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Abstract
This paper describes a variational auto-encoder based non-
autoregressive text-to-speech (VAENAR-TTS) model. The au-
toregressive TTS (AR-TTS) models based on the sequence-
to-sequence architecture can generate high-quality speech, but
their sequential decoding process can be time-consuming. Re-
cently, non-autoregressive TTS (NAR-TTS) models have been
shown to be more efficient with the parallel decoding process.
However, these NAR-TTS models rely on phoneme-level du-
rations to generate a hard alignment between the text and the
spectrogram. Obtaining duration labels, either through forced
alignment or knowledge distillation, is cumbersome. Further-
more, hard alignment based on phoneme expansion can degrade
the naturalness of the synthesized speech. In contrast, the pro-
posed model of VAENAR-TTS is an end-to-end approach that
does not require phoneme-level durations. The VAENAR-TTS
model does not contain recurrent structures and is completely
non-autoregressive in both the training and inference phases.
Based on the VAE architecture, the alignment information is en-
coded in the latent variable, and attention-based soft alignment
between the text and the latent variable is used in the decoder to
reconstruct the spectrogram. Experiments show that VAENAR-
TTS achieves state-of-the-art synthesis quality, while the syn-
thesis speed is comparable with other NAR-TTS models.
Index Terms: Non-autoregressive TTS, VAE, Glow, Trans-
former

1. Introduction
Text-to-speech (TTS) synthesis aims to generate speech from
input text. With the help of deep learning methods, TTS models
are able to produce high-quality and natural-sounding speech
comparable with that uttered by a human. A modern TTS sys-
tem mainly involves two steps: spectrogram prediction from the
input text and waveform reconstruction from the spectrogram.
Focusing on the former step, we propose a VAE-based, end-to-
end NAR-TTS model that yields high speech quality with fast
synthesis speed.

AR-TTS models [1, 2, 3, 4] utilize the attention mechanism
[5] to align and predict the next spectrogram frame based on
the currently generated ones. This paradigm relaxes the need
for explicit duration modeling in traditional TTS models [6],
and can potentially enhance the naturalness of the synthesized
speech. However, the time complexity of the decoding process
grows linearly with the length of the spectrogram. In addition,

the error may accumulate throughout the sequential generation
process, which affects especially synthesis for long sentences.

Phoneme-level durations have been used in many NAR-
TTS models to eliminate the AR decoding process. Phoneme-
level durations can be distilled from a pre-trained AR-TTS
model [7, 8], extracted via force-alignment [9] or from dynamic
programming obtained alignments [10]. Based on the acquired
durations, these models expand the linguistic feature into the
frame-level feature, which can be further mapped to the spectro-
gram non-autoregressively. Without AR decoding, the synthesis
speed is significantly improved. However, deriving phoneme-
level durations can be cumbersome. Also, the hard-alignment of
the linguistic feature to the frame-level by repeating phonemes
may degrade the naturalness of the synthesized speech. Pre-
vious work [9] attempted to alleviate such degradation by in-
corporating greater variations in pitch and energy, but this also
increases the complexity of model training.

Other NAR-TTS models utilize utterance-level duration,
that is, the number of frames of an utterance, to create a place-
holder and use it to build up the spectrogram in a NAR way
[11, 12]. The prediction of the utterance-level duration is
more convenient than that of phoneme-level durations as the
utterance-level duration is inherently available. However, it can
be challenging to obtain the alignment between the linguistic
feature and the spectrogram placeholder. Though positional en-
coding of the utterance-level duration can be used to assist in
learning the alignment, it does not provide sufficient informa-
tion to encode the linguistic pattern inside the spectrogram. The
pressure in learning the alignment can be further mitigated by
introducing an AR-TTS teacher [11], but this also makes the
training process more complicated.

This paper proposes a novel approach for TTS that is
NAR and based on VAE, denoted as VAENAR-TTS. In con-
trast to NAR-TTS models based on phoneme-level durations,
VAENAR-TTS requires only the text-spectrogram pair and
thus can avoid the complexities of the forced alignment or
knowledge distillation processes as mentioned above. Hence,
VAENAR-TTS offers greater simplicity and is more straight-
forwardly end-to-end. This is achieved by using the VAE ar-
chitecture to encode the alignment into a latent variable. The
prior and posterior distributions of this alignment-aware latent
variable is learned in the VAE training paradigm. During the in-
ference phase, the latent variable is sampled from the prior dis-
tribution conditioned on the linguistic feature. The latent vari-
able encodes both the linguistic and alignment information , and
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can be used as the spectrogram placeholder to be aligned with
the linguistic feature. This attention-based soft alignment of the
linguistic feature is more suitable for natural speech synthesis.
The sample shape of the latent variable is determined by the
utterance-level duration predicted from the linguistic feature.

The architecture of VAENAR-TTS is mainly inspired by a
NAR machine translation (MT) model [13]. However, since the
task of TTS differs significantly from MT, we have made mul-
tiple modifications to adapt it across the tasks. The VAENAR-
TTS model use Glow [14] to model the prior distribution of the
latent variable, as compared with Glow-based NAR-TTS mod-
els [12, 10] that adopt it as the decoder to predict the spectro-
gram. Previous work has used bidirectional hierarchical VAE to
model NAR-TTS [7], but in this work, we use only the vanilla
conditional VAE structure.

2. Model Formalization
TTS can be formalized as the modeling of the posterior prob-
ability distribution of the spectrogram Y = [y1, y2, ..., yN ]
given the linguistic feature X = [x1, x2, ..., xM ], denoted
as P (Y |X), where N and M are the number of frames of
the spectrogram and the number of characters in the text, re-
spectively. yi is the ith frame of the spectrogram and xj is
the linguistic vector corresponding to the jth character in the
text, where i = 1, ..., N ; j = 1, ...,M . In AR-TTS models,
P (Y |X) is factorized as follows:

P (Y |X) =

N∏
i=1

P (yi|y−i, X). (1)

This factorization yields very good results since the spectro-
gram is continuous and thus it is easy to infer a feature frame
from the preceding frames. But the autoregressive decoding
process can be time-consuming and vulnerable to accumulated
error. We adopt another form of factorization as shown below:

P (Y |Z,X) =

N∏
i=1

P (yi|Z,X). (2)

By introducing the latent variable Z, each frame of the spectro-
gram becomes independent of one another given the linguistic
feature X and Z, thus can be generated in parallel. For TTS,
there are multiple kinds of information that can be encoded
in Z to satisfy this factorization. For example, phoneme-level
durations can be used as Z to extend the phoneme-level lin-
guistic feature to the frame-level, then the spectrogram can be
predicted non-autoregressively with a frame-to-frame mapping
model. This factorization with Z to model phoneme-level du-
rations has been implicitly adopted in previous work [8, 9] and
yields very good performance. However, obtaining phoneme-
level duration labels requires much extra effort and the hard
alignment between the linguistic feature and the spectrogram
may cause unnaturalness of the synthesized speech. To avoid
these issues, the proposed approach does not restrict the latent
variable in modeling specific piece(s) of expert knowledge. In-
stead, the latent variable is learned by the model itself in a vari-
ational inference paradigm.

The computation of the posterior probability distribution
P (Y |X) based on Equation (2) can be approximated with its
evidence lower bound shown in Equation (3), where P (Z|X)
is the prior distribution of Z given the linguistic feature,
Q(Z|X,Y ) is the posterior distribution of Z given the linguis-
tic feature and the ground-truth spectrogram. The first term in
Equation (3) is the negative Kullback–Leibler divergence (KL-
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Figure 1: Architecture of VAENAR-TTS. The dotted lines are
only turned on during the training stage, while their counter-
parts with the same color are only turned on during the infer-
ence phase. The scissors denote that the gradients for the length
predictor will not be back-propagated to the text encoder.

divergence) between the posterior distribution Q(Z|X,Y ) and
the prior distribution P (Z|X). The second term denotes the
expected log-likelihood of the spectrogram.

log[Pr(Y |X)] ≈−
∫
Z

Q(Z|X,Y ) log[
Q(Z|X,Y )

P (Z|X)
]dZ

+

∫
Z

Q(Z|X,Y ) log[P (Y |Z,X)]dZ (3)

With the above formalization, the architecture of the proposed
VAENAR-TTS can be readily derived.

3. Architecture
The architecture of VAENAR-TTS is shown in Figure 1. It con-
sists of a text encoder, a posterior encoder, a prior encoder, a
length predictor, and a decoder. The text encoder aims to en-
code the raw character sequence into the context-aware linguis-
tic feature X . The prior encoder models the prior distribution
of Z conditioned on X: P (Z|X); while the posterior encoder
models the posterior distribution of Z given the spectrogram
Y and X: Q(Z|X,Y ). The length predictor is built to in-
fer the utterance-level duration from the linguistic feature. The
posterior can be more informative about the alignment since it
is conditioned on the ground-truth spectrogram. The prior is
pushed towards the posterior by the KL-divergence loss during
the training phase. During the inference phase, the latent vari-
able with the predicted length is sampled from the prior distri-
bution. With the sampled latent variable as the base, the decoder
aligns the linguistic feature onto it and reconstructs the spectro-
gram, which corresponds to P (Y |Z,X) in Equation (3).

Conditioning on the linguistic feature is accomplished
through the attention mechanism, to which the linguistic feature
is used as the key and value being queried. Though many neural
architectures with attention mechanisms can serve this need, we
adopt self-attention blocks and decoder attention blocks from
Transformer [15] as the main components of our model. The
architecture design details are described as follows.

Text Encoder: The text encoder adopts similar structure
as that in Transformer-TTS [3]. It consists of a convolutional
PreNet that includes a convolution stack with dropout [16],
batch normalization [17] and ReLU activation [18]. The sinu-
soidal positional encoding [15] is added to keep the temporal in-
formation. Then, several self-attention blocks are stacked upon
to model the contextual information in the text.
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Posterior Encoder: In the posterior encoder, the spectro-
gram is first fed into a dense PreNet which consists of two fully-
connected layers with dropout and ReLU activation. The sinu-
soidal positional encoding is added as well. With the encoded
spectrogram as the query and the linguistic feature as the key
and value, several attention blocks are stacked upon the PreNet
to compute the alignment. Following the Transformer decoder,
the attention block consists of a self-attention layer, a cross-
attention layer, and an FFN layer. The frame-level mean and
variance for the posterior distribution of the latent variable Z is
predicted based on the outputs of the attention blocks.

Prior Encoder: Following [13], we use a Glow [14] struc-
ture to model the prior distribution of the latent variable. The
prior encoder consists of multiple Glow blocks with each block
containing an actnorm layer, an invertible 1 × 1 convolution
followed by an affine-coupling layer. The transformation neural
network in the affine-coupling layer is based on the Transformer
decoder block, with the latent variable as the query and the lin-
guistic feature as the key and value. While the latent variable Z
is sampled via the forward pass of the prior, the backward pass
can be used to infer the probability of a specific latent variable.

Decoder: The decoder consists of several Transformer de-
coder blocks to align the linguistic feature with the latent vari-
able. The spectrogram is then predicted from the aligned lin-
guistic feature. The convolution-based PostNet [2] is used to
generate a residual complement for the predicted spectrogram.

Length Predictor: The length predictor is just a 1-channel
fully-connected layer followed by the ReLU activation, whose
character-level outputs can be considered as the logarithm
character-level durations. The utterance-level duration is ob-
tained by summing up the exponential of the character-level
outputs. The utterance-level duration cannot be accurately pre-
dicted since the lengths of pause or silence segments at the be-
ginning and ending part of an utterance are nontrivial to es-
timate. However, we find that adding a constant bias to the
predicted duration can prevent the synthesized speech from be-
ing uncompleted while not degrading the speech quality, which
only appends a short segment of silence to the synthesized
speech.

Loss Function: The training loss function of VAENAR-
TTS is shown below:

L =MSE(Y, Ỹ ) + αDKL(Q(Z|X,Y )||P (Z|X))

+ βMSE(log(L), log(L̃)), (4)

where MSE denotes the mean squared error, DKL is the
KL-divergence. Y , Ỹ , L and L̃ are the ground-truth and
the predicted spectrogram, the ground-truth and the predicted
utterance-level duration, respectively. α and β are two weight
hyper-parameters. Note that we use the logarithm of the
utterance-level duration to compute the MSE as the loss term
for the length predictor.

4. Alignment Learning
The accurate alignment between the linguistic feature and the
spectrogram is the key to high-quality speech synthesis. Pre-
vious AR-TTS models use location-sensitive attention [19] to
help learn a monotonic alignment trajectory, which is an AR
process. We utilize two other methods to help learn the accu-
rate alignment without introducing extra AR components.

Annealing Reduction Factor: Intuitively, sequences of
shorter lengths can be more easily aligned. However, the spec-
trogram of a typical utterance usually consists of hundreds of
frames, which increases the difficulty of the alignment learn-

ing, especially in the early training stage. The reduction factor
r has been used to control the number of frames output at each
decoder step [1]. We use a similar technique in the proposed
model. While a larger r enables faster alignment convergence,
it also degrades the speech quality since the reduced spectro-
gram may lose some fine-grained information that is important
for learning an accurate posterior distribution of the latent vari-
able. To alleviate this issue, we adopt the annealing reduction
factor strategy in the training of VAENAR-TTS. To be specific,
the initial r is set to a relatively large value to facilitate the learn-
ing of diagonal attention alignments. After the nearly diagonal
alignments is acquired, r is decreased gradually to enable the
learning of the fine-grained distributions and spectrogram.

Causality Mask: The causality mask is added to the self-
attention stacked on the frame-level feature, namely, the self-
attention in the posterior encoder, the prior encoder, and the
decoder. The causality mask restricts the attention region to the
current frame and the frames before the current frame. We find
that restricting the self-attention on the frame-level feature to be
causal can help reduce the repetition errors as it strengthens the
temporal information in the frame-level feature and helps learn
better alignment.

5. Experiments
5.1. Experimental Setup

The experiments are conducted on LJSpeech [20] which con-
tains 13,100 English utterances from a female speaker. Two
131-utterance subsets are randomly sampled out as the valida-
tion and test set while the remaining are the training set. This
dataset separation configuration is shared among all of the com-
pared models.

We use the 80-dimension logarithm Mel-spectrogram
which is extracted with the 256-sample window shift and 1024-
sample window length as the prediction target. For multi-head
attention in all attention structures, the output dimension is set
to 256, the number of heads is 4, the FFN hidden dimension
is set to 1024. The number of attention blocks in the text en-
coder, posterior, decoder, and each prior Glow block are 4, 2,
2, and 2, respectively. For the text encoder, 43 lower-case let-
ters and symbols are embedded into 512-dimension. The con-
volutional PreNet in the text encoder contains 5 layers of 1D
convolution with 512 filters and the kernel size of 5. The dense
PreNet in the posterior consists of 2 fully connected layers with
256-dimension outputs. The prior encoder contains 6 Glow
blocks. The dimension of the latent variable is 128. The model
is trained on an RTX2080Ti GPU with the batch size of 32. The
learning rate is constantly set to 1.25× 10−4. The optimizer is
Adam [21] with β1 = 0.9 and β2 = 0.999. The weights for
KL-divergence and the utterance-level duration loss are set to
1.0 × 10−5 and 1.0 respectively. The reduction factor anneal-
ing strategy is as follows: r is initially set to 5 and is decreased
by 1 every 200 training epochs until it reaches 2, after which
r remains as 2 for the rest of the training epochs. We train the
model for 2000 epochs and the final model checkpoint is used
for evaluation. During the training phase, the initial noise for
the prior encoder is sampled from the normal distribution, while
for inference it is set to all zeros, we find that the synthesized
speech is more stable in this way. A constant bias of 80 frames
is added to the predicted utterance-level duration to avoid the
synthesized utterance being incomplete during inference.

We compare the proposed model with the state-of-the-art
AR-TTS model: Tacotron2 [2], and NAR-TTS models: Fast-
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Table 1: Comparison results of different TTS models

Model MOS RTF(Sec)

Ground-Truth 4.56± 0.09 -
Hifi-GAN-Resyn 4.47± 0.10 -
Tacotron2 4.03± 0.12 1.35× 10−1

FastSpeech2 3.83± 0.14 4.21× 10−3

Glow-TTS 3.62± 0.13 9.39× 10−3

BVAE-TTS 3.16± 0.13 4.21× 10−3

VAENAR-TTS 4.15± 0.12 7.45× 10−3

RF5 3.43± 0.14 6.99× 10−3

RF4 3.83± 0.13 7.30× 10−3

RF3 3.84± 0.14 7.43× 10−3

Speech2 [9], Glow-TTS [10], and BVAE-TTS [7]. We use Hifi-
GAN [22] to convert the generated spectrogram into the wave-
form for all of the compared models. To analyze the effect of
the reduction factor r, we also evaluate 3 VAENAR-TTS mod-
els with r fixed for the whole training process as 5, 4, and 3,
denoted as RF5, RF4, and RF3, respectively.

5.2. Synthesis Quality and Speed Experiments

10 out of 131 sentences from the test set are randomly selected
and synthesized by each model as the subjective evaluation set1.
We compare different TTS models in terms of synthesis qual-
ity as well as synthesis speed. The synthesis quality is measured
by the subjective evaluation in terms of the Mean Opinion Score
(MOS) of the speech naturalness. 15 subjects are invited to eval-
uate the naturalness of the synthesized speech on a 5-scale basis
in which 1 means bad and 5 means excellent naturalness. The
synthesis speed is measured using the real-time factor (RTF),
which is the time taken to synthesize one second of the speech
spectrogram from the text. The speed tests are conducted on
a single RTX2080Ti GPU with the batch size of 1. For each
model, the RTF is averaged over 10 runs on the whole test set.

The results are shown in Table 1. The MOS scores are
presented with 95% confidence intervals. We can observe that
VAENAR-TTS achieves the best speech naturalness among all
the compared models with MOS of 4.15± 0.13, while is com-
parable or better than Tacotron2 with MOS of 4.03± 0.12. As
for the synthesis speed, the proposed model can synthesize 1
second of speech spectrogram within 7.45 milliseconds, which
is comparable with other NAR-TTS models, and is about 18×
faster than Tacotron2 .

5.3. Alignment Learning Experiments

The lower part of Table 1 shows the experimental results of
VAENAR-TTS with different fixed reduction factors r. We can
see a significant improvement of speech naturalness when r is
decreased from 5 to 4, while the MOS gap between RF4 and
RF3 is relatively small. With the final r as 2, VAENAR-TTS
with annealing r achieves much better quality than RF3. The
MOS results also support our argument that as the reduction
factor increases, more fine-grained information may be lost,
which hinders the estimation of the latent distributions, thus de-
grades the naturalness of the predicted speech. It is also worth
noting that RF3 and RF4 models achieve better MOS scores
than Glow-TTS and BVAE-TTS while is comparable with Fast-
Speech2. Though the frame-level feature is further reduced, as

1Samples and code: https://github.com/thuhcsi/VAENAR-TTS

temporally down-sampled acoustic feature may lose some fine-
grained information. We adopt the annealing reduction factor
strategy in the training of VAENAR-TTS. Specifically, the ini-
tial reduction factor is set to a value that is approximately the
ratio between the length of the acoustic feature and that of the
linguistic feature. After the nearly diagonal alignment is ac-
quired, the reduction factor is decreased gradually to learn the
fine-grained acoustic feature.

4.2. Causality Mask

The causality mask is added to the self-attention computation
of the acoustic feature. The causality mask restricts the atten-
tion region to the current frame and the frames before the cur-
rent frame. This has been used in Transformer-TTS during the
training phase since the decoder can only see prevoius frames

of acoustic feature during the inference stage. Though we don’t
have such restrictions for the proposed VAENAR-TTS model,
we find that restricting the self-attention on the acoustic feature
side to be causal can help reduce the repeatation errors.

5. Experiments
5.1. Experimental Setup

The experiments are conducted on LJSpeech [20] which con-
tains 13100 English utterances from a female speaker. 131 ut-
terances are randomly sampled as the validation set, and another
131 utterances are randomly sampled as the test set while the
remaining are the training set. This dataset separation configu-
ration keeps the same for all of the compared models.

We use the 80-dimension logarithm Mel-spectrogram
which is extracted with 256-sample window shift and 1024-
sample window length as the acoustic feature. For multi-head
attention in all attention structures, the attention output dimen-
sion is set to 256, the number of heads is 4, the FFN hidden
dimension is set to 1024. The number of attention blocks in the
text encoder, posterior, decoder and each prior Glow block are
4, 2, 2 and 2, respectively. For the text encoder, 43 lower-case
letters and symbols are embedded to 512-dimension. The con-
volutional PreNet in the text encoder contains 5 layers of 1D
convolution with 512-dimension and 5 kernels. The densely
PreNet in the posterior consists of 2 fully connected layers
with 128-dimension outputs followed by Dropout. The prior
encoder contains 6 Glow blocks. The model is trained on an
RTX2080Ti GPU with the batch size of 32. The learning rate is
constantly set to 1.25×10−4. The optimizer is Adam [21] with
β1 = 0.9 and β2 = 0.999. The weights for KL-divergence
and the utterance-level duration loss are set to 1 × 10−5 and
1.0 respectively. The reduction factor annealing strategy is as
follows: for the first 600 training epochs, the reduction factor
decrease from 5 to 2 with the speed of decreasing 1 per 200
epochs, then the reduction factor remains as 2 for the remaining
training epochs. We train the model for 2000 epochs and the
finally saved model is used for evaluation. During the training
phase, the initial noise for the prior encoder is sampled from the
normal distribution, while for inference it is set as all zeros, we
find the synthesized speech is more stable in this way.

We compare the proposed model with the state-of-the-art
AR-TTS and NAR-TTS models. For AR-TTS, we choose
Tacotron-2 as the comparison model. For NAR-TTS, we com-
pare with FastSpeech2, Glow-TTS, and BVAE-TTS. Hifi-GAN
[22] is used to convert the generated spectrogram to the wave-
form for all of the experimented models. To test the efficiency

of the annealing reduction factor, we also train 3 VAENAR-
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Figure 2: Attention alignments of model with reduction factor
fixed at 5, 4, and 3

Table 1: Comparison results of different TTS models

Model MOS RTF

Ground-Truth 4.8 -
Hifi-GAN-Resyn 4.5 -
Tacotron2 4.4 6.058× 10−1

FastSpeech2 4.3 9.653× 10−3

Glow-TTS 4.3 8

.

994× 10−3

BVAE-TTS 4.2 5.821× 10−3

VAENAR-TTS 4.3 1.161× 10−2

VAENAR-TTS, R=5 4.3 1.161× 10−2

VAENAR-TTS, R=4 4.3 1.161× 10−2

VAENAR-TTS, R=3 4.3 1.161× 10−2

TTS models with reduction factor fixed for the whole training
process as 5, 4, and 3, respectively.

5.2. Synthesis Quality and Speed Experiments

For each model, 131 sentences from the test set are synthesized
and then 10 synthesized speech are randomly selected as the
subjective evaluation set. We compare different TTS models in
terms of synthesis quality as well as synthesis speed. The syn-
thesis quality is measured by subjective evaluation in terms of
Mean Opinion Score (MOS). 12 subjects are invited to evalu-
ate the quality of the synthesized speech on a 5-scale basis in
which 1 means bad quality and 5 means excellent quality. The
synthesis speed is measured using the real-time factor (RTF),
that is, the time taken to synthesize one second of the speech
spectrogram. All of the 131 synthesized utterances are taken
into consideration to compute the RTF of each model. Note that
we only count the time consumed on synthesizing the acoustic
feature from the raw text.

The results are shown in Table 1. We can observe that
the proposed VAENAR-TTS achieves the best speech quality
among the NAR-TTS models with MOS score of 4.3 and is
very close to Tacotron-2, which achieves MOS score of 4.5.
The synthesis speed of VAENAR-TTS is 1.161 × 10−2 which
is comparable to other NAR-TTS models.

The lower part of the table shows the results of VAENAR-
TTS with different reduction factors. It can be seen that as
the reduction factor decereases, the speech quality is improved.
While the model with annealing reduction factor achieves the
best speech quality. The decoder attention alignment of mod-

Figure 2: Attention alignments of RF5 model (left), RF4 model
(middle) and RF3 model (right) after 56 training epochs
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Figure 3: Decoding attention alignments of models without
(left) versus with (right) causality mask in acoustic side self-
attention, where the vertical and horizontal axis denotes the de-
coder and encoder step, respectively.

compared with VAENAR-TTS, there are no significant drops
of RTFs for these models since the spectrogram is generated in

parallel. Besides, the decoder attention alignments of models
with larger r converge much faster. As we observe in Figure 2,
after 56 epochs of training, RF5 can already obtain a relatively
clear diagonal alignment trajectory, while the attention maps
for RF4 and RF3 are rather blurred. Further training shows that
RF4 acquires clear diagonal alignment after training epoch 96
while this number for RF3 is about 122.

VAENAR-TTS model without the causality mask in the
frame-level feature side self-attention is also trained and com-
pared. But the repetition problems come frequently to this ab-
lation model and the MOS score cannot reflect this issue more
than the attention alignment shown in Figure 3. As we can see,
though the attention alignment is clear, without the causality
mask, the attention trajectory goes back several times to attend
to the characters that are already synthesized, this causes the
repetition problem in the synthesized speech. With the causality
mask added, the self-attention computation can add more tem-
poral information to the frame-level feature, which we argue
is very important for the continuous and monotonic alignment
learning as shown in the right part of Figure 3.

6. Conclusions
We present a VAE-based NAR-TTS model named VAENAR-
TTS in this paper. Compared with recently proposed NAR-
TTS models, VAENAR-TTS requires no phoneme-level dura-
tions and thus avoids the complex duration extraction process.
VAENAR-TTS utilizes VAE to encode the alignment informa-
tion into the latent variable, and uses the attention-based soft
alignment to align the linguistic feature with the frame-level la-
tent variable. In this way, our approach can alleviate the un-
naturalness problem caused by the hard alignment based on
phoneme-level durations. We adopt the annealing reduction fac-
tor and causality mask in self-attention to help learn the align-
ment faster and better. VAENAR-TTS achieves state-of-the-art
synthesis quality as well as competitive synthesis speed to that
of other NAR-TTS models.
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