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Abstract
In speech interaction scenarios, speech emphasis is essential for
expressing the underlying intention and attitude. Recently, end-
to-end emphatic speech synthesis greatly improves the natural-
ness of synthetic speech, but also brings new problems: 1) lack
of interpretability for how emphatic codes affect the model; 2)
no separate control of emphasis on duration and on intonation
and energy. We propose a novel way to build an interpretable
and controllable emphatic speech synthesis framework based on
forward attention. Firstly, we explicitly model the local varia-
tion of speaking rate for emphasized words and neutral words
with modified forward attention to manifest emphasized words
in terms of duration. The 2-layers LSTM in decoder is further
divided into attention-RNN and decoder-RNN to disentangle
the influence of emphasis on duration and on intonation and en-
ergy. The emphasis information is injected into decoder-RNN
for highlighting emphasized words in the aspects of intonation
and energy. Experimental results have shown that our model
can not only provide separate control of emphasis on duration
and on intonation and energy, but also generate more robust and
prominent emphatic speech with high quality and naturalness.
Index Terms: expressive speech synthesis, emphatic speech
synthesis, forward attention

1. Introduction
Speech emphasis plays an important role in distinguishing the
focus of the utterance from the rest and conveying the underly-
ing intention and attitude [1]. In speech interaction scenarios,
synthesizing emphasis helps computer systems to express se-
mantics and emotions more accurately and further enhance user
experience, is thus attracting increasing interest.

To synthesize emphasis, various techniques are employed.
For example, hidden Markov model (HMM) based speech syn-
thesis models are employed to generate emphatic speech by
constructing decision tree (DT) with emphasis-related questions
[2] [3] [4]. DNN based speech synthesis models are also widely
used for emphatic speech synthesis [5], and can efficiently han-
dle the emphatic data sparsity problem in HMM-based models
with shared parameters by augmenting the network input us-

* Corresponding author

ing emphasis-specific codes. With the rapid progress of end-to-
end (E2E) text-to-speech (TTS) models [6] [7], nowadays E2E
based emphatic speech models [8] can achieve better natural-
ness in synthetic speech than traditional DNN based models,
which is close to human speech recording.

The flexibility and controllability of speech synthesis sys-
tems are important factors, in addition to the quality of the syn-
thetic speech. DNN-based models commonly use emphatic-
specific codes to control duration model and acoustic model re-
spectively [5]. The integrated E2E models can generate speech
with very high voice quality and naturalness [8] [9] by simpli-
fying the synthesis stages and replacing duration model with
attention mechanism, but brings new problems: 1) lack of in-
terpretability for how emphatic codes affect the model; 2) no
separate control of emphasis on duration and on intonation and
energy.

Emphasized words usually manifest themselves by a slower
speaking rate in the word, an increased pitch in the intonation,
a higher energy in the word, or a combination of these features
[10]. [11] proposed to use forward attention to decides whether
to move forward or stay at each decoder time step, and fur-
ther control the speed of synthesized speech. Inspired by the
fact that forward attention can control the global speaking rate
of synthetic speech, we propose a novel way to control the lo-
cal variation of speaking rate for emphasized words and neutral
words with modified forward attention. As to highlighting em-
phasized words in terms of intonation and energy, we divide the
decoder LSTM layers into attention-RNN and decoder-RNN to
disentangle the influence of emphasis on duration and on into-
nation (F0) and energy. Emphasis information is injected into
decoder-RNN to model the emphasis characteristic in intona-
tion and energy.

The main contributions of this work can be summarized as:

1) using modified forward attention to explicitly control the
local variation of speaking rate (duration) for empha-
sized words and neutral words.

2) dividing the decoder LSTM layers into attention-RNN
and decoder-RNN to independently model the emphasis
characteristic in intonation and energy.

3) providing interpretability and separate control of empha-
sis on duration and on intonation and energy.
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By disentangling the acoustic correlates into duration and
pitch, it provides more controllability and flexibility in model-
ing the acoustic realizations of emphasis, which leads to perfor-
mance improvement in emphatic speech synthesis.

2. Forward Attention
Given an input sequence x = [x1, x2, ..., xN ] with length N ,
the encoder first processes x into a sequence of hidden repre-
sentations h = [h1, h2, ..., hN ], then decoder generates each
output ot conditioned on a distinct context vector ct. The con-
text vector is computed by focusing on the relevant elements of
h:

ct =
∑N

n=1
αt(n)hn (1)

The weight αt is computed by scoring each element in h sepa-
rately:

αt = Attend(qt, h) (2)

where Attend() is additive attention mechanism [6] [12].
Forward attention is motivated by the nature of monotonic

alignment between phone sequences and acoustic sequences.
To achieve monotonic alignment, [11] employs a forward al-
gorithm to modify attention probabilities at each time step:

α̂′t(n) =
(
α̂t−1(n) + α̂t−1(n− 1)

)
αt(n) (3)

In this way, the attended phoneme at time t can only come from
the attended phoneme at time t−1 either staying or moving for-
ward to the next one, which thus guarantees monotonic align-
ment. α̂′t(n) is normalized to α̂t(n) as sum weight to compute
the context vector ct:

α̂t(n) = α̂′t(n)/
∑N

m=1
α̂′t(m) (4)

ct =
∑N

n=1
α̂t(n)hn (5)

Equation (3) implies the assumption of equal probability
between staying and moving forward during alignment. Actu-
ally, such transition probability is related to the current context.
To incorporate such contextual information, the forward atten-
tion with transition agent is further proposed, in which a scalar
µt ∈ (0, 1) is introduced to indicate the probability that the at-
tended phone should move forward to the next one at the t-th
decoder time step.

α̂′t(n) =
(
(1−µt−1)α̂t−1(n)+µt−1α̂t−1(n−1)

)
αt(n) (6)

The computation of µt considers the influence of the context
at current decoder time step ct, the decoder output at previous
time step ot−1 and the query at current time step qt:

µt = DNN(ct, ot−1, qt) (7)

During generation, it is easy to control the global speed of syn-
thesized speech by adding positive or negative bias to µt. The
complete algorithm for forward attention with transition agent
is described in Algorithm 1.

3. Methodology
3.1. Model architecture

The overall architecture of the proposed emphatic speech syn-
thesis system is illustrated in Figure 1.

Algorithm 1 Forward Attention with Transition Agent [11]

Initialize:
α̂0(1)← 1
α̂0(n)← 0, n = 2, ..., N
µ0 ← 0.5

for t = 1 to T do
αt ← Attend(qt, h)

α̂′t(n)←
(
(1−µt−1)α̂t−1(n)+µt−1α̂t−1(n−1)

)
αt(n)

α̂t(n)← α̂′t(n)/
∑N

m=1 α̂
′
t(m)

ct ←
∑N

n=1 α̂t(n)hn

µt ← DNN(ct, ot−1, qt)
end for

We map the text to a sequence of phonemes for faster con-
vergence and better pronunciation of rare words. The encoder
first converts a phoneme sequence into a hidden feature repre-
sentation. To ensure the voice quality of synthetic speech and
transfer emphasis characteristic between different speakers, we
extend the framework of Tacotron2 [7] following a scheme sim-
ilar to [13] [14]. A learned 64-dimensional vector for the target
speaker (speaker embedding) is concatenated with the encoder
output at each time step.

For phonemes in the phoneme sequence, their emphatic
codes (1 or 0 indicating if the corresponding phoneme is from
emphasized or neutral word) compose the emphatic code se-
quence. Emphasis embedding is a 64-dimensional embedded
vector of the emphatic codes. We replace the location-sensitive
attention in Tacotron2 with the modified forward attention, and
inject emphasis embedding to the modified forward attention
to control the local variation of speaking rate between empha-
sized words and neutral words, which is significant for express-
ing emphasis.

Furthermore, the 2-layers LSTM in the original Tacotron2
decoder is divided into attention-RNN and decoder-RNN.
Attention-RNN produces the attention query qt at each de-
coder time step, and the augmented context at current time ĉt
(containing emphasis information) generated by the forward at-
tention module is injected into decoder-RNN to predict mel-
spectrogram, thus capturing the emphasis characteristics in in-
tonation and energy.

3.2. Duration control

Researches have shown that duration is the most impor-
tant acoustic characteristic to distinguish between emphasized
words and neutral words [15] [16]. We input emphasis informa-
tion to modified forward attention to control the local speaking
rate to highlight the emphasized words in terms of duration.

First, we compute emphasis context vector zt at time t as
the weighted sum of emphasis embeddings e = [e1, e2, ..., eN ]
similar to computing ct:

zt =
∑N

n=1
α̂t(n)en (8)

Then, we modify forward attention by considering the influence
of the emphasis context at current decoder time step zt on µt:

µt = DNN(ct, ot−1, qt, zt) (9)

therefore we can explicitly control the local variation of speak-
ing rate (duration) for emphasized words and neutral words.
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Figure 1: The architecture of the proposed model for emphatic speech synthesis.

3.3. Intonation and energy control

Different from Tacotron2 [7], the 2-layers LSTM in the decoder
is divided into attention-RNN (1-layer LSTM) and decoder-
RNN (1-layer LSTM) to decouple the influence of emphasis
on duration and on intonation and energy. Attention-RNN gen-
erates queries at each decoder time step as input of forward at-
tention. We concatenate context vector ct and emphasis context
vector zt at current time step as augmented context vector ĉt:

ĉt = Concat(ct, zt) (10)

We inject augmented context vector ĉt (similar to frame-aligned
input features) to decoder-RNN (acting as the acoustic model
of a traditional TTS system) for controlling the prominence of
emphasis in intonation and energy.

3.4. Emphasis strength control

The emphasis context vector at current time step zt indicates the
probability of the attended phoneme at current time step coming
from an emphasized word, but can’t represent the strength of
emphasis. During synthesis, a linear interpolation mechanism
is adopted to control the strength of emphasis:

zdt = γdzt + (1− γd)eneu (11)

zat = γazt + (1− γa)eneu (12)

where eneu is the emphasis embedding corresponding to neutral
emphatic code, scalars γd ∈ [0, 1] and γa ∈ [0, 1] are hyperpa-
rameters for controlling the emphasis strength in terms of dura-
tion, and intonation and energy, respectively. The larger value
of γd, the longer the duration of the emphasized words is; the
larger value of γa, the more prominent intonation and energy
are.

Then zdt is employed to affect the decision of whether to
move forward or stay at each decoder time step by updating µt:

µt = DNN(ct, yt−1, qt, z
d
t ) (13)

And zat and context vector ct of current time step are concate-
nated as augmented context vector ĉt:

ĉt = Concat(ct, z
a
t ) (14)

We input augmented context vector ĉt to decoder-RNN for
modeling the emphasis characteristic in intonation and energy.

The complete algorithm for controllable emphatic speech
synthesis is described in Algorithm 2.

Algorithm 2 Controllable emphatic speech synthesis based on
Forward Attention

Initialize:
α̂0(1)← 1
α̂0(n)← 0, n = 2, ..., N
µ0 ← 0.5

for t = 1 to T do
αt ← Attend(qt, h)

α̂′t(n)←
(
(1−µt−1)α̂t−1(n)+µt−1α̂t−1(n−1)

)
αt(n)

α̂t(n)← α̂′t(n)/
∑N

m=1 α̂
′
t(m)

ct ←
∑N

n=1 α̂t(n)hn

zt ←
∑N

n=1 α̂t(n)en
zdt ← γdzt + (1− γd)eneu

zat ← γazt + (1− γa)eneu

µt ← DNN(ct, yt−1, qt, z
d
t )

ĉt ← Concat(ct, z
a
t )

end for

4. Experiments
4.1. Experimental setup

Dataset. A small-scale emphatic corpus and a large-scale neu-
tral corpus are used in our work for experiments. The large-
scale neutral corpus consists of 10,000 utterances released by
DataBaker [17], which has a total length of approximately 10
hours uttered by a professional native Mandarin female speaker.
The small-scale emphatic corpus consists of parallel neutral and
emphatic speech recordings. 500 text prompts, each of which
contains one or more emphatic words at different positions,
have been carefully designed to cover all kinds of pronuncia-
tion mechanisms and context characteristics of Chinese initial-
finals. A professional native Mandarin female speaker has been
instructed to record the emphatic speech and the parallel neutral
speech according to the text prompts and the emphasis labels.

To perform emphatic speech synthesis, traditional meth-
ods require the use of large-scale corpus with emphatic speech
recordings by the target speaker, which is usually difficult to ob-
tain. In previous research, it has been proved that it is possible
to learn the emphatic characteristics from the small-scale em-
phatic corpus and transfer it to the target speaker (with only neu-
ral speech recordings) using the multi-speaker Tacotron frame-
work [8]. Furthermore, according to previous researches, such
as cross-lingual TTS [18] and speaker transfer learning TTS
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[14], the multi-speaker Tacotron framework with such design
can ensure good performance when using different independent
datasets for training.

The large-scale neutral corpus ensures the model to gener-
ate speech with high naturalness and stable quality. The use of
emphatic corpus helps the model to learn the emphatic charac-
teristics from the contrastive recordings of parallel neutral and
emphatic speech. After training, the model can generate em-
phatic synthetic speech with the speaker’s timbre corresponding
to the large-scale neutral corpus by feeding the neutral corpus’s
speaker embedding. And such synthetic speech is utilized in
our evaluation experiments.
Features. We transform text into sequences of phonemes,
tones, punctuations and prosodic boundaries, all of which are
represented as 512-dimensional phoneme embeddings. The use
of punctuation and prosodic boundary information can effec-
tively improve the prosody of the synthetic speech.

Figure 2: Separate control of emphasis on duration and on into-
nation and energy. A: γd = 0, γa = 0, top F0 of ”every day” is
338.0Hz; B: γd = 0, γa = 1, top F0 of ”every day” is 366.3Hz;
C: γd = 1, γa = 0, top F0 of ”every day” is 263.0Hz; D:
γd = 1, γa = 1, top F0 of ”every day” is 373.2Hz.

The speech waveforms of the two corpora are sampled at 16
kHz. Griffin-Lim [19] is used to reconstruct the waveform. Be-
fore extracting features, all waveforms are pre-emphasized with
a coefficient of 0.97 as suggested by [6]. The target acoustic
features were log magnitude spectrogram extracted with Ham-
ming windowing, 50 ms frame length, 12.5ms frame shift, and
1024-point fast Fourier transform (FFT).
Hyperparameters. We set the reduction rate r=2 in all exper-
iments. Adam optimizer [20] is used with β1=0.9, β2=0.999,
ε=10−6 and fixed learning rate 10−3. All our models are trained
for 50,000 global steps with a batch size of 64.
Base model. We extend the framework of Tacotron2 by con-
catenating encoder output, emphasis embedding and speaker
embedding for the target speaker at each time step, which serves
as the input to the decoder to predict the mel-spectrogram.

4.2. Experimental results and discussions

4.2.1. Controllability and flexibility analysis

As shown in Figure 2, the text of our example means “In
Shanghai, there is a young man, who takes subway to go to
work every day”, in which the emphasis falls on “every day”.
Sub-plot A is the spectrogram specifying “every day” as neu-

tral (γd = 0, γa = 0). Spectrogram in sub-plot B is pro-
duced by inputting valid emphasis information into decoder-
RNN (γd = 0, γa = 1). Compared with A, the corresponding
duration of “every day” in B is basically the same, but f0 in B
is higher. Spectrogram in sub-plot C is generated by injecting
valid emphasis information to update µt (γd = 1, γa = 0).
Compared with A, the corresponding f0 of “every day” in C is
basically the same, but duration is longer. Sub-plot D is the
combination of B and C (γd = 1, γa = 1), f0 is higher and
duration is longer for the word “every day”. Note that energy is
also higher but not shown in the figure. In summary, our model
can control emphasis on duration and on f0 and energy respec-
tively.

Besides, by adjusting the value of γd and γa, we can
control the strength of emphasis in terms of duration and
f0, energy respectively. The larger the γd is, the longer
the duration of the emphasized words is; the larger the γa

is, the more prominent f0 and energy are. Testing samples
are available at https://thuhcsi.github.io/tts/
controllable-emphasis/.

Table 1: Emphasis identification test

Method Precision Recall

Base Model 80.8% 52.5%
Proposed Model 94.2% 80.8%

Table 2: Naturalness test

Method MOS

Base Model 3.63(0.72)
Proposed Model 3.95(0.57)

4.2.2. Emphasis identification test

This experiment is designed to evaluate the perceptive accuracy
of synthetic emphatic speech. 20 Mandarin native speakers with
no reported listening difficulties are invited to identify all the
emphasized words in 12 emphatic utterances generated by our
proposed model and the base model respectively. During test,
the total 24 generated utterances are randomly shuffled.

As illustrated in Table 1, our proposed model has been as-
sessed with better perception accuracy. In particular, the re-
call rate has increased greatly, from 52.5% to 80.8% with a
p of 0.025 in one-way ANOVA test. By disentangling the in-
fluence of emphasis on duration and on intonation and energy,
our model can generate more robust and prominent emphasized
words that can be perceived more easily.

4.2.3. Naturalness test

This experiment is designed to evaluate the naturalness and
quality of generated speech in 5-point scale: 5 = Excellent
(highly natural), 4 = Good (natural), 3 = Fair (clear), 2 = Poor
(not clear), 1 = Bad (hard to understand). The same 20 subjects
are invited to assess 12 emphatic utterances generated by our
proposed model and the base model respectively.

The average mean opinion score (MOS) is presented in Ta-
ble 2, one-way ANOVA test reveals our proposed model sig-
nificantly outperforms the base model with a p of 0.0000015.
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Our proposed model can generate emphatic speech with better
quality and naturalness.

5. Conclusions
This paper proposes a controllable emphatic speech synthesis
model based on modified forward attention. In the proposed
E2E TTS framework, the duration of emphasized and neutral
words can be controlled by modifying forward attention mech-
anism. The 2-layers LSTM in decoder is divided into attention-
RNN and decoder-RNN, and emphasis information is injected
into decoder-RNN for highlighting emphasized words in into-
nation and energy. Experimental results have shown that our
model can provide separate control of emphasis on duration and
on intonation and energy. Subjective experimental results con-
firm that our proposed approach can generate more robust and
prominent emphatic speech with high quality and naturalness.
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