this issue, an additional scaled positional encoding is
employed to import position information:

PE(pos, 2c) = sin(
pos

10000
2c
d

) (4)

PE(pos, 2c+ 1) = cos(
pos

10000
2c
d

) (5)

x′pos = xpos + βPE(pos) (6)

where pos is the time step index, 2c and 2c + 1 is the chan-
nel index, d is the dimension and β is a trainable scale factor.
The position embedding is employed to both encoder and de-
coder by adding to origin input xpos, providing absolute po-
sition information to the model. However, this mechanism is
still weak in modeling location dependency and monotonicity of
speech, result in word skipping and repeating in speech gener-
ation. Therefore, location sensitive monotonicity enhancement
approach is required.

2.2. Stepwise Monotonic Attention

Stepwise Monotonic Attention (SMA) [19] is proposed to en-
hance robustness for RNN based TTS approaches by introduc-
ing additional monotonic constraint and has proven with effec-
tive robustness enhancing performance.

Suppose the query of previous time step i− 1 attend to key
j, by sampling zi,j ∼ Bernoulli(pi,j), the query of current step
i will either stop and attend to j if zi,j = 1, or one step forward
to attend to j + 1 if zi,j = 0. For query i the process only
keeps j unmoved or one step forward to stop at j = j + 1, the
stepwise monotonicity constraint is thus imposed.

The sampling probability pi,j for given query at time step i
to stop at key j is:

pi,j = sigmoid(ei,j +N (0, 1)) (7)

ei,j = Energy(qi,kj , θ) (8)

where sigmoid() is the non-linear sigmoid activation function,
ei,j is the energy function to score how well the input query
qi and key kj matches, θ denotes additional parameters for en-
ergy functions. The N (0, 1) is the Gaussian noise employed
to bridge the gap between sampling and expectation. The ex-
pectation is employed in training since the sampling operation
will block the gradient back propagation in network. The ex-
pectation value αi,j can be calculated in a recursive formula
according to the tactic of sampling:

αi,j = αi−1,j−1(1− pi,j−1) + αi−1,jpi,j (9)

with paralleled computing formula as:

αi = αi−1 · pi + [0;αi−1,:−1 · (1− pi,:−1)] (10)

Two different approaches named soft and hard decoding can
be employed in inference. The soft decoding directly use the
value of αi,j as alignment weight, and the hard one will sam-
ple from αi,j with 0 or 1 under Bernoulli distribution. In the
TTS task, the soft inference approach could reduce the influ-
ence from context mismatching and provide more robust per-
formance comparing with the hard one.
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Figure 1: The proposed multi-head attention with SMA. The
encoder-decoder alignments are sent to SMA blocks for fo-
cus rates computing. Those alignment results with focus rates
greater than prefixed threshold are then sent to SMA for impos-
ing monotonicity constraints.

2.3. Stepwise Monotonic Attention Tuned Process

Encoder-decoder alignments are of great importance in end-to-
end TTS systems. In alignments from Transformer TTS, those
with focused diagonal pattern may directly contribute to the
speech robustness and naturalness. We proposed a SMA based
alignment tuning approach to optimize these alignment results,
to improve the robustness and naturalness of synthetic speech
by introducing monotonic constraint and location sensitive in-
formation modeling.

SMA can be simply introduced to Transformer by replacing
the attention computation Eq.(2). To produce SMA attention,
probability sampling matrix P is firstly computed as:

P = sigmoid(
QKT

√
d

+N (0, 1)) (11)

where sigmoid() is the non-linear sigmoid activation function,
N (0, 1) is the Gaussian noise employed to bridge the gap be-
tween sampling and expectation. Then P is split into probabil-
ity vector for steps from 1 to n, [p1,p2, ...,pn], and expecta-
tion vectors [α1,α2, ...,αn] are computed following Eq.(10).
Attention matrix A is then produced by concatenating the ex-
pectation vectors. Thus Eq.(2) can be modified into:

Attention(Q,K, V ) = AV (12)

Considering not all the alignments produced from multi-
head attention are following the diagonal pattern, and scattered
ones may also represent one mapping dependency across en-
coded sequence and targeted decoding sequence, it is recom-

mended to select the diagonal alignments for monotonicity en-
hancing while retaining the scattered alignments. We propose
the usage of focus rate [20] to auto-select the alignment heads
for SMA tuning. The focus rate is computed as:

F =
1

n

n∑
i=1

max1≤j≤lα̂i,j (13)

where α̂i,j is the element in the attention matrix. A prefixed
threshold is defined and those alignment heads with greater fo-
cus rate will be sent for SMA optimization, as shown in Fig.(1).
Empirically, we set the threshold to 0.5.

Since SMA is proposed as a tuning approach, it is suggested
to pre-train a basic Transformer model. Thus we can conclude
the training process in two steps: 1) train an original Trans-
former TTS network until it converges to a certain step when
all diagonal alignments stably appear; 2) enable SMA instead
of SDA in Transformer and continue training until the model
converges. Following this process, we can donate benefits as:

• With a pre-trained source Transformer model, SMA can
be stably adopted within less training epochs, and sig-
nificantly reduce the extra training time cost caused by
imposing SMA.

• The monotonicity enhancement is only adopted to di-
agonal alignments, with other scattered alignments re-
tained. This helps the proposed approach maintain orig-
inal modeling ability in exploiting contextual dependen-
cies across the input and contribute to the naturalness and
quality of synthetic speech.

3. Experiments
3.1. Experiment Setup

In experiments, LJSpeech [21] is employed for evaluation,
which contains 13,100 recordings from a native female speaker.
12600, 250, 250 instances split from the corpus are used as
the training, validation, test sets, respectively. Phoneme se-
quences extracted from the text are employed as the source in-
put, and 80-dimension of mel-spectrogram is employed as the
target acoustic parameters.

To better evaluate the performance of the proposed system,
three different systems with different set-up are constructed, in-
cluding an original Transformer baseline, a monotonicity en-
hanced SMA approach with hard decoding, and the proposed
monotonicity enhancing SMA approach with soft decoding,
each has the setting as follows:

• Baseline: The baseline Transformer-TTS, which has two
fully-connected layers as decoder prenets, each with 64
hidden units. Both encoder and decoder are constructed
with 4 multi-head attention blocks, each employs 512
hidden units, and the following feed-forward networks
employ 1024 hidden units. Only Scaled Dot-Product At-
tention is employed.

• SMA (hard): Approach with SMA hard decoding. Shar-
ing the same hyper-parameter settings with the base-
line approach, but with enabled monotonicity enhancing
mechanism in training and with SMA hard decoding.

• SMA (soft): Approach with SMA soft decoding. Shar-
ing the same hyper-parameter settings with the base-
line approach, but with enabled monotonicity enhancing
mechanism in training and with SMA soft decoding.
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These comparison systems are implemented with ESPNET
development framework [22], and all models are trained with
4 cards of Tesla V100 GPU. As listed in Table.1, comparison
models have similar scale and share similar time consuming in
training. SMA tuned approaches employ 600 epoch pre-trained
Transformer-TTS as the source model, and processes another
50 epochs for fine-tuning. For the vocoder, we use Griffin-Lim
in the Robustness test for simplicity and use WaveNet in the
naturalness test. Example audios are available at 1.

Table 1: Quantitative description of models.

Total Parameters Time Cost Epochs
Baseline 22.34 m 18 h 1000

SMA Tuned 22.34 m 19 h 600+50

3.2. Robustness Test

The robustness test is firstly conducted to evaluate the stability
of different comparisons in speech generation. In this test, the
bad cases are counted to show how robust the system is in large-
scale testing. The error cases are categorized as word-level re-
peating, skipping, and mispronunciation. All the reserved sen-
tences in validation and test set are employed in this test, thus
500 sentences containing 8,320 words in total are included.

The evaluation result is shown in Table.2. The baseline
Transformer-TTS is suffered from bad repeating and skipping
issues, produces 115 word-level bad cases in total. With the
monotonicity enhanced approach, these issues are significantly
alleviated: only 7 word-level bad cases are observed in SMA
(hard) approach and only 1 word-level bad case is observed
in SMA (soft). This helps sentence-level bad case rate drop
from 10.6% in Transformer baseline to 1.2% in SMA (hard),
and 0.2% in SMA (soft).

Table 2: Evaluation result on 500 sentences in the robustness
test. Words denotes the word-level bad case numbers, and Sen-
tences counts the sentences with word-level bad cases.

Baseline SMA (hard) SMA (soft)
Repeat 55 1 0

Skipping 57 0 0
Mispro 3 6 1
Words 115 7 1

Sentences 53 6 1

3.3. Naturalness Evaluation

Naturalness evaluation is then conducted to evaluate the percep-
tion quality of the synthetic speech. In this test, 50 out-domain
sentences are used to generate speech samples. And 20 native
language experts are invited to score the recordings as well as
the samples generated by different approaches, in which sam-
ples are scored as 1=Poor, 2=Bad, 3=Fair, 4=Good, 5=Excel-
lent.

Table 3: Results of the Mean Opinion Scores (MOS) of the
speeches, with confidence interval as 95%.

MOS scores
Ground Truth 4.52± 0.11

Baseline 4.09± 0.06
SMA (hard) 4.09± 0.06
SMA (soft) 4.17± 0.06

1https://thuhcsi.github.io/interspeech2020-monotonicity-
transformer-tts/

The evaluation result is shown in Table.3. When introduc-
ing hard decoding SMA to Transformer-TTS, the naturalness
of synthetic speech has achieved on par performance with the
Transformer baseline. And when using soft decoding SMA in-
stead, the proposed approach has achieved a further improve-
ment on the naturalness, achieving +0.08 MOS gain compared
with the Transformer baseline.

3.4. Alignment Case Study

Fig.2 shows a typical sentence-level bad case in the evaluation.
In this sentence, repeating issues happen in Transformer base-
line system around “the privacy of the” where the two “the”
are similarly pronounced, leading to misalignment and causing
repeating bad case. With the monotonicity enhancement, this
issue is not observed in the proposed system. And with SMA,
the produced alignment also has a higher focus rate in align-
ment than the baseline, this may also help the system produce
robust speech.

Figure 2: An instance of “Presidents have made it clear, how-
ever, that they did not favor this or any other arrangement which
interferes with the privacy of the president and his guests.” Pic-
ture (a) (c) (d) show the diagonal alignments with highest focus
rate in baseline, SMA(soft) and SMA(hard) respectively.(b) is
an example of head with scattered content from baseline.

4. Conclusions
In this paper, we proposed a monotonicity enhanced approach
for Transformer TTS systems. By introducing Stepwise Mono-
tonic Attention to tune alignment results from multi-head atten-
tion, the proposed approach can significantly improve the ro-
bustness of synthetic speech from Transformer-TTS and also
improve the synthetic naturalness. We believe our methods
could also be applied to other tasks applying Transformer struc-
ture but need monotonic constraint.
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