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Abstract
By using deep learning approaches, Speech Emotion Recog-
nition (SER) on a single domain has achieved many excellent
results. However, cross-domain SER is still a challenging task
due to the distribution shift between source and target domains.
In this work, we propose a Domain Adversarial Neural Net-
work (DANN) based approach to mitigate this distribution shift
problem for cross-lingual SER. Specifically, we add a language
classifier and gradient reversal layer after the feature extractor to
force the learned representation both language-independent and
emotion-meaningful. Our method is unsupervised, i. e., labels
on target language are not required, which makes it easier to ap-
ply our method to other languages. Experimental results show
the proposed method provides an average absolute improve-
ment of 3.91% over the baseline system for arousal and valence
classification task. Furthermore, we find that batch normaliza-
tion is beneficial to the performance gain of DANN. Therefore
we also explore the effect of different ways of data combination
for batch normalization.
Index Terms: speech emotion recognition, domain adversarial
learning, cross-lingual, affective representation learning

1. Introduction
With the extensive application of Artificial Intelligence (AI)
products in our daily lives, it has become increasingly imper-
ative to design a smarter Human-Computer Speech Interaction
(HCSI) system. Speech Emotion Recognition (SER), which
aims to infer the emotional state of a speaker from his or her
speech [1], has been regarded as a crucial component for a
more intelligent HCSI system. Existing SER models [2–4] have
achieved satisfactory level results when the training and test
data are from the same corpus. However, it is still intractable
to build a more robust cross-lingual SER system because of the
domain shift between corpora of different languages [5].

Numerous approaches have been proposed to reduce the do-
main shift problem for cross-corpus or cross-lingual SER. [6]
proposes a fine-grained adversarial domain adaptation scheme,
which reduces the distribution shift of the same emotion class in
different corpora. [7] shows that fine-tuning can effectively im-
prove the recognition results. These methods are promising, but
additional labeled data are required, which might not be avail-
able since their collection is expensive.

A more practical solution is unsupervised domain adap-
tation which only demands unlabeled data from related do-
mains. A number of previous studies have explored statistical-
based methods to reduce mismatch between domains [8–12].
Specifically, [8, 9] deploy different level of feature normaliza-

tion strategies to minimize the speaker-and-corpus-related ef-
fects; [10–12] apply the Maximum Mean Discrepancy (MMD)
or Kernel Canonical Correlation Analysis (KCCA) approaches
to increase the similarity or correlation of different domains.
All these methods reduce the domain shift directly on the orig-
inal input feature space or its linear transformation space, so
the capacity of shift-reduction might be limited. Some other
studies [13–15] use variants of autoencoder to learn a concise
and common feature representation by incorporating the prior
knowledge from unlabeled data into learning. Since the opti-
mization of the autoencoder and emotion classifier is not per-
formed simultaneously, it is not clear whether compressed rep-
resentations preserve all the emotion information of speech.

Recently, Adversarial Learning (AL), such as Generative
Adversarial Network (GAN) [16] and Domain Adversarial Neu-
ral Network (DANN) [17], has become an increasingly pop-
ular approach for domain adaptation. [18] proposes a GAN-
based model for cross-lingual SER and demonstrates significant
improvements even for the non-mainstream Urdu language.
[19, 20] use a DANN-based framework to learn a speaker-
independent representation and greatly improve the single-
corpus results. [21] explores the advantage of DANN for cross-
corpus SER on three English corpora. Besides, the DANN tech-
niques have also been widely applied in other speech applica-
tions such as automatic speech recognition [22] and speaker
recognition [23] to deal with the domain mismatch problem.

Inspired by the success of DANN in domain adaptation
tasks, this paper proposes a DANN-based approach to reduce
the distribution shift for cross-lingual SER. Specifically, based
on the primary emotion classification task, a language classi-
fier with Gradient Reversal Layer (GRL) is added to the model
as an auxiliary task to help learn language-independent repre-
sentations. Unlike the studies mentioned above, our approach
reduces the distribution shift in a compressed feature space
instead of the original input space, and all the modules are
trained jointly rather than separately, which makes the model
learn emotion-discriminative and language-independent repre-
sentations more efficiently. Our contribution is two-fold: First,
we introduce the DANN framework for cross-lingual SER and
achieve significant performance improvements. Second, our
study presents that batch normalization (BN) [24] can con-
tribute to improve DANN and explores four different ways of
combining data for BN.

The rest of this paper is organized as follows. The proposed
method is described in Section 2. The databases and classifica-
tion scheme are detailed in Section 3. Experimental setup and
results analysis are presented in Section 4. Section 5 finalizes
the study with conclusions and future directions.
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2. Methodology
Firstly, we formulate our cross-lingual SER as the following
domain adaptation task. We have a source language corpus with
emotion labels as source domain, Ds = {(xs

i ,y
s
i )}ni=1, and a

target language corpus without emotion labels as target domain,
Dt = {xt

i}mi=1, where xs
i and xt

i ∈ Rk×d, ys
i ∈ {0, 1}c; k, d

and c are the number of frames in an utterance, the dimension
of each feature frame and the number of emotion categories; n
and m are the number of samples in Ds and Dt. Our goal is to
learn a reliable emotion classifier from the labeled Ds and the
unlabeled Dt, which can be generalized well in Dt.

2.1. Model structure

As shown in Figure 1, the proposed model consists of three
modules: encoder (Gf ), emotion classifier (Ge) and language
classifier (Gl). The encoder structure is mainly adopted from
[7], except that we add a batch normalization (BN) layer for the
stability of training a DANN model. A 1D convolution layer
with ReLU activation takes Mel spectral features as input to
capture emotion-related patterns. Then, a max pooling layer
with a large stride follows to select the most salient features.
Next, an attentive vector af̂ is extracted from the outputs of
max pooling by the following attention formulas:

si =
exp(vT f̂i)∑
j

exp(vT f̂j)
(1)

af̂ =
∑
i

sif̂i (2)

where f̂i is the i-th feature vector of the output f̂ of max pool-
ing layer and v is a trainable vector as a global attention query.
The motivation behind using this attention mechanism is that
emotion-related information is distributed differently over the
utterance. This global attention query v can be used to learn to
capture these important emotion patterns. Finally, the attention
vector af̂ is appended to the end of the output f̂ of max pooling
along the time dimension, and then all these feature vectors are
flattened into a fixed-length vector as the input of the following
BN layer. As the final representation, the output of the BN layer
f is fed into emotion classifier (only source domain data) and
language classifier (both source and target domain data). As
for classifiers, a single dense layer with softmax activation and
two output units are used for both classifiers. Besides, a Gra-
dient Reversal Layer (GRL) is inserted between BN layer and
language classifier to achieve the goal of adversarial training.

2.2. Adversarial training

DANN [17] is a fairly elegant neural network framework for un-
supervised domain adaptation, where unlabeled target domain
data can be efficiently utilized to reduce the variations between
the source and target domains. Specifically, there are two tasks:
a primary target task (e. g., emotion classification) and an aux-
iliary domain classification task (e. g., language classification).
Both tasks share the feature extractor and a GRL is introduced
between feature extractor and domain classifier. GRL is a layer
without trainable parameters and works as a “pseudo-function”
R(x) defined as the following formulas:

R(x) = x (3)
dR

dx
= −βI (4)

GRL

L
oss E

L
oss L

adversarial

+

Conv-1D Pooling AttentionConv-1D Pooling Attention BN

encoder emotion classifier

language classifier

Figure 1: The proposed model structure. BN and GRL are Batch
Normalization, and Gradient Reversal Layer respectively.

where I is an identity matrix and β is a hyper parameter con-
trolling the scale of reversal gradient signal. By using GRL,
the trainable parameters before and after GRL are updated in
the opposite direction, namely, adversarial training. As for the
classifiers of the two tasks, parameters are updated to minimize
their respective errors. As for the feature extractor, parameters
are updated to minimize the error of primary task while maxi-
mizing the error of domain classification task, where the latter
is implemented by GRL. Therefore, the learned feature could
be meaningful for the primary task and indistinguishable for
the domain classifier. In terms of our cross-lingual SER, the
primary task is emotion classification and the auxiliary task is
language classification. Our goal is to learn a representation that
retains discriminative information for emotion and reduces vari-
ations for languages. Therefore, the learned feature extractor
and emotion classifier can be directly applied to target language
data.

We use the cross-entropy loss as the training objective for
both emotion and language classifiers:

Le(θf ,θe) = −
1

n

∑
(x,y)∈Ds

yT logGe(Gf (x;θf );θe) (5)

Ll(θf ,θl) = −
1

n+m

∑
x∈D

yT
l logGl(Gf (x;θf );θl) (6)

where D = Ds ∪Dt; Le and Ll are the losses for emotion and
language classifiers respectively; θf , θe and θl represent the
trainable parameters for Gf , Ge and Gl respectively; y is the
one-hot encoding for emotion labels from source domain and
yl is the one-hot encoding for language labels distinguishing
source and target languages.

Then, we define the total loss as the weighted sum of the
above two losses and directly minimize it for training:

L(θf ,θe,θl) = α · Le(θf ,θe) + (1− α) · Ll(θf ,θl) (7)

where α plays a trade-off for the two losses. Due to the exis-
tence of GRL, minimizing the total loss L will actually lead to
the following way of parameter update:

θe ← θe − λ · α
∂Le

∂θe
(8)

θl ← θl − λ · (1− α)
∂Ll

∂θl
(9)

θf ← θf − λ ·
(
α
∂Le

∂θf
− (1− α) · β ∂Ll

∂θf

)
(10)

Concretely, θe and θl are updated for minimizing Le and Ll

respectively, and θf is updated for minimizing Le while maxi-
mizing Ll simultaneously. λ and β are the learning rate and the
gradient reversal scale of GRL. After training, a feature rep-
resentation rich in emotional information and indistinguishable
from languages will be obtained from the encoder output.
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3. Databases

3.1. IEMOCAP

IEMOCAP [25] is an audiovisual database of English dyadic
conversations performed by ten professional actors. There are
two types of conversations: the scripted ones and the impro-
vised ones (given a certain scenario and topic). This corpus
contains a total of 10,039 utterances, where audio, video, text
and motion-capture recordings are available. The categorical
emotion label and 5-point scales on the dimensions valence,
arousal, and dominance (1 - low/negative, 5 - high/positive) are
annotated by at least 2 raters. In our study, only audio modal
data and dimension label of valence and arousal are used.

3.2. RECOLA

RECOLA [26] is a multimodal database of French dyadic con-
versations. Participants express emotions spontaneously during
a collaborative video conference. Four different modal data of
audio, video, electrocardiogram (ECG) and electrodermal activ-
ity (EDA) are recorded continuously and synchronously. Con-
tinuous valence and arousal labels in the range[-1, 1] are mea-
sured by 6 annotators at frame level. Since our goal is to predict
emotion on utterance level, the mean value across all frames of
an utterance and all annotators are calculated as the final label.
Freely available 1,308 audio utterances from 23 speakers are
used in our study.

3.3. Classification scheme and input features

In this work, we focus on a binary classification task of va-
lence (negative/positive) and arousal (low/high). In order to
obtain binary training labels, we use the same annotation map-
ping scheme as in [7]. For IEMOCAP, the two ranges [1, 2.5]
and (2.5, 5] are categorized as low/negative and high/positive
respectively. Similarly, the corresponding two ranges are [-1,
0] and (0, 1] for RECOLA. In terms of input features, 26 log-
Mel filter-banks are extracted frame-wise from a single utter-
ance with frame size of 25ms and frame shift of 10ms. The log-
Mel feature has a fixed length of 750 frames. The shorter one
is padded with the minimum for each dimension in an utterance
and the longer one is truncated to 750 frames in the middle.

4. Experiments

4.1. Experimental setup

We use the following configurations for model training. 200
filters with kernel size 10 and stride 3 are used for the 1D con-
volution layer. The size and stride of max pooling are both set
to 30. Adam [27] optimizer and exponential decay learning rate
with initial rate 1e-3, decay rate 0.93 for every epoch, and final
rate 5e-5 are used to optimize parameters. For the regulariza-
tion, dropout with rate 0.7 as suggested in [28] is used for the
output of encoder; l1 and l2 regularization with the weight 5e-
3 are used for training RECOLA and IEMOCAP respectively.
We train the models for 50 epochs with a batch size of 32, and
30% of data from test set is used as the development set for
early stopping. The logMel features are normalized with zero
mean and unit variance for each database. All experiments are
run five times with different random seeds, and the unweighted
average recall (UAR) is chosen as our evaluation criterion.

4.2. Experimental results

4.2.1. Performance of the proposed model

In this section, we compare three trained models: our proposed
model (our), the baseline model (base), and the mono-lingual
model (mono). The base and mono model use the structure
which consists of the same encoder and emotion classifier only
as in Figure 1. The mono model is trained and tested on the
same database, where 70% samples are used for training, 25%
for testing and 5% for early stopping. It provides us with an
idea about the best achievable results within each database. We
use Rec and Iem to represent the RECOLA and IEMOCAP
database, and Rec2Iem means training on Rec and testing on
Iem and vice versa.

Table 1 reports UAR (%) results with standard deviations in
parentheses for the three models. Comparing the results of base
and our, our proposed model outperforms the baseline model in
all experiments and achieves an average improvement of 3.91%.
This result presents that the proposed approach can effectively
reduce variations between different languages while retaining
the information related to emotions. Therefore, the emotion
classifier can benefit from the learned language-independent
representation to improve results in target language. To il-
lustrate this, we use Principal Component Analysis (PCA) to
project the learned feature representation, i. e., the output of en-
coder, into 2D space.

Table 1: UAR (%) for baseline and proposed method.

Rec2Iem Iem2Rec

model arousal valence arousal valence average

base 62.49(2.96) 54.15(0.51) 60.73(0.45) 58.11(0.51) 58.87
our 71.99(0.33) 54.54(0.77) 63.18(0.32) 61.43(1.38) 62.78

mono1 75.55(0.78) 63.20(2.23) 66.28(1.71) 62.90(1.12) 66.98

As shown in Figure 2, regarding language labels, feature
representations learned by our adversarial training model (Fig-
ure 2(b) left) are more evenly mixed and therefore more in-
distinguishable than the ones learned by baseline model (Fig-
ure 2(a) left); while, as for emotion labels, feature represen-
tations learned by our proposed model (Figure 2(b) right) are
more separable than the ones learned by baseline model (Fig-
ure 2(a) right). Besides, in Figure 3, we plot the training curves
of the domain classification loss (blue line) and UAR (green
line), and the emotion classification UAR (red line) in devel-
opment set. It can be seen that, at the early stage of training,
the domain loss increases and decreases alternately, and the do-
main UAR changes oppositely than it, which suggests that the
adversarial training itself works well. Moreover, the emotion
development set UAR has a similar trend with domain loss,
which means that the emotion classifier gets better results when
the domain classifier has a higher loss, i. e., the more language-
indiscriminative the features are, the better performance of emo-
tion classification will be. These visual results further indicate
the effectiveness of the proposed method for cross-lingual SER.

Comparing the results of base and mono in Table 1, the per-
formance of naive cross-lingual SER (baseline) is 8.11% lower
on average than the mono-lingual SER. This result consistent
with [5,29] indicates that the distribution shift between different
languages will seriously harness the predictive ability of SER.

1mono is trained and tested on Iem for Rec2Iem setup, and Rec for
Iem2Rec setup
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Figure 2: PCA plot of the learned feature representation with
language labels (left) and emotion labels (right) for baseline
and our proposed model from the “Rec2Iem arousal” training.
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In addition, another clear conclusion can be obtained that the
prediction of arousal is easier than valence regardless of cross-
lingual or mono-lingual tasks. Similar results can be found
in [5, 30–32]. This is mainly because acoustic features such
as energy, pitch and speed are related to arousal [1], but for va-
lence, there is no consensus on how acoustic features correlate
with it, and it is more speaker-dependent [28].

4.2.2. Impact of batch normalization on performance

In this section, we first study the effect of BN on widening the
performance gap between our DANN-based model and base-
line model. As shown in Table 2, our proposed model is only
2.61% higher than baseline on average when BN is not used,
which is much lower than the gap of 3.91% as in Table 1 with
BN used. A possible reason for this result is that the adversarial
training of our model is not as stable as baseline, while BN can
help to make the distribution of the representation layer more
stable [24]. Therefore, better results can be achieved after using
the BN layer in our adversarial training model.

Based on the conclusion reached above, we further explore
four different ways of combining data for BN. For the training
of DANN model, both source and target data need to be fed into
the model. They can be first combined into one mini-batch and
then fed into the model, or each of them occupy a min-batch
and fed into the model alternatively. For the first data feeding

Table 2: UAR (%) for no batch normalization.

Rec2Iem Iem2Rec

model arousal valence arousal valence average

base 58.04(1.90) 52.34(0.79) 58.69(0.95) 53.79(0.87) 55.71
our 63.62(1.74) 52.94(0.36) 59.76(0.77) 57.81(2.07) 58.32

method, three ways of combining data for BN are performed as
follows: perform BN on the whole batch, namely BN1, which
is used for above experiments, where the first half batch (source
half) is fed to the emotion classifier (Ge) and the whole batch
is fed to the language classifier (Gl); perform BN on the source
half batch and whole batch respectively, namely BN2; perform
BN on the source half batch and target half batch respectively,
namely BN3. For the second data feeding method, BN is per-
formed on the whole batch from each domain, namely BN4.

The evaluation results of the above four types of BN are
shown in Table 3. On the one hand, the average results of all
BN1-3 are higher than BN4. This proves that it is better to com-
bine data from both source and target domains in one batch than
batch them separately. Therefore, it is important for the train-
ing of DANN to ensure the guiding gradient signal comes from
both source and target domains at each training step. On the
other hand, we can also find the average results of both BN1-2
are better than BN3. The main difference between BN1-2 and
BN3 is whether the input features for Gl is performed BN on
the whole batch (BN1-2) or on the source and target half sepa-
rately (BN3). This result presents that it is more suitable to feed
the language classifier with features performed BN on the entire
batch. Besides, it is also worth noting that when training on the
smaller database of RECOLA (1,308 utterances), the results of
all four settings don’t show significant difference. Therefore,
this study empirically suggests that BN1 or BN2 is a more rec-
ommended way for BN of features, when training the DANN
model on a larger corpus.

Table 3: UAR (%) for four different ways of data combination
for batch normalization.

Rec2Iem Iem2Rec

model arousal valence arousal valence average

BN1 71.99(0.33) 54.54(0.77) 63.18(0.32) 61.43(1.38) 62.78
BN2 72.22(0.18) 54.99(0.84) 62.34(0.92) 61.37(1.15) 62.73
BN3 72.27(0.39) 54.07(0.42) 61.83(1.03) 58.48(0.78) 61.66
BN4 72.01(0.33) 53.68(1.26) 60.95(0.90) 56.77(2.84) 60.85

5. Conclusions
In this paper, we propose a DANN-based approach for cross-
lingual SER. Our method works in a completely unsupervised
way, where unlabeled target language data is required only. Ex-
perimental results show that our method enables the model to
focus on the emotion related information, while ignoring the
variations between different languages. Moreover, we explore
the impact of batch normalization on training DANN models
and suggest two practically optimal ways of data combination
for batch normalization. For further work, we plan to add more
corpora from other languages for the cross-lingual SER task.
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