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ABSTRACT

Text-to-speech systems now can generate speech that is hard to
distinguish from human speech. In this paper, we propose the Huya
multi-speaker and multi-style speech synthesis system which is
based on DurIAN and HiFi-GAN to generate high-fidelity speech
even under low-resource condition. We use the fine-grained linguis-
tic representation which leverages the similarity in pronunciation
between different languages and promotes the speech quality of
code-switch speech synthesis. Our TTS system uses the HiFi-GAN
as the neural vocoder which has higher synthesis stability for unseen
speakers and can generate higher quality speech with noisy training
data than WaveRNN in the challenge tasks. The model is trained
on the datasets released by the organizer as well as CMU-ARCTIC,
AIShell-1 and THCHS-30 as the external datasets and the results
were evaluated by the organizer. We participated in all four tracks
and three of them entered high score lists. The evaluation results
show that our system outperforms the majority of all participating
teams.

Index Terms— multi-speaker and multi-style TTS, low-resource
condition, DurIAN, HiFi-GAN

1. INTRODUCTION

Text-to-Speech(TTS) aims to convert text to speech which plays an
important role in many fields such as voice assistants, audio books
and spoken dialog system. Recently, with the rapid developments
of acoustic model and neural vocoder technology, TTS systems can
generate natural speech for speaker who has a large amount of high
quality speech [1, 2, 3]. However, a large amount of speech from sin-
gle speaker is not always available in low-resource real-world condi-
tions. There is an urgent need to enable stylization and personaliza-
tion in multi-speaker TTS [4, 5, 6] which can achieve rich prosody
control. However, the new speaker data is scarce and the recording
condition is usually poor. The production of a multi-speaker cor-
pus is expensive and different speakers may have different recording
conditions. The training corpus is difficult to cover abundant speaker
distribution. All these limitations restrain the application scenarios
of TTS technology.

There have been studies on few-shot or one-shot learning trying
to improve the robustness of cloning timbre from unseen speakers
with few samples. The voice cloning systems can be roughly divided
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Fig. 1. The Huya TTS system.

into two categories according to different ways of mimicking target
timbre. The first one is speaker adaptation [7]. It trains a multi-
speaker synthesis model conditioned on speaker embedding and the
model is fine-tuned with samples from unseen speakers. The fine-
tuning can be conducted on the whole synthesis model or only the
speaker embedding part [8, 9]. The VoiceLoop [8] fine-tunes the
speaker embedding which the speakers are represented by a vector.
Global style token(GST) is introduced to represent the target style
[9]. The second category is speaker encoding [10, 11]. The core
idea is to transfer the knowledge of speaker information from pre-
trained speaker verification model [12, 13], which enables the TTS
system to learn timbre from different speakers.

In this paper, we proposed the Huya TTS system which can
achieve multi-speaker and multi-style speech synthesis under low-
resource condition. Contributions of this paper are as follows:
Firstly, we model a multi-speaker and multi-style TTS system based
on DurIAN [14] and used the fine-grained linguistic representation
as the text input to improve the naturalness and intelligibility of
speech synthesis. Secondly, we combined the HiFi-GAN vocoder
[15] along with DurIAN to generate highly quality and natural audio



which outperforms WaveRNN vocoder [16]. The evaluation results
show that our system can effectively clone timbre and style for target
speakers. In the final results of the M2VoC Challenge 2021 [17], our
system entered the high score lists of track 1B, track 2A and track
2B with ranking 5th, 6th and 4th respectively. Only the top 4∼7
teams can be included in the high score lists.

This paper is presented as follows: Section 2 describes the tasks
in M2VoC Challenge 2021. Section 3 introduces our implemented
systems for the two tracks and two sub-tracks in detail. Section 4
introduces the experiments and analyses the evaluation results. Sec-
tion 5 gives the conclusion and future research.

2. THE TASKS IN M2VOC 2021

There are two tracks in the challenge including track 1, few-shots
track and track 2, one-shot track. Speakers have different speaking
styles and 100 samples are for track 1 and only 5 samples are for
track 2. Each track contains two sub-tracks including sub-track A
and sub-track B. For the sub-track A, the building of the TTS sys-
tem is strictly limited to the data released by the organizer. Fot the
sub-track B, any data set publicly available can be used to build the
system. We participated in all the four tracks.

3. HUYA SPEECH SYNTHESIS SYSTEM

3.1. Data processing

3.1.1. Audio Signal Preprocessing

The challenge organizer released four audio/text datasets including
multi-speaker training speech data (MST), target speaker validation
speech set (TSV), target speaker testing speech set (TST) and test
text set (TT) . The test text set is for final submit and evaluation. The
multi-speaker training speech data (MST) contains MST-Originbeat
subset and MST-AIShell [18]. The MST-Originbeat subset includes
6.38 hours of high-quality speech from two Mandarin Chinese
speakers (one male and one female). Each speaker has 5000 utter-
ances recorded by high-quality microphone in a recording studio.
We included the corpus of 174 speakers of the MST-AIShell corpus
in the training dataset. The MST-AIShell is nosiy dataset, so we
used the RNNoise1 and Weighted Prediction Error(WPE) [19] to
do the denoise and dereverberation respectively. After the signal
preprocessing, the voice quality improves which is evaluated by a
pretrained MOSNet [20] shown in the Table 1. Besides the dataset
released by the organizers, we used the CMU-ARCTIC corpus [21],
THCHS [22] and AIShell-1 [23] in track B. The CMU-ARCTIC is
an English corpus and others are Chinese corpus.

Table 1. MOSNet scores of original datasets and processed datasets.

Original Processed

MOS 2.97 2.99

3.1.2. Linguistic representation

We adopted the fine-grained linguistic representation to better uti-
lize the bilingual training corpus and to improve the naturalness of
speech synthesis. The fine-grained linguistic representation is com-
posed of pronunciation feature and prosodic structure feature.

1https://github.com/xiph/rnnoise

As studied in [24, 25, 26], the phoneme-based TTS models per-
form significantly better than char- or byte-based variants for Man-
darin. Phoneme input eases the learning difficulty of the network to
extract linguistic information from the input text. In this research,
we adopt the phonemes with tones as the pronunciation feature. The
tone symbols are attached to the phoneme symbols. Different from
other previous works, we use a smaller dictionary to construct the
universal pronunciation space. Our phoneme set can deal with the
Chinese and English corpus as it leverages the similarity in pro-
nunciation between different languages. Furthermore, we also takes
more characteristics of Mandarin pronunciation into consideration.
Phonemes with different initial and final mouth patterns (such as
front and back nasals) as well as other unique pronunciation details
in Mandarin are both taken into consideration. The articulation co-
ordination is denoted as additional tonal symbols.

The prosodic structure feature is composed of hierarchical
prosodic boundary and sentence types. We adopted the common
4-level-based Mandarin prosody standard including prosodic word
(PW), prosodic phrase (PP), intonational phrase (IP) and utterance
(UTT). We categorize the sentences according to punctuation marks
like comma, semicolon, and question mark etc. However, the MST-
AIShell and MST-Originbeat corpus are annotated with different
prosodic level mark standards. The MST-AIShell train set is an-
notated with 3-level prosody label while the MST-Originbeat is
annotated with 5-level prosody label. Hence, we designed different
prosodic mark mapping rules to normalize MST-AIShell and MST-
Originbeat corpus. For example, the second and third prosody level
symbols in MST-Originbeat are viewed as the same prosodic phrase
(PP) in the 4-level prosody structure.

We construct the pronunciation space by the fine-grained lin-
guistic modeling which can reap the full potential rewards of sim-
ilarities between Chinese and English. The fine-grained linguistic
representation boosts the performance of speech synthesis concern-
ing the quality and naturalness while incorporating the English cor-
pus. The results are demonstrated in section 4.1.

3.2. Acoustic model

The overall architecture of Huya TTS system is shown in Figure
1, which is based on DurIAN [14] and incorporates speaker iden-
tity information as well as style code to achieve a multi-speaker and
multi-style TTS system. We utilized duration informed attention net-
work(DurIAN) as the base acoustic model which is robust to missing
or skipping problems. We found that the joint training of the acoustic
model and duration prediction model causes the unnatural prosody
synthesis results which is adopted by the original DurIAN [14]. In
our TTS system, the training process of acoustic model and phoneme
duration model are decoupled which means that the two model are
trained separately.

We adopted look-up table to model the speaker information. By
assigning an ID to each speaker, the corresponding representation
for each speaker can be looked up from a trainable embedding table.
The style representation is also achieved by a trainable look-up table.
The speaker embedding and style code are concatenated to encoder
output in all steps which will be decoded later.

For track1 and track2, all audios are sampled to 24kHz with
mono-channel. Features are extracted with 50ms window size and
10ms shift size. We will introduce the training details of the acoustic
models of track1 and track2 respectively. In track 1, we also consider
gender differences besides the speaker identity, and we assigned
gender-specific speaker ID to speakers such as 1 denoting male and
2 denoting female. For track 1A, we used the MST-Originbeat to
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train the model at first. Then we used the 100 samples of the target
speaker (TST) to fine-tune the base-model and the speaker code is as-
signed according to the target speaker gender. For track 2A, we used
MST, TSV and TST to train the multi-speaker acoustic model. Then,
the different speaker-IDs were assigned to different speakers respec-
tively. The training procedure of sub-track B is similar to sub-track
A. However, we observed that some English words are also con-
tained in the test set. In order to improve the naturalness and intelli-
gibility of code-switch synthesis, we added CMU-ARCTIC database
[21] to the joint training of the multi-speaker acoustic model in sub-
track 1B and sub-track 2B.

Furthermore, we also tried to mix all the corpus together to train
the base-model without distinguishing different speakers. Then we
used the samples of the target speaker to fine tune the base-model.
Whereas, we found that the base model trained with differentiated
speaker-ID is better in speaker similarity and naturalness.

3.3. Neural Vocoder

The noisy datasets and the limited amount samples of the target
speakers are the two main challenges for the vocoder training.
We compared several vocoders including HiFi-GAN [15] and Wav-
eRNN [16]. Finally, we considered HiFi-GAN as our neural vocoder
for the stable synthesis performance in this challenge tasks.

The architecture of WaveRNN is similar to [16], and the archi-
tecture of HiFi-GAN is similar to [15]. In order to gain a higher
synthesis quality, parameters of the two vocoders were carefully ad-
justed including decreasing the learning rate, increasing the batch
size and increasing the sizes of CNN layers according to the dataset.
The long silent segments of the training data were removed using
the energy-based VAD which adjusts thresholds according to differ-
ent audio data. In order to stabilize the training process and improve
model performance, we added some noise into the training data. The
noise was added to the audio signal or the mel spectrogram. The
experimental results showed that the vocoders perform better while
directly adding noise in the audio signal in the time domain. In ad-
dition, we adopted µ-law to carry out nonlinear transformation of
the training audio which can make the model have higher resolu-
tion near zero. The above processing methods were applied in the
training process of the two vocoders.

For track 1A and track 2A, we used MST-AIShell and MST-
Originbeat for vocoder training. For track 1B and track 2B, we
additively incorporated THCHS-30 [22] and AIShell-1 [23] in the
traning datasets. The TST data was used as the development set to
tune the models. We used early stopping to prevent model overfit-
ting. Furthermore, we also tried to add the development set to the
training data, but there was no significant improvement due to the
small amount of data.

We compared the performance of WaveRNN and HiFi-GAN
mentioned above under the same training and testing conditions. For
these challenge tasks, the WaveRNN vocoder can generate high ex-
pressive speech within the test set. Nevertheless, it is prone to cause
bad case as the errors are accumulated by the RNN architecture [16].
By comparison, the HiFi-GAN vocoder performed better while fac-
ing the noisy data and can generate high-quality speech stably. In
summary, we chose HiFi-GAN as our neural vocoder in all tasks to
achieve the high-quality synthesis results.

4. RESULTS

There are 24 participating systems numbered as T01-T24 and two
baseline systems denoted as B01 and B02 in the challenge. Our sub-

mitted system is annotated as T24. There are three evaluation crite-
ria: speech quality, speaker similarity and style similarity. Our sys-
tem ranks 5th, 6th and 4th seperately in track 1B, track 2A and track
2B which are included in the high score lists. Below are the detailed
evaluation results. We also conduct experiments to demonstrate the
effect of the proposed fine-grained linguistic representation.

4.1. The effect of fine-grained linguistic representation

We compared the coverage capacity of the two different pronunci-
ation dictionaries, the traditional one and our proposed. Here, the
traditional one refers to the initials and finals representation. The
coverage capacity of pronunciation dictionary is defined as the per-
centage of how many phonemes the target speaker test (TST) con-
tains when one certain pronunciation dictionary is applied. In order
to simplify the explanation, we evaluate the coverage inability which
is demonstrated as:

C = 1− n

N
(1)

where n is the number of phonemes included in the TST and N is
the size of pronunciation dictionary, C reflects the coverage inability
of the dictionary.

The size of the traditional pronunciation dictionary is 182 and
the size of the proposed is 84. The statistical results are shown in
Table 2. The “Chat”, “Game” and “Story” in Table 2 denoted the
three target speakers in the track 1 and “S3”, “S4” and “S5” denoted
the other three target speakers in the track 2. As shown in Table 2,
the percentage of proposed is small means that the dictionary can
model most pronunciation contexts which promise the TTS model a
stronger generalization ability. By comparison, the higher percent-
age of the traditional inputs means that it is quite possible that a lot
of audios could not synthesize well when the input is denoted as ini-
tials and finals only. The proposed input representation system used
a smaller number of phonemes to represent the entire pronunciation
space. In the low-resource condition where only limited samples
of target speakers are available, the new phoneme system has better
coverage.

Table 2. The coverage inability C (the lower the better) of two
pronunciation dictionaries. “Traditional” refers to the initials and
finals linguistic representation. “Proposed” refers to our fine-grained
linguistic representation.

Chat Game Story S3 S4 S5

Traditional 0.11 0.09 0.04 0.64 0.66 0.41
Proposed 0.04 0.04 0.02 0.38 0.37 0.20

We also explored how the fine-grained linguistic representation
endows the TTS systems with stronger modeling ability. In the Ta-
ble 3, the monolingual corpus refers to the TTS system where only
the MST-Originbeat was used as the training dataset and the bilin-
gual corpus refers to that the MST-Originbeat and CMU-ARCTIC
were both used as the training dataset. We calculated the L1 loss
between the predicted mel spectrogram and ground-truth mel spec-
trogram. It is clearly shown that compared with the training with
only Chinese corpus, the loss is lower when English corpus is in-
corporated in the training dataset. The linguistic representation can
predict the mel spectrogram more accurately with the help of English
dataset. We also have done the MOS test to evaluate the intelligibil-
ity. For a fair comparison, we synthesized 20 sentences separately
for each model but with the same content. There are 9 listeners are
involved in the subjective test and the results are shown in Table



(a) first round track1A similarity (b) combined track1B similarity

(c) combined track2A similarity (d) combined track2B similarity

Fig. 2. Boxplot of Speaker Similarity.

3. It shows that our fine-grained linguistic representation can utilize
multi-lingual datasets to improve the intelligibility significantly.

Table 3. Effect of fine-grained linguistic representation on mel
spectrogram prediction loss and MOS scores.

Monolingual Corpus Bilingual Corpus

Mel-loss(× 10−2) 3.062 2.813
MOS 3.667 3.750

4.2. Speaker similarity

The evaluation results of speaker similarity is shown in Figure 2.
The speaker similarity rankings of track2A is 4th showing that our
system can synthesize speech which can confuse the human with
the groundtruth. For track 2B of one-shot open-set problem, our
system ranks 4th which is notable and comparable to the perfor-
mance of few-shot scenario. We used gender-related speaker ID
to alleviate the problem that the data is sparse when only limited
numbers of speakers are available. This strategy contributes to the
high speaker similarity score. Furthermore, as the speaker informa-
tion is explicitly provided, the content encoder tends to learn the
speaker-independent information which mitigates the speaker infor-
mation leakage into the linguistic representation.

4.3. Speech quality

The speech quality scores are shown in Figure 3. Multiple systems’
median scores are relatively close in the first round as shown in Fig-
ure 3(a). The rankings of our systems of track B are higher than
that of track A which means that our system can synthesize higher
quality speech after we added the external datasets and contributes to
the code-switch synthesis. However, the speech quality score is rel-
atively lower than speaker similarity and style similarity. We think a
robust vocoder might yield better performance.

(a) first round track1A quality (b) combined track1B quality

(c)combined track2A quality (d)combined track2B quality

Fig. 3. Boxplot of Speech Quality.

(a) first round track1A style (b) combined track1B style

Fig. 4. Boxplot of Style Similarity.

4.4. Style similarity

As shown in Figure 4, the ranking of our system for track 1 is 4th

which is higher than the average level. It demonstrated that our sys-
tem can clone the target style very similarly which outperforms the
other systems. The original DurIAN acoustic model and duration
model adopted joint training. We trained the acoustic model and
duration model separately for decoupling. The decoupling training
ensures a higher accuracy of duration information prediction. Thus,
the duration prediction model can estimate the prosody more close
to the ground truth and more natural. Besides, we trained one model
for one style respectively which means that the TTS model has a
higher modeling ability for the certain style.

5. CONCLUSION

This paper presents the details of our submitted systems and the
results in the M2VoC Challenge 2021. We built multi-speaker and
multi-style voice cloning systems with DurIAN as the acoustic
model and HiFi-GAN as the neural vocoder. We used the fine-
grained phoneme as the linguistic representation. We also compared
the performance of WaveRNN vocoder and HiFi-GAN vocoder in
this challenging task. Experimental results showed that our sys-
tem has good performance and higher robustness which is good for
cloning the target style under the low-resource conditions. In the
future, we will incorporate a more robust vocoder to improve the
performance of speech synthesis.
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