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ABSTRACT

Neural text-to-speech (TTS) approaches generally require a huge
number of high quality speech data, which makes it difficult to obtain
such a dataset with extra emotion labels. In this paper, we propose a
novel approach for emotional TTS synthesis on a TTS dataset with-
out emotion labels. Specifically, our proposed method consists of a
cross-domain speech emotion recognition (SER) model and an emo-
tional TTS model. Firstly, we train the cross-domain SER model on
both SER and TTS datasets. Then, we use emotion labels on the
TTS dataset predicted by the trained SER model to build an auxil-
iary SER task and jointly train it with the TTS model. Experimental
results show that our proposed method can generate speech with the
specified emotional expressiveness and nearly no hindering on the
speech quality.

Index Terms— Emotion, expressive, global style token, speech
emotion recognition, speech synthesis

1. INTRODUCTION
In the past few years, neural speech synthesis techniques have expe-
rienced great development. End-to-end TTS systems, such as [1–3]
have achieved remarkable results in terms of naturalness and intel-
ligibility of speech. Benefiting from these techniques, the field of
controllable TTS has attracted extensive attention from researchers
because it is closer to the practical applications.

The emotion contained in speech is an important paralinguistic
information that can effectively expresse the intention of the speaker.
Therefore, it is necessary to add emotional control to the TTS system
for building a more intelligent interactive interface.

Many pioneering methods have been proposed for emotional
TTS. [4] proposes a LSTM-based acoustic model for emotional TTS,
where several kinds of emotional category labels such as one-hot
vector or perception vector are used as an extra input to the acous-
tic model. [5] uses a improved tacotron [1] model for end-to-end
emotional TTS, in which the emotion labels are concatenated to the
output of both the decoder pre-net and the first decoder RNN layer.
Some other studies use the global style tokens (GST) [6] framework
to model the emotional features. [7] proposes an effective style to-
ken weights control scheme that uses the centroid of weight vectors
of each emotion cluster to generate speech of the emotion. [8] is also
a GST-based method for emotional TTS, where the authors propose
an inter-to-intra distance ratio algorithm that well considers the dis-
tribution of emotions to determine the emotion weights.
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The methods mentioned above report some promising results in
the aspect of emotion expressiveness, but these methods rely on an
emotion-annotated dataset which is most likely not available. In fact,
the lack of emotion-annotated dataset is one of the main obstacles
that limit the research of emotional speech synthesis. This problem
mainly stems from two reasons: on the one hand, TTS requires a
large amount of data, which makes it costly to label emotions; on
the other hand, TTS requires high quality of speech data, so dataset
from the speech emotion recognition field can not be directly used
for emotional speech synthesis.

Therefore, some semi-supervised approaches have been pro-
posed to alleviate the burden of data requirements. [9] proposes
to fine-tune a pre-trained TTS model on a small emotional dataset
for low resource emotional TTS. [10] uses a variant of the GST
model and shows that training with 5% labeled data can achieve
satisfactory results. [11] proposes to merge an external SER dataset
and a labeled subset of TTS dataset to train a SER model and label
the whole TTS dataset by the trained SER model. These semi-
supervised methods can greatly reduce the amount of labeled data
required for model training. However, these methods are still not
universal enough because a subset of the new dataset still needs to
be manually annotated when it is is used for emotional TTS.

Speech emotion recognition (SER) is another important topic in
the field of speech processing. A variety of datasets [12–14] are
publicly released and a large number of approaches [15–18] are pro-
posed in this topic. Therefore, a natural idea is whether we can
utilize the achievements in SER to solve the problem of lack of
emotion-annotated dataset for emotional TTS. In this paper, we pro-
pose a novel GST-based model that is trained on a fully emotion-
unlabeled dataset and can generate speech with expected emotions.
We perform mean opinion score (MOS) evaluations and emotion
recognition perception evaluations in 4 emotion categories (neutral,
happy, sad and angry) and 2 polarities of emotion dimensions (high
or low for arousal, positive or negative for valence). The evalua-
tion results show that our proposed method can generate speech with
the specified emotion expressiveness and nearly no hindering on the
speech quality.

2. RELATED WORK
The idea most similar to ours is [19]. The authors propose a general
method that enables control of arbitrary variations of speech on a
dataset without labels of this variation and validate their idea with an
example of emotion control. The authors train a SER model using
an external SER dataset and label the TTS dataset by this trained
SER model. Then the predicted labels is fed as an extra input to
the statistical parametric speech synthesis (SPSS) model. Different
from [19], we inject emotion information to the TTS model using an



emotion embedding, which can retain more prosody related features
rather than a simple emotion label. Meanwhile, as for SER model,
we use a domain adaptation technique to reduce distribution shift
between SER and TTS datasets, which is also not considered in [19].

3. METHODOLOGY
As shown in Figure 1, our proposed method includes a cross-domain
SER model and a GST–based TTS model. The training and inference
procedures of our method are as follows. Firstly, the cross-domain
SER model is pre-trained on the emotion labeled SER dataset (as the
source domain) and the emotion-unlabeled TTS dataset (as the target
domain). Then, the soft emotion labels of the TTS dataset are ob-
tained from the softmax output of the trained SER model (the green
dashed arrow). Finally, the TTS model and an emotion predictor are
jointly trained on the TTS dataset with the emotion labels. For the
inference, we firstly select a reference audio set for each emotion
category from the TTS dataset. Then, we average the style tokens’
weights of all audios in the reference audio set to synthesize speech
for this kind of emotion.

3.1. Cross-domain SER model

3.1.1. Model structure

As shown in the upper part of Figure 1, the SER model consists of a
feature extraction encoder and an emotion classifier. The encoder is
a CNN-RNN network, which is a popular structure in SER. Firstly,
a 4-layer of 2D convolution network takes the 80-dimension log mel
spectrum as input feature and outputs a 2D feature map which is
flattened into a sequence of feature vectors. Then, a bidirectional
GRU layer is followed and outputs the hidden state vector of the last
time step as the final feature vector. The emotion classifier is a 2-
layer dense network with a softmax activation for the output. The
number of output units is 4 for the emotion category classification
task and 2 for the arousal and valence polarity classification task.

3.1.2. Cross-domain training
Since the TTS and SER datasets are quite different in speakers,
recording devices and recording environment, some domain adapta-
tion technique is necessary for our SER task to reduce the distribu-
tion shift of these two datasets. The Maximum Mean Discrepancy
(MMD) [20] is a kernel-based test statistic to judge whether two
distributions are equal, which is widely used in domain adapta-
tion [21, 22] for measuring the similarity of two distributions. It has
also been proved to be effective for cross-domain SER in [16, 17].
Considering that the training of MMD is stable and our TTS dataset
has no available emotion labels for parameter tuning,we choose the
MMD method for our cross-domain SER task.

We refer to the SER dataset as the source domain Ds and the
TTS dataset as the target domain Dt. As described in [23], we mini-
mize the following MMD loss to reduce the distribution discrepancy
between the two domains.

LMMD =
1

m2
Σmi=1Σmj=1k(si, sj) +

1

n2
Σni=1Σnj=1k(ti, tj)

− 1

mn
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Where si and ti are the output features of the encoder from Ds and
Dt respectively; m and n are the number of samples of Ds and Dt
respectively; k(., .) is the kernel function that is a linear combina-
tion of multiple RBF kernels:k(xi,xj) = Σnηn exp{− 1

2σn
‖xi −

xj‖2}, where σn is the standard deviation and ηn is the weight for
the n-th RBF kernel. As for the samples fromDs, we use a weighted

Fig. 1. The overall structure of the cross-domain SER and GST-
based TTS model.

cross-entropy loss for training the emotion classification task.

LCE = −Σmi=1ωargmax(yi) · y
T
i · log(ŷi) (2)

Where ωk is the weight of the k-th emotion category which is in-
versely proportional to the number of samples in this emotion cate-
gory. Therefore, the final loss function for training SER model is:

L = LCE + λLMMD (3)

Where λ is the weight of MMD loss.

3.2. GST–based emotional TTS model
3.2.1. Model structure
As shown in the lower part of Figure 1, our emotional TTS model
consists of a TTS module, reference encoder and GST module. The
TTS module is a standard Tacotron2 model except that we add a
post-net as in [1] to convert the mel spectrum to linear spectrum.
The reference encoder and GST module are also the same as in [6]
except that we add an auxiliary emotion prediction task to explicitly
guide the style tokens to learn emotion-related features. For the gen-
eration of waveform, we simply use the Griffin-Lim algorithm [23]
to convert the predicted linear spectrum to waveform samples, be-
cause our goal is mainly to verify the effectiveness of the proposed
method rather than to generate high fidelity speech.

3.2.2. Emotion prediction task
The original GST [6] is designed to unsupervisedly learn the styles
from a reference audio, where the style learned by each token is ran-
dom and uncertain, and therefore uncontrollable. In our emotional
TTS task, in order to force the GST module pay more attention to
learn the emotion-related styles, we explicitly add an emotion pre-
diction task based on the style token weights, which will also been
verified in our experiments to be critical for the emotional expres-
siveness of speech.

In this study, we conduct two emotion control methods corre-
sponding to the two most commonly used emotion descriptions: ba-
sic emotion categories and emotion dimensions. For the emotion
category, the emotion prediction task is a classifier of a single dense
layer that takes the style token weight vector as input and outputs a
vector of length 4 for the 4 emotion categories (neutral, happy, sad
and angry). For the emotion dimensions, since the used SER dataset
is originally annotated as discrete scores for emotion dimensions, we
build two binary classifiers for predicting arousal and valence polar-
ity respectively as the emotion prediction task. Meanwhile, in order



to independently control these two orthogonal emotion dimensions,
we split the style token weight vector into two valves, which are then
fed into the arousal and valence classifiers respectively.

3.2.3. Choice for reference audio set of each emotion class

There are two common methods for the synthesis of GST model:
selecting a reference audio with the desired style or manually speci-
fying the weights of the style tokens. In our experiments, the quality
and stability of speech synthesized from a single reference audio
heavily depend on the choice of reference audio and the content of
the text to be synthesized, which may be due to the fact that the GST
module still does not completely disentangle the audio style and text
content. Therefore, we manually specify the weight of style tokens
by averaging the style token weights of an audio set that belongs to
a certain kind of emotion. The audio set can be directly specified as
all the utterances with the same emotion label, as used in [7], when
the TTS dataset has emotion labels. However, our TTS dataset has
no ground-truth emotion labels, and only the soft labels predicted
from the cross-domain SER model are available. Because the cross-
domain SER model is far less reliable than humans, these predicted
emotion labels may contain a great number of mispredictions and
we can not use all the utterances with the same soft label as the ref-
erence audio set. In order to choose a more reliable reference audio
set, we propose that only the K utterances with highest posterior are
selected as the reference audio set, rather than the full set of a cer-
tain emotion. Choosing these K high-confidence audios can greatly
reduce the impact of the prediction error of the SER model and it is
a very important choice for generating an emotional speech in our
experiments. We set K=50 for all of our experiments.

4. EXPERIMENTS
4.1. Datasets

We use the IEMOCAP as the SER dataset and the English dataset of
Blizzard Challenge 2013 (BC2013-English) as the TTS dataset for
our emotional TTS experiments. In addition, because there are no
emotion labels on BC2013-English, we use the an additional SER
dataset: RECOLA to verify the effectiveness of MMD on cross-
domain SER tasks.
IEMOCAP [12] is an audiovisual database of English dyadic con-
versations performed by ten professional actors, which contains
about 12.5 hours and a total of 10,039 utterances. For emotion cat-
egory schedule, we use the subset of the data that contains only the
neutral, angry, sad, happy, excited utterances and merge the excited
to the happy category. For arousal and valence dimension schedule,
we use all utterances and map the original 5-point label into binary
one-hot label with 2.5 as the dividing point.
RECOLA [13] is a multimodal database of French dyadic conver-
sations, where continuous arousal and valence label in the range [-1,
1] are annotated at frame level. In our study, we use all the 1,308
freely available utterances from 23 speakers and map the utterance-
level average of the original labels to the binary one-hot label with
0.0 as the dividing point.
BC2013-English [24] is a audiobook dataset provided by The Voice
Factory, where approximately 300 hours of chapter-sized mp3 files
and 19 hours of wav files are available. We use a segmented subset of
approximately 198 hours data and filter out utterances that are longer
than 14 seconds or have more more than 100 characters from this
subset. The final dataset used in our experiments is about 73 hours
of total 95k utterances. In addition, the stories are read expressively
by a single female speaker and this expressive styles is not annotated,
which makes it appropriate for our task.

4.2. Training setup
Our training process involves first training a cross-domain SER
model, followed by training an end-to-end GST-based TTS model.

To train the SER model, we use the cross-entropy loss and an
additional MMD loss with a batch size of 96. The Adam [25] op-
timizer and learning rate schedule: initialized to 3e-5 and fixed to
3e-4 after 100 steps are used to optimize model parameters. The 80-
band mel-scale spectrum is extracted frame-wise as input feature to
be consistent with the input of TTS model. We randomly select N
utterances from the source domain dataset as validation set for early
stopping (N=500 for IEMOCAP and 200 for RECOLA).

To train the emotional TTS model, we use the mean absolute
error for the reconstruction of both mel and linear spectrum and a
cross-entropy loss for the auxiliary emotion prediction task with a
batch size of 32. We train all the TTS models with 150k steps using
the Adam optimizer with a warm-up learning rate schedule: initial
rate 2e-3, warm-up steps 4,000 and decay power -0.5. We also set
the softmax temperature of attention mechanism to 2.0 in the synthe-
sis phase, which can effectively improve the stability of alignments
especially for synthesizing highly expressive emotion speech. We
publicly release the audio demos1 and all the source codes2 online,
where more training and model details can be found.

Table 1. WA and UA results for baseline and mmd-based models.
Iem2Rec Rec2Iem

model arousal valence arousal valence average

WA ser-base 0.534 0.632 0.617 0.488 0.568
ser-mmd 0.538 0.720 0.642 0.500 0.600

UA ser-base 0.529 0.470 0.500 0.505 0.501
ser-mmd 0.550 0.489 0.543 0.518 0.525

4.3. Cross-domain SER results
In order to evaluate the effectiveness of MMD for cross-domain SER
tasks, we conduct experiments for the arousal and valence emotion
dimensions on the IEMOCAP and RECOLA datasets. It is worth
noting that the RECOLA dataset is not annotated with emotion cate-
gory labels, and thus we do not preform experiments for the emotion
category task. We train two models: ser-base and ser-mmd, and the
structure of the two models is the same as described in section 3.1.1,
except that the ser-mmd model has an additional MMD loss with
weight λ=0.5. We use Rec and Iem to represent the RECOLA and
IEMOCAP dataset, and Rec2Iem means training on Rec and testing
on Iem and vice versa. Both the Weighted Accuracy (WA) and Un-
weighted Accuracy (UA) are selected as our evaluation criteria since
an imbalance of emotion categories exists on these two datasets. Ta-
ble 1 reports the WA and UA results for the models.

As shown in Table 1, except for the experiment of Iem2Rec of
arousal, the ser-mmd model shows an improvement of at least 1.2%
compared to the ser-base model on both WA and UA. And the total
average improvement of WA and UA over all four experiments is
3.2% and 2.4% respectively. This shows that the performance of
cross-domain SER can be improved after the discrepancy of feature
distribution between two domains is reduced.

4.4. Emotional TTS results
The overall quality and emotional expressiveness of synthesized
speech are the two most significant evaluation criteria for an emo-
tional TTS system. We perform two subjective experiments for
these two criteria using three systems: our proposed system for 4
emotion categories (our-4cls), our proposed system for 2 emotion

1https://thuhcsi.github.io/icassp2021-emotion-tts
2https://github.com/thuhcsi/icassp2021-emotion-tts



dimensions (our-2d) and a baseline system (base-4cls) which is
the same as our-4cls except that the auxiliary emotion prediction
task is not used in training phase. We randomly choose 10 sentences
outside the TTS dataset as inference texts, and 20 university students
are invited to participate in our subjective experiments.

4.4.1. Evaluation for the overall quality of speech
In this section, we perform mean opinion score (MOS) evaluation
experiment in terms of the overall quality of speech (naturalness, in-
telligibility and speech quality). Table 2 and Table 3 report the MOS
results of the above three systems. The average score of base-4cls is
higher than that of the our-4cls and our-2d models, but the p-values
are much greater than the singificance leval of α = 0.05 indicating
that there is no significant difference between these models. This
result suggests that our proposed our-4cls and our-2d models can
almost achieve as good speech quality as the baseline system. In ad-
dition, it can also be found that the MOS score of happy is greatly
lower than the others for both base-4cls and our-4cls. One possible
reason is that the SER model itself has lower accuracy for happy in
our experiments, which will lead to great differences in the prosody
consistency of the top K reference audios selected by the SER model.
This also indicates that the performance of the cross-domain SER
model is critical for our proposed approach.

Table 2. MOS of base-4cls and our-4cls for 4 emotion categories.

model neu ang hap sad average p-value

base-4cls 3.90 3.84 3.45 3.74 3.73 −
our-4cls 4.12 3.80 3.11 3.61 3.66 0.20

Table 3. MOS of our-2d for arousal and valence dimensions.
model low high neg pos average p-value

our-2d 3.99 3.33 3.91 3.41 3.66 0.18

4.4.2. Evaluation for the emotional expressiveness of speech
In this section, we carry out emotion perception experiments in terms
of emotional expressiveness. Specifically, for a given text, we gen-
erate a set of audios for all emotion categories and then randomly
shuffle these audios. Then, the subjects are asked to choose a most
likely emotion category for each audio, according to two reference
audios given for each emotion. In order to verify the role of our
proposed top-K scheme, we also add a scheme full-4cls that use the
same checkpoint with our-4cls but chooses the full set of audios pre-
dicted by the SER model as the same emotion category as the refer-
ence audio set. Figure 2 and Figure 3 show the confusion matrices
of the subjective emotion prediction results.

We can find that the average accuracies of both our-4cls
(78.75%) and full-4cls (49.25%) are much higher than the base-
4cls’s 36.75%. This result shows that explicitly adding an emotion
prediction task based on style token weights can help the GST mod-
ule to more effectively the extract emotion-related feature. More-
over, a large gap in terms of average accuracy can also be found
between our-4cls and full-4cls, which proves that the proposed
top-K scheme is fairly effective for the emotional expressiveness.
Similarly, as shown in Figure 3, the average accuracy of arousal and
valence is 91.0% and 55.5% respectively, which are greater than the
random level of 50.0%. This also suggests that our proposed systems
can effectively model the emotional expressiveness in speech.

Finally, we also use the t-SNE [26] algorithm to project the style
token weights on the reference audio sets into the 2D space for our-
4cls and base-4cls. As shown in Figure 4, the style token weights of
the 4 emotion categories are clearly clustered into 4 clusters for the

our-4cls model, while for the base-4cls model, except for the angry
catetory, there is no obvious clustering boundary for the other three
categories. This can also be considered as another possible evidience
to explain the role of the auxiliary emotion prediction task.

(a) base-4cls (b) our-4cls (c) full-4cls

Fig. 2. Confusion matrices of 4 emotion categories for the three
methods: base-4cls, our-4cls and full-4cls.

(a) arousal dimension (b) valence dimension

Fig. 3. Confusion matrices of polarities of arousal and valence emo-
tion dimensions for the model: our-2d.

(a) our-4cls (b) base-4cls
Fig. 4. The t-SNE 2D visualization for style token weights on the
reference audio set for the our-4cls and base-4cls model.

5. CONCLUSIONS
In this paper, we propose a novel GST-based approach for emotional
speech synthesis. Our proposed approach has the following three
characteristics: 1) only requires an expressive but emotion-unlabeled
TTS dataset; 2) can generate speech with a desired emotional expres-
siveness; 3) nearly do not hurt the quality of synthesized speech, ex-
cept for some highly expressive utterances. And three key technolo-
gies ensure that our proposed approach works well: 1) an MMD-
based cross-domain SER model provides effective emotion labels
for the TTS dataset; 2) an auxiliary supervised emotion prediction
task based on the weight of style tokens guides the GST module
to model the emotion-related feature more thoroughly; 3) the top-K
scheme is used to choose the reference audio set for each emotion
category. Our proposed approach greatly reduces the threshold of
emotional speech synthesis in terms of emotion-annotated data, and
its main idea can also be easily applied to other neural TTS systems.
For future works, we will explore better decoupling in the control of
arousal and valence to achieve more flexible emotional control.
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