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ABSTRACT
Combinatorial medication recommendation (CMR) is a fundamental
task of healthcare, which offers opportunities for clinical physicians
to provide more precise prescriptions for patients with intricate
health conditions, particularly in the scenarios of long-termmedical
care. Previous research efforts have sought to extract meaningful
information from electronic health records (EHRs) to facilitate com-
binatorial medication recommendations. Existing learning-based
approaches further consider the chemical structures of medications,
but ignore the textual medication descriptions in which the func-
tionalities are clearly described. Furthermore, the textual knowledge
derived from the EHRs of patients remains largely underutilized. To
address these issues, we introduce the Natural Language-Assisted
Multi-modal Medication Recommendation (NLA-MMR), a multi-
modal alignment framework designed to learn knowledge from the
patient view and medication view jointly. Specifically, NLA-MMR
formulates CMR as an alignment problem from patient and medica-
tion modalities. In this vein, we employ pretrained language models
(PLMs) to extract in-domain knowledge regarding patients andmed-
ications, serving as the foundational representation for both modali-
ties. In themedicationmodality, we exploit both chemical structures
and textual descriptions to create medication representations. In
the patient modality, we generate the patient representations based
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on textual descriptions of diagnosis, procedure, and symptom. Ex-
tensive experiments conducted on three publicly accessible datasets
demonstrate that NLA-MMR achieves new state-of-the-art perfor-
mance, with a notable average improvement of 4.72% in Jaccard
score.
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1 INTRODUCTION
The implementation of digital patient records in healthcare institu-
tions has boosted the development of a substantial repository of
information known as Electronic Health Records (EHRs). This valu-
able asset holds significant potential for a variety of applications
within the medical field, such as predicting mortality rates, forecast-
ing treatment outcomes, and offering medication recommendations.
As one of the fundamental tasks of healthcare, combinatorial medi-
cation recommendation (CMR) has attracted a lot of attention in
recent years, and achieved significant progress in providing per-
sonalized and safe medication recommendations for patients. This
advancement is especially beneficial for the elderly who have been
suffering from chronic illnesses for a prolonged time [27, 30].
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A multitude of deep learning models have been designed to
solve the CMR task in the literature, which not only use the EHRs
(e.g., diagnoses, procedures, and symptoms), but also leverage the
chemical structures of drugs. For example, SafeDrug [38] developed
dual molecular graph encoders to embed global and local molecular
structures. MoleRec [39] proposed a molecular substructure-aware
attentive method for CMR. DrugRec [31] proposed to represent
drugs with the SMILES, a line-based representation (i.e., string)
of molecules. Besides EHRs and chemical structures, we observe
there are a vast amount of textual descriptions of drug molecules
that are human-understandable and easily accessible on platforms
such as PubChem [13] and DrugBank [35]. These texts describe
the functionalities of drug molecules and reveal their therapeutic
purposes. Unfortunately, none of the existing methods try to exploit
the textual medication descriptions, thus failing to establish the
semantic relations between the textual descriptions of patients and
medications. Consider the example depicted in Figure 1 with two
modalities of patient and medication, respectively. In the patient
modality, an EHR shows that the patient with the symptoms “heart
pain” and “fatigue” is diagnosed with diseases “old myocardial in-
fraction” and “chronic ischemic”, and then is prescribed with a set of
drugs “carvedilol”, “aspirin” and “acetaminophen”. In the medication
modality, the textual medication description reveals that “Carvedilol
is used to treat chronic heart failure, hypertension, and myocardial
infarction”. This example illustrates that the textual medication
description can supplement the chemical structures to enhance the
expressiveness of medication representations, and help establish
the semantic relations between the patients and medications. This
motivates us to leverage the useful textual medication description
and consider patient and medication as two distinct modalities for
medication recommendation.

In another direction, recent studies have attempted to incorpo-
rate structured domain knowledge, such as biomedical knowledge
graphs (BioKG) [29, 36] and drug-drug interactions (DDI) [2, 31, 38]
to enhance the CMR performance. However, the quality of such
structured domain knowledge may degrade due to potential infor-
mation loss and biased sampling when it is extracted from raw
medical documents. A more effective approach is to employ the pre-
trained language models (PLMs), which are pretrained on web-scale
textual data from the chemical and biological domain to capture
clinical specialist knowledge in raw texts for medication recom-
mendation. Representations learned by PLMs like PubMedBERT [6]
and ClinicalBERT [16] achieve strong performance across many
domain-specific applications. Intuitively, using these PLMs to en-
code the textual knowledge of the patient andmedicationmodalities
can provide additional gains over conventional encoding methods
in the CMR task because they effectively fuse various types of infor-
mation, such as diagnoses, procedures, symptoms and medications
in a unified global semantic space.

In light of these observations, we propose a novel model, called
Natural Language-Assisted Multi-modal Medication Recommen-
dation (NLA-MMR), to make medication recommendations by ef-
fectively harnessing the wealth of clinical knowledge in the EHRs
and drugs. NLA-MMR incorporates the textual medication descrip-
tions for molecular representation learning. It also integrates expert
knowledge by leveraging PLMs to capture various types of semantic
relations between the texts in the EHRs andmedication descriptions.

Carvedilol is used to treat 
chronic heart failure, 

hypertension, and 
myocardial infarction…

heart pain, 
fatigue,... 

old myocardial 
infraction, chronic 

ischemic,…

electrocardiogram, 
coronary intervention, 
echocardiography,... 

Diagnosis Description

Patient Modality

Medication Modality

Procedure Description

Symptom Description 

Textual Description

CMR System

Clinical
Knowledge 

Medication
Knowledge Chemical Structure

❓

Prescribe

PLMs

Figure 1: Illustration of combinatorial medication recom-
mendation with help of knowledge extraction from PLMs

Specifically, NLA-MMR aligns patient and medication modalities
utilizing a cross-modal alignment module based on the patient’s
prescriptions in the EHRs. In the prediction phase, NLA-MMR trans-
forms a recommendation problem into a similarity retrieval problem
that aims to find the most similar medication representation given
the patient’s representation. Our contributions in this paper are
summarized as follows:
• To the best of our knowledge, we are the first to consider the
patient and medication as two distinct modalities and design
a multi-modal alignment framework NLA-MMR to learn their
representations in a unified latent space. NLA-MMR converts the
recommendation task into a similarity retrieval problem, enabling
better generalizability and transferability of the model.

• We propose utilizing the PLMs as a fundamental building block
to construct the representations of the patient and medication
modalities by extracting expert knowledge from their descrip-
tions. For the medication modality, we incorporate both chemical
structures and medication descriptions for the medication repre-
sentation learning.

• Experimental results on three publicly available healthcare datasets
demonstrate that our proposed method is highly effective com-
pared to the state-of-the-art methods. Our model boosts Jac-
card by 2.86%, 7.01%, 4.29% onMIMIC-III,MIMIC-IV, and eICU
datasets, respectively.

2 PRELIMINARIES
For a patient 𝑣 , his/her electrical health records (EHRs) are repre-
sented as a sequence 𝑅𝑣 = [𝑥 (1)𝑣 , 𝑥

(2)
𝑣 , · · · , 𝑥 (𝑇𝑣 )𝑣 ], where 𝑥 (𝑡 )𝑣 repre-

sents the health record from the 𝑡-th clinical visit and𝑇𝑣 is the total
number of visits of the patient 𝑣 . When the context is clear, we omit
the subscript 𝑣 to simplify notations. Then, the 𝑡-th visit in the EHR
of a patient can be represented by a 𝑥 (𝑡 ) = (𝑑 (𝑡 ) , 𝑝 (𝑡 ) , 𝑠 (𝑡 ) ,𝑚 (𝑡 ) ),
where 𝑑 (𝑡 ) ∈ {0, 1} |D | , 𝑝 (𝑡 ) ∈ {0, 1} | P | , 𝑠 (𝑡 ) ∈ {0, 1} |S | ,𝑚 (𝑡 ) ∈
{0, 1} |M | are multi-hot diagnosis, procedure, symptom, and medi-
cation vectors, respectively.D, P, S,M indicate the set of possible
diagnoses, procedures, symptoms and medications, respectively,
and | · | denotes the cardinality of a set. As shown in Figure 1, our
approach treats the patient and medication as two modalities to
consider their information.
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Patient Modality. Following [31], we model the patient modality
as a series of clinical visits containing the diagnosis, procedure, or
symptom, which reflect the health state of this patient. Thus, the 𝑡-
th visit for the patient 𝑣 is defined as 𝑟 (𝑡 )𝑣 = (𝑟 (𝑡 )

𝑑
, 𝑟

(𝑡 )
𝑝 , 𝑟

(𝑡 )
𝑠 ), where

𝑟
(𝑡 )
𝑑

, 𝑟 (𝑡 )𝑝 , and 𝑟 (𝑡 )𝑠 represent the textual description of diagnoses
in 𝑑 (𝑡 ) , procedures in 𝑝 (𝑡 ) , and symptoms in 𝑠 (𝑡 ) , respectively.
Therefore, the patient modality of 𝑣 is denoted as 𝑣 = [𝑟 (𝑡 )𝑣 ]𝑇𝑣

𝑡=1.
Medication Modality. To enrich the medication modality, we
collect the textual description 𝑟 for each molecule inM, which pro-
vides a high-level explanation of the molecule’s functionality. Addi-
tionally, for each medication inM, we represent its molecular struc-
ture by an undirected graph 𝑔 = (A,B). Here, A = {𝑎1, · · · , 𝑎𝑛} is
the set of atoms and B ⊆ A ×A is the set of bonds. The neighbor-
hood of atom 𝑎𝑖 is denoted asN(𝑎𝑖 ) = {𝑎 𝑗 | (𝑎𝑖 , 𝑎 𝑗 ) ∈ B}. Therefore,
the medication modality is represented as (𝑟, 𝑔). Figure 1 depicts
an example of medication “Carvedilol”.
Combinatorial Medication Recommendation. Given the EHR
of a patient till time 𝑡 − 1, denoted as [𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝑡−1) ], con-
taining the textual description of the 𝑡-th diagnosis, procedure, and
symptom sets, denoted as 𝑟 (𝑡 )

𝑑
𝑟
(𝑡 )
𝑝 and 𝑟

(𝑡 )
𝑠 , respectively, and a

candidate medication setM, the CMR task aims to predict an ap-
propriate combination of medications M𝑡 ⊆ M for the patient’s
𝑡-th visit using a neural network model 𝑓 (·).

3 METHODOLOGY
3.1 Overview
Figure 2 illustrates an overview of our proposed drug recommen-
dation approach NLA-MMR, which is composed of three modules:
1) the patient representation module using a PLM to encode
the texts of diagnosis, procedure, and symptom; 2) themedication
representationmodule generating medication representations by
employing the GNN model and a PLM for incorporating molecular
structure-level information and textual knowledge, respectively; 3)
the cross-modal alignment module responsible for making pre-
scriptions by using two projection layers to calculate the similarity
between the patient representation and medication representations
on the joint latent space. In particular, in the patient representation
module, we conduct cross-attention fusion to fully leverage the dif-
ferent types of textual information present in the patient modality.
Besides, we integrate the medication information of historical visits
to capture dependencies between medication usage in previous
visits and the current visit.

3.2 Patient Representation Module
In this section, we construct the patient representation with the
textual components defined in the patient modality. By leveraging
the power of PLMs, we are able to extract valuable expert knowl-
edge from these unprocessed texts, thereby contributing to the
development of an advanced medication recommendation model.
Specifically, we first consider the PLM-based representation of the
concatenated text of diagnosis, procedure, and symptom as the ba-
sic patient representation. Then, we devise a cross-attention fusion
mechanism to merge information from the three types of patient
descriptions to obtain the final patient representation.

PLM-based Representation.We employ a PLM encoder [17] to
extract the representation for the patient modality. Give a patient’s
𝑡-th visit 𝑟 (𝑡 ) = (𝑟 (𝑡 )

𝑑
, 𝑟

(𝑡 )
𝑝 , 𝑟

(𝑡 )
𝑠 ), we concatenate these descriptions

into a synthesis text as 𝑟 (𝑡 )
𝑑𝑝𝑠

and employ the PLM encoder to obtain
its representation:

𝒉(𝑡 )
𝑑𝑝𝑠

= PLM-Encoder
(
𝑟
(𝑡 )
𝑑𝑝𝑠

)
, (1)

where 𝒉(𝑡 )
𝑑𝑝𝑠

∈ R𝑑𝑒𝑛𝑐 is the output of the PLM encoder, which is
obtained via an average pooling of the embeddings of all tokens.
Meanwhile, we individually encode the textual descriptions of diag-
nosis, procedure, and symptom with the PLM and obtain 𝒉(𝑡 )

𝑑
, 𝒉(𝑡 )𝑝 ,

and 𝒉(𝑡 )𝑠 , which are representations of the corresponding type of
textual description in the patient modality.
Cross-Attention Fusion. To enhance the basic patient represen-
tation in Eq. (1), we aggregate the features derived from three
aspects, 𝒉(𝑡 )

𝑑
, 𝒉(𝑡 )𝑝 , and 𝒉(𝑡 )𝑠 , by utilizing a cross-attention mecha-

nism, weighted by a set of learnable weights𝑤𝑐 ∈ R |𝐶 | , as 𝒉(𝑡 )𝑎𝑡𝑡𝑛 =∑
𝑐∈𝐶 𝑤𝑐𝒉

(𝑡 )
𝑐 ,𝐶 = {𝑠, 𝑑, 𝑝}. Let 𝑯 (𝑡 ) ∈ R |𝐶 |×𝑑𝑒𝑛𝑐 be the matrix

stacked by the embeddings in {𝒉(𝑡 )
𝑑

,𝒉(𝑡 )𝑝 ,𝒉(𝑡 )𝑠 }. In Eq. (2), 𝑯1 ∈
R |𝐶 |×𝑑𝐾 , 𝑯2 ∈ R1×𝑑𝐾 are transformed by linear weight matrices
𝑾1,𝑾2 ∈ R𝑑𝑒𝑛𝑐×𝑑𝐾 , respectively.𝑤𝑐 is computed by the multiplica-
tion of 𝑯1 and the transpose of 𝑯2 followed by a softmax function
that normalizes the weights, as Eq. (3) shows.

𝑯1 = 𝑯 (𝑡 )𝑾1, 𝑯2 = 𝒉(𝑡 )
𝑑𝑝𝑠

𝑾2, (2)

{𝑤𝑐 }𝑐∈𝐶 = softmax
(
𝑯1𝑯𝑇2√︁

𝑑𝐾

)
. (3)

Next, we concatenate the aggregated representation 𝒉(𝑡 )𝑎𝑡𝑡𝑛 ∈
R𝑑𝑒𝑛𝑐 and the basic patient feature 𝒉(𝑡 )

𝑑𝑝𝑠
∈ R𝑑𝑒𝑛𝑐 as the patient

representation, which can be formulated as:
𝒑 (𝑡 ) =

[
𝒉(𝑡 )𝑎𝑡𝑡𝑛 ∥𝒉

(𝑡 )
𝑑𝑝𝑠

]
𝑾𝑟 + 𝒃𝑟 , (4)

where [∥] denotes the concatenation operation and𝑾𝑟 ∈ R2𝑑𝑒𝑛𝑐×𝑑𝑒𝑛𝑐

and 𝒃𝑟 ∈ R𝑑𝑒𝑛𝑐 are trainable parameters.

3.3 Medication Representation Module
The medication modality encompasses two essential components,
namely textual knowledge and structural information. As depicted
in Figure 2, our module for representing medications is composed of
two branches: the textual description branch and the chemical struc-
ture branch. These branches are designed to address the external
domain knowledge of molecules through textual descriptions and
their intrinsic property through chemical structures, respectively.
To harness the domain-specific knowledge contained within the
textual descriptions, we employ a text encoder known as the PLM.
Additionally, we employ a GNN model to extract representations
at the structure level for drugs based on their chemical structures.
PLM-based Functional Representation. The textual description
of a drug provides a high-level overview of the molecule’s function-
ality, which offers valuable insights into the therapeutic potential
of the drug and can aid in drug predictions. In this paper, we ex-
tract therapeutic descriptions of the drugs from DrugBank [35],
which illustrates drug effects on the target organism. Given the
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Figure 2: The architecture of NLA-MMR. NLA-MMR is composed of three modules: (a) Patient Representation Module employs
PLMs as the base encoder to construct the representation of patient modality from the diagnosis, procedure, and symptom. (b)
Medication Representation Module incorporates the embedding derived from textual medication descriptions and chemical
structures to build the representation of medication modality. (c) Cross-Modal Alignment Module takes the representation from
patient and medication modality as input and aligns them in the same latent space. We further consider historical medication
usage information to model the patient’s clinical history, which can enhance the representation of patient modality.

textual medication descriptions, we obtain its PLM-based func-
tional representations by conducting a similar process as in Eq.
(1). We collect the textual embeddings of all drugs into a drug ma-
trix 𝑬𝑓 ∈ R |M |×𝑑𝑒𝑛𝑐 , where each row corresponds to the textual
embedding of a drug.
Structure-level Representation. We incorporate chemical struc-
tures to learn the molecule representation. Specifically, we employ
the GNN to model the interactions between all the atoms across
the single molecule graph 𝑔 and obtain the structure-level drug
representation. The aggregation and combination paradigm is con-
ducted on the graph 𝑔 of a drug molecule whose nodes are atoms
and edges are chemical bonds. Given the features of the 𝑛 atoms
𝑬 (𝑘 )
𝑎 = {𝒆 (𝑘 )𝑎1 , · · · , 𝒆 (𝑘 )𝑎𝑛 } ∈ R𝑛×𝑑𝑠 , for each atom 𝑎𝑖 ∈ A, the mes-

sages of all the other atoms in the molecule are aggregated to
𝒆 (𝑘 )
𝑖

∈ R𝑑𝑠 (Eq. (5)). Afterward, the aggregated message 𝒆 (𝑘 )
𝑖

is com-
bined with the feature of the atom 𝒆 (𝑘 )𝑎𝑖 by a summation operation,
followed by a multilayer perceptron (MLP), as the combination
function of GIN [28], generating new atom feature 𝒆 (𝑘+1)𝑎𝑖 for the
next layer (Eq. (6)).

𝒆 (𝑘 )
𝑖

= AGG(𝑘 )
({
𝒆 (𝑘 )𝑎 𝑗 |∀𝑎 𝑗 ∈ N (𝑎𝑖 )

})
, (5)

𝒆 (𝑘+1)𝑎𝑖 = MLP(𝑘 )
((
1 + 𝜖 (𝑘+1)

)
𝒆 (𝑘 )𝑎𝑖 + 𝒆 (𝑘 )

𝑖

)
,∀𝑖 ∈ {1, · · · , 𝑛}, (6)

where 𝜖 can be a learnable parameter or a fixed scalar, it determines
the importance of the target node compared to its neighbors, 𝒆 (𝑘 )𝑎 𝑗

is the feature vector of atom 𝑎 𝑗 at the 𝑘-th layer, N(𝑎𝑖 ) denotes
the neighbors of the atom 𝑎𝑖 . After applying message passing for

𝐿 layers, the embeddings of the atoms in the molecule graph are
aggregated into a global structural-level representation as Eq. (7),

𝒆𝑔 = Pooling
({
𝒆 (𝐿)𝑎𝑖 |∀𝑖 ∈ {1, · · · , 𝑛}

})
, (7)

where the pooling function is the average function. We employ
the same GNN encoder with shared parameters for each drug mol-
ecule (with a total of |M| different drugs). We collect the GNN
embeddings of all drugs into a drug memory 𝑬𝑠 ∈ R |M |×𝑑𝑠 , where
each row corresponds to the drug’s structural representation, 𝑑𝑠
represents the dimension of the structure-level drug representation.

The textual representation and structural representation are
combined to form the final medication embedding matrix 𝑬𝑚 ∈
R |M |×(𝑑𝑠+𝑑𝑒𝑛𝑐 ) as follows:

𝑬𝑚 = [𝑬𝑠 | |𝑬𝑓 ] . (8)

3.4 Cross-Modal Alignment Module
In the cross-modal alignment module, the patient representation
𝒑 (𝑡 ) and medication representations 𝑬𝑚 are fed into two MLPs
which map the representations extracted from different modalities
to a joint latent space as Eq. (9):

�̃� (𝑡 ) = MLP(𝒑 (𝑡 ) ), �̃�𝑚 = MLP (𝑬𝑚) . (9)

Subsequently, we use inner product operation ⊙ to compute the
similarity of the patient feature �̃� (𝑡 ) , and the medication features
�̃�𝑚 in the joint space as Eq. (10):

�̂�
(𝑡 )
𝑖

= 𝜎

(
�̃� (𝑡 ) ⊙

(
�̃�𝑚

)
𝑖

)
,∀𝑖 ∈ {1, · · · , |M|}. (10)
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The predicted recommendation probabilities �̂� (𝑡 ) ∈ [0, 1] |M | are
obtained by a sigmoid function 𝜎 .

3.5 Historical Information Integration
Within the realm of medication recommendation, it is of utmost im-
portance to effectively model the historical clinical information of
patients, particularly those suffering from chronic ailments that ne-
cessitate long-term medication. Prior studies commonly employ the
extraction of historical features, such as diagnosis, procedure, and
symptom, to capture the patient’s clinical trajectory [38, 39]. Never-
theless, the observed patient data often suffers from incompleteness
and inadequacy, subsequently resulting in imprecise predictions in
the CMR task [31]. To overcome this limitation, we propose a his-
torical information integration mechanism that directly assimilates
the patient’s medication history. This module generates a compre-
hensive representation of the patient’s historical clinical condition
by duly considering the temporal patterns of medication usage.
By leveraging this integrated information, we aim to enhance the
accuracy and precision of medication recommendations.

Firstly, we denote 𝑟 (𝑡 )𝑚 as the textual description of the medica-
tions used in the 𝑡-th visit and obtain themedication representations
of all the past visits 𝒉(𝑖 )𝑚 ∈ R𝑑𝑒𝑛𝑐 for the visit 𝑖 ∈ {1, · · · , 𝑡 − 1}
through the similar process as in Eq. (1):

𝒉(𝑖 )𝑚 = PLM-Encoder
(
𝑟
(𝑖 )
𝑚

)
, ∀𝑖 ∈ {1, · · · , 𝑡 − 1}. (11)

Then, we use the patient representation in Eq. (4), 𝒑 (𝑡 ) , as the
query vector to calculate the selection score {𝑤 (𝑖 )

𝑚 |𝑖 ∈ 1, · · · , 𝑡 − 1}
along the historical medication combination features. Let 𝑯𝑚 ∈
R(𝑡−1)×𝑑𝑒𝑛𝑐 be the matrix stacked by the historical medication
embeddings {𝒉(𝑖 )𝑚 |𝑖 ∈ {1, · · · , 𝑡 − 1}}, we calculate𝑤𝑚 as follows:

𝑯3 = 𝑯𝑚𝑾3, 𝑯4 = 𝒑 (𝑡 )𝑾4, (12)

{𝑤 (𝑖 )
𝑚 }𝑖∈{1,· · · ,𝑡−1} = softmax

(
𝑯3𝑯𝑇4√︁

𝑑𝐾

)
, (13)

where 𝑯3 ∈ R(𝑡−1)×𝑑𝐾 , 𝑯4 ∈ R1×𝑑𝐾 , and𝑾3,𝑾4 ∈ R𝑑𝑒𝑛𝑐×𝑑𝐾 are
learnable parameters. Finally, the historical medication representa-
tion of the patient can be computed as follows:

𝒑 (𝑡 )
𝑚 =

©«
∑︁

𝑖∈{1,· · · ,𝑡−1}
𝑤

(𝑖 )
𝑚 𝒉(𝑖 )𝑚

ª®¬𝑾𝑚 + 𝒃𝑚, (14)

where 𝑾𝑚 ∈ R𝑑𝑒𝑛𝑐×𝑑𝐾 and 𝒃𝑚 ∈ R𝑑𝐾 are trainable parameters.
The embedding �̃� (𝑡 ) + 𝒑 (𝑡 )

𝑚 can be considered as the patient feature
for the alignment in Eq. (10).

3.6 Training Objective
For each patient in the training set, we use the bce loss in Eq. (15)
as the optimization objective, which is a summation for all the 𝑇
times visits. Here,𝑚 (𝑡 ) ∈ {0, 1} |M | and �̂� (𝑡 ) ∈ [0, 1] |M | are the
ground truth label and recommendation probabilities for a drug set
M, respectively.

L𝑏𝑐𝑒 = −
𝑇∑︁
𝑡=1

|M |∑︁
𝑖=1

(
𝑚

(𝑡 )
𝑖

log�̂� (𝑡 )
𝑖

+ (1 −𝑚
(𝑡 )
𝑖

) log
(
1 − �̂�

(𝑡 )
𝑖

))
(15)

We utilize the margin loss L𝑚𝑎𝑟 in Eq. (16), aiming to enlarge
the discrepancy between the predicted probability of positive and
negative cases in the prescription.

L𝑚𝑎𝑟 =
𝑇∑︁
𝑡=1

∑︁
{𝑖 |𝑚 (𝑡 )

𝑖
=1}

∑︁
{ 𝑗 |𝑚 (𝑡 )

𝑗
=0}

max{1 − (�̂� (𝑡 )
𝑖

− �̂�
(𝑡 )
𝑗

), 0}
|M| .

(16)
The final training objective of the recommendation prediction

can be formulated as:
L = 𝛼L𝑏𝑐𝑒 + (1 − 𝛼)L𝑚𝑎𝑟 , (17)

where 𝛼 is a hyperparameter to balance these two loss terms.

3.7 Prediction of M𝑡

In the prediction stage, given the medication set M and the model
𝑓 (·), we first obtain the features for all the medications as �̃�𝑚 .
For the 𝑡-th visit of the patient 𝑣 , we acquire its representation
𝒑𝑣 = �̃� (𝑡 ) + 𝒑 (𝑡 )

𝑚 , by employing 𝑓 (·) as the query embedding.
Subsequently, we compute the similarities between 𝒑𝑣 and all med-
ications in �̃�𝒎 and then sort the medications based on similarity in
ascending order. To produce the final recommendation set M𝑡 , we
apply the predefined threshold value 𝛿 to select medications with a
similarity greater than 𝛿 .

3.8 Complexity Analysis
Given 𝑁 patients, |M| medications, 𝑑𝐾 as the hidden dimension of
MLP layer, 𝑑𝑒𝑛𝑐 as the output dimension of PLMs, 𝑑𝑠 as the output
dimension of GNN encoder, 𝑇 as the maximum number of histori-
cal visits for all patients, and 𝑖𝑡𝑒𝑟 as the number of iterations, we
analyze the complexity of NLA-MMR as follows.
Time complexity. The time complexity of linear feature transfor-
mation (Eq.(4)) is𝑂 (𝑇 · 𝑑2𝑒𝑛𝑐 ), and that of the attention between pa-
tient textual descriptions (Eq.(2)-(3)) is𝑂 (𝑇 ·𝑑𝑒𝑛𝑐 ·𝑑𝐾 ). For the GNN
encoder (Eq.(5)-(7)), the time complexity is𝑂 ( |M| ·𝐿 · (𝑒0 ·𝑑𝑠 +𝑛 ·𝑑2𝑠 ),
where 𝐿 is the number of GNN layers, 𝑒0 is the number of edges
in a molecular graph, and 𝑛 denotes the number of atoms. The
time complexity of MLP layers in Eq.(9) is 𝑂 (𝑇 · 𝑑𝑒𝑛𝑐 · 𝑑𝐾 ) for
patients and 𝑂 ( |M| · (𝑑𝑒𝑛𝑐 + 𝑑𝑠 ) · 𝑑𝐾 ) for medications, respec-
tively. The complexity of the output layer in Eq.(10) for medi-
cation prediction is 𝑂 (𝑇 · |M| · 𝑑𝐾 ). The complexity of atten-
tion between all past visits (Eq.(12)-(14)) is 𝑂 (𝑇 · 𝑑𝑒𝑛𝑐 · 𝑑𝐾 ). With
an average degree of 2.1 in molecular graphs for MIMIC-III and
MIMIC-IV, and 𝑑𝑠 < 𝑑𝐾 < 𝑑𝑒𝑛𝑐 , the total time complexity is
𝑂 (𝑖𝑡𝑒𝑟 · 𝑁 · (𝑇 · 𝑑2𝑒𝑛𝑐 + |M| · 𝑑𝑒𝑛𝑐 · 𝑑𝐾 + |M| · 𝐿 · 𝑛 · 𝑑2𝑠 )).
Space complexity. The space of linear feature transformation in
Eq.(4) is 𝑂 (𝑑2𝑒𝑛𝑐 ). For attention in the patient representation and
historical medication integration, the space is 𝑂 (𝑑𝑒𝑛𝑐 · 𝑑𝐾 ). The
GNN encoder (Eq.(5)-(7)) costs𝑂 (𝑛 ·𝑑𝑠 ) space. The matrix in Eq.(10)
costs𝑂 ( |M| ·𝑑𝐾 ) space for the medication prediction task. Assume
|M| < 𝑑𝐾 < 𝑑𝑒𝑛𝑐 , the total space complexity is 𝑂 (𝑑2𝑒𝑛𝑐 + 𝑛 · 𝑑𝑠 ).

4 EXPERIMENTAL STUDY
In this section, we describe the experimental setting (§4.1) and
report the experiments in the following facets: (1) Compare the
modeling effectiveness of NLA-MMR with state-of-the-art drug rec-
ommendation approaches (§4.2). (2) Conduct ablation studies to
test the core components of NLA-MMR (§4.3). (3) Test the effect
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of PLMs on NLA-MMR (§4.4). (4) Compare the impact of different
numbers of visits on NLA-MMR (§4.5) and two strong baselines.
(5) Conduct a visualization study on the effectiveness of the align-
ment module proposed in our approach (§4.6). (6) Investigate the
sensitivity of NLA-MMR regarding different hyper-parameter con-
figurations (§4.7). (7) Compare the efficiency of NLA-MMR with the
deep-learning based baselines (§4.8).

4.1 Experimental Setup

Baselines. To comprehensively evaluate NLA-MMR, we compare
with 3 instance-based methods: LR, ECC [25], LEAP [40], and 7
longitudinal-basedmethods: RETAIN [3],GAMENet [20],MICRON [37],
SafeDrug [38], COGNet [36], DrugRec [31] and MoleRec [39].

Datasets.We use 3 public datasets:MIMIC-III [11],MIMIC-IV [12]
and eICU [24]. For theMIMIC-III andMIMIC-IV datasets, we fol-
low the data processing of DrugRec [31], which collates the diag-
nosis, procedure, and medication records of patients. For the eICU
dataset, we only collect the diagnosis and medication records of
the patients since the eICU dataset itself does not include proce-
dure records. Because the DDI between the medications in the eICU
dataset is not provided, we do not evaluate the DDI rate on eICU. Ta-
ble 1 lists the profiles of the processed data. For the MIMIC datasets,
we choose the ATC Third Level code as the target label and extract
its corresponding textual description from DrugBank [35] as the
textual medication description. As the ATC code is not available
in the eICU dataset, we choose the generic therapeutic class (GTC)
as the target label and obtain the textual description of the GTC
code by engaging professionals to annotate its corresponding ATC
Third Level code. The textual description of the ATC Third Level
code is then adopted as the textual description of the GTC code.
We split train, validation, and test by 2/3, 1/6, and 1/6, respectively.

Table 1: Profile of datasets

Items MIMIC-III MIMIC-IV eICU

# of patients 5,208 6,136 9,539
# of visits 13,490 17,813 20,912
# of diagnoses 1,895 1,851 1,371
# of procedures 1,378 4,001 -
# of symptoms 428 163 -
# of medications 112 121 31

Avg # of visits 2.59 2.90 2.19
Avg # of diagnoses per visit 10.24 11.78 4.70
Avg # of procedures per visit 3.85 2.18 -
Avg # of symptoms per visit 7.67 1.09 -
Avg # of medications per visit 11.30 6.68 5.98

EvaluationMetrics. We use the following metrics: (a) F1 score (F1)
- the harmonic mean of precision and recall; (b) Jaccard score (Jac-
card) - the ratio of the intersection to the union of predicted and
true labels; (c) Precision Recall AUC (PRAUC) - the area under
the recall-precision curve, measuring the performance of a model
across various recall levels.
Implementation and Reproducibility. Our experiments are per-
formed using PyTorch 2.0.1. For drug molecule encoding, we adopt
a 4-layer GIN [28] with a hidden embedding size of 𝑑𝑠 = 64. For each
molecule graph, the 9-dimensional initial node features contain the

atomic number and chirality, as well as other additional atom fea-
tures, while the 3-dimensional edge features contain bond type,
bond stereochemistry and whether the bond is conjugated. The size
of text embeddings, denoted as 𝑑𝑒𝑛𝑐 , is 768. The projection layers
are implemented as the MLP with 3 hidden layers of sizes [768,
256, 256]. We set the dropout ratio as 0.2. The threshold value 𝛿 is
set to 0.5. The loss weight 𝛼 is set to 0.95. We use Adam optimizer
with a decaying learning rate to train the model for 110 epochs
and the initial learning rate is set to 0.0005. We use NVIDIA 3090
GPUs. We consider five different PLMs and use public releases of
BioBERT [17]1, SciBERT [1]2, ClinicalBERT [16]3, PubMedBERT [6]4
and BlueBERT [23]5, and PLMs are frozen during the experiments.

4.2 Overall Performance
We compare NLA-MMR with the baselines in terms of Jaccard, F1,
and PRAUC onMIMIC-III,MIMIC-IV and eICU using BioBERT [17]
as the PLM. The comparison results in Table 2 show that NLA-MMR
outperforms previous approaches regarding all the evaluation met-
rics, by a significant margin. The main reason for this is our effec-
tive integration of expert knowledge through the introduction of
PLMs to extract patient and medication representations, followed
by the alignment of the representations. Additionally, our medica-
tion representations, which take into account both the chemical
structures and textual descriptions, exhibit greater expressiveness
compared to the representations employed inMoleRec and DrugRec,
which fail to leverage the textual medication descriptions for learn-
ing medication representations. The instance-based approaches
such as LR, ECC, and LEAP perform poorly and this is because
these approaches fail to utilize longitudinal information in the EHR.
Among the longitudinal-based methods, GAMENet incorporates
additional graph information, while SafeDrug and MoleRec utilize
drug molecule structures and substructures, respectively. These
enhancements contribute to further performance improvements.

The average DDI rate of the ground truth medication combina-
tions is 0.08238 and 0.07423 in MIMIC-III and MIMIC-IV, respec-
tively. We compute the DDI rate from the recommendation results
of each method. Then we report the difference between the DDI
of each method and that of the ground truth (i.e., Δ𝐷𝐷𝐼 ) in Fig-
ure 3. We can see that the DDI rate from the predicted results by
NLA-MMR has the smallest difference from that of the ground truth.
This observation demonstrates that our proposed NLA-MMR model
proficiently simulates physicians’ medication prescribing patterns.
4.3 Ablation Study
In this section, we conduct ablation studies to investigate the ef-
fectiveness of different components and settings of NLA-MMR, in-
cluding the drug representation module, cross-attention fusion,
historical information integration mechanism, and using different
types of textual descriptions in the EHRs for cross-attention fusion.
First, we ablate the structure-level representation and PLM-based
functional representation in NLA-MMR. From Table 3 (a)-(b), we
can observe that conducting the recommendation solely based on
1https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
2https://huggingface.co/allenai/scibert_scivocab_uncased
3https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
4https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-
abstract-fulltext
5https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-
12
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Table 2: Result comparison of different methods on three public datasets: MIMIC-III, MIMIC-IV and eICU

Method MIMIC-III MIMIC-IV eICU
Jaccard ↑ F1 ↑ PRAUC ↑ Jaccard ↑ F1 ↑ PRAUC ↑ Jaccard ↑ F1 ↑ PRAUC ↑

LR 0.4896±0.0025 0.6491±0.0024 0.7568±0.0025 0.3844±0.0028 0.5379±0.0031 0.6568±0.0036 0.4199±0.0027 0.5723±0.0031 0.7515±0.0032
ECC 0.4799±0.0022 0.6390±0.0022 0.7572±0.0026 0.3680±0.0041 0.5173±0.0047 0.6541±0.0030 0.3786±0.0036 0.5240±0.0039 0.7498±0.0036
LEAP 0.4465±0.0037 0.6097±0.0036 0.6490±0.0033 0.3653±0.0028 0.5201±0.0033 0.5314±0.0038 0.4514±0.0035 0.5986±0.0036 0.6645±0.0048

RETAIN 0.4780±0.0036 0.6397±0.0036 0.7601±0.0035 0.3903±0.0038 0.5471±0.0040 0.6563±0.0055 0.4240±0.0033 0.5723±0.0034 0.7199±0.0036
GAMENet 0.5039±0.0021 0.6609±0.0020 0.7632±0.0027 0.3957±0.0035 0.5525±0.0041 0.6479±0.0055 0.4590±0.0014 0.6073±0.0012 0.7557±0.0026
MICRON 0.5076±0.0037 0.6634±0.0035 0.7685±0.0038 0.4009±0.0044 0.5545±0.0048 0.6584±0.0043 0.3741±0.0042 0.5192±0.0044 0.7551±0.0039
SafeDrug 0.5090±0.0038 0.6664±0.0033 0.7647±0.0020 0.4082±0.0026 0.5651±0.0028 0.6495±0.0036 0.4474±0.0038 0.5964±0.0032 0.7565±0.0037
COGNet 0.5134±0.0027 0.6706±0.0043 0.7677±0.0013 0.4131±0.0020 0.5660±0.0019 0.6460±0.0017 0.4588±0.0020 0.5963±0.0024 0.7263±0.0020
DrugRec 0.5220±0.0034 0.6771±0.0031 0.7720±0.0036 0.4194±0.0020 0.5713±0.0022 0.6558±0.0026 0.4508±0.0030 0.5999±0.0027 0.7496±0.0030
MoleRec 0.5278±0.0033 0.6825±0.0030 0.7736±0.0036 0.4197±0.0030 0.5772±0.0032 0.6644±0.0046 0.4476±0.0031 0.5958±0.0032 0.7575±0.0033

NLA-MMR 0.5429±0.0027 0.6958±0.0024 0.7890±0.0016 0.4491±0.0044 0.6051±0.0042 0.6921±0.0045 0.4787±0.0025 0.6262±0.0025 0.7650±0.0039

MIMIC-III MIMIC-IV
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
D

I

LR
ECC
LEAP
RETAIN
GAMENet
MICRON
SafeDrug
COGNet
DrugRec
MoleRec
NLA-MMR

Figure 3:Δ𝐷𝐷𝐼 comparison of differentmethods onMIMIC-III
and MIMIC-IV

Table 3: Ablation study on NLA-MMR

Model Variants MIMIC-III
Jaccard F1 PRAUC

(a) w/o 𝐸𝑠 0.5368 0.6909 0.7872
(b) w/o 𝐸𝑓 0.4747 0.6352 0.7394

(c) w/o cross attention fusion 0.5348 0.6892 0.7815
(d) w/o historical information 0.5303 0.6848 0.7794

(e) cross attention fusion w/o ℎ𝑑 0.5413 0.6946 0.7867
(f) cross attention fusion w/o ℎ𝑝 0.5425 0.6955 0.7884
(g) cross attention fusion w/o ℎ𝑠 0.5415 0.6946 0.7883

Full version 0.5429 0.6958 0.7890

either the structural or textual medication representation results
in performance degradation, which confirms the importance of
incorporating both structural information and textual knowledge
in the medication modality.

Second, to exploit the effectiveness of the cross-attention fusion
in the patient representation module and historical information
integration technique, we remove these two components, respec-
tively. As shown in Table 3 (c)-(d), only leveraging the feature in
Eq. (1) as the patient representation will degrade the performance
of our proposed model to a large extent, showing our model can
benefit from fusing different types of texts in the EHRs. Besides, we
notice that disabling the historical information hurts performance
significantly on all evaluation metrics.

Third, we investigate the importance of different types of text
from the patient modality used in the cross-attention fusion module
in Table 3 (e)-(g). For each ablation, we ignore one type of textual
description for conducting cross-attention fusion in Eq. (4). We
observe that implementing the cross-attention with two types of
textual description is also beneficial and the best performance is
achieved with all the types of textual description.

4.4 Effect of Pretrained Language Models
To assess the impact of different PLMs on NLA-MMR, we use five
public releases of PLMs, including BioBERT [17], SciBERT [1], Clini-
calBERT [16], PubMedBERT [6] and BlueBERT [23]. Among these
PLMs, BioBERT is initialized with the standard BERT model and
then continues pretraining using PubMed abstracts, while PubMed-
BERT is pretrained from scratch using these texts. ClinicalBERT
conducts continual pretraining from BioBERT with clinical notes
fromMIMIC-III [11]. BlueBERT mixes PubMed andMIMIC-III [11]
to conduct continual pretraining from BERT. SciBERT is pretrained
from scratch using biomedicine and computer science articles.

Table 4 compares the performance of NLA-MMR using five differ-
ent PLMs. The evaluation measures for the NLA-MMR implemented
with all five PLMs are much higher than those for the best baseline
MoleRec, which confirms the general applicability and superiority
of our proposed approach. We observe that the model achieves the
best performance when using BioBERT as the PLM. In particular,
even though clinical notes inMIMIC-III are relevant to the domain
of diagnosis and procedure texts in our drug recommendation task,
adding them to the pretraining corpus does not bring any advan-
tage, as is evident by the results of ClinicalBERT and BlueBERT.
This reveals that mixed-domain pre-training of the texts related
to the patients and drugs is not beneficial to the CMR task, which
supports the assumption that textual descriptions of the patient
and drugs are different from the two modalities. However, the PLM
such as SciBERT mixing out-of-domain texts from science articles
during the pretraining procedure leads to worse performance.

4.5 Effect of Historical Visits
To evaluate the impact of the number of historical visits on the
model performance, we test our approach with different numbers
of visits on MIMIC-III using BioBERT. As a comparison, we in-
clude the two strongest baselines MoleRec and DrugRec, which
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Table 4: The influence of using various PLMs on NLA-MMR

PLM MIMIC-III MIMIC-IV eICU
Jaccard ↑ F1 ↑ PRAUC ↑ Jaccard ↑ F1 ↑ PRAUC ↑ Jaccard ↑ F1 ↑ PRAUC ↑

BioBERT 0.5429±0.0027 0.6958±0.0024 0.7890±0.0016 0.4491±0.0044 0.6051±0.0042 0.6921±0.0045 0.4787±0.0025 0.6262±0.0025 0.7650±0.0039
PubMedBERT 0.5375±0.0024 0.6909±0.0020 0.7849±0.0017 0.4471±0.0044 0.6028±0.0043 0.6891±0.0043 0.4762±0.0023 0.6240±0.0022 0.7662±0.0042
ClinicalBERT 0.5382±0.0025 0.6917±0.0021 0.7838±0.0016 0.4483±0.0044 0.6037±0.0042 0.6880±0.0043 0.4755±0.0018 0.6227±0.0017 0.7649±0.0038
BlueBERT 0.5296±0.0026 0.6842±0.0022 0.7772±0.0016 0.4377±0.0042 0.5946±0.0042 0.6785±0.0042 0.4712±0.0026 0.6186±0.0026 0.7606±0.0042
SciBERT 0.5336±0.0032 0.6878±0.0027 0.7779±0.0019 0.4399±0.0053 0.5961±0.0050 0.6810±0.0050 0.4719±0.0023 0.6195±0.0022 0.7632±0.0030
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Figure 4: The impact of # of visits onMIMIC-III for two strong
baselines and NLA-MMR using BioBERT as PLM
also incorporate historical information. Figure 4 shows the Jac-
card, F1, and PRAUC of NLA-MMR and the two baselines when
setting the number of visits in {1, 2, 3, 4}. We observe that NLA-
MMR achieves relatively better performance with more visits, while
the performance of MoleRec almost stays flat and DrugRec consis-
tently exhibits poor performance. This indicates that the design of
the historical information integration mechanism can effectively in-
corporate prescription information of historical visits into the CMR
task, thereby directly enhancing the accuracy of drug predictions.
On the other hand, MoleRec relies on an RNN-based mechanism,
which may not be as adept at capturing and utilizing the relevant
information from past visits, leading to its relatively stagnant per-
formance. Note that both NLA-MMR and DrugRec achieve the best
performance by utilizing the historical information in the last two
visits. It suggests that outdated information may not provide useful
guidance and could potentially lead to misleading prescriptions in
current drug predictions.

4.6 Visualization
Recall that in the medication representation module, we incorpo-
rate the PLM-based functional representation with GNN-based
structure-level representation as the medication representation
(Eq. (8)). In this section, we conduct a case study to explore whether
the structure-level representation can capture distinct information
beyond the textual medication descriptions, and thus providing
extra assistance for the CMR task. First, we compare the two drug
representations, the pure textural representation 𝑬𝑓 , and the rep-
resentation 𝑬𝑚 incorporated extra structural feature by GNN. Fig-
ure 5 shows the visualization of the two representations, i.e., w/o
GNN and w/ GNN, on theMIMIC-III andMIMIC-IV by t-SNE [32],
where BioBERT is used as the PLM. We observe that the distribu-
tions of the representations w/o and w/ GNN are different. It is
noticed that the NLA-MMR model can learn the chemical proper-
ties of drugs because the incorporation of structural information.
The drug representations derived from chemical structures and
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Figure 5: Visualization of GNN-enhanced and text-only based
medication representations using t-SNE
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Figure 6: Visualization of alignment between the representa-
tions from the patients and medications
textual descriptions exhibit noticeable distinctions when compared
to text-based drug representations in the embedding space.

Furthermore, to gain a better understanding of the multi-modal
alignment module in NLA-MMR, we visualize the representation
of 1000 patient samples and the representation of all the 112 drugs,
generated by NLA-MMR before and after training. Figure 6 presents
the two representations of MIMIC-III by t-SNE, where BioBERT is
used as the PLM. We observe that before training the representa-
tions of patient and drug are two separate manifolds (Figure 6(a)),
while after the training, the two manifolds are closer in the latent
space and present a trend of integration (Figure 6(b)). This visual-
ization confirms that our multi-modal alignment module is capable
of aligning the representations of patients and drugs.

4.7 Hyper-parameter Sensitivity
In this section, we test the parameter sensitivity of NLA-MMR on
the MIMIC-III and MIMIC-IV datasets using BioBERT as the PLM.
Impact of 𝑏𝑎𝑡𝑐ℎ. We conduct experiments with 𝑙𝑟 = 5e-4 and 𝛼

= 0.95. In Figure7 (a)-(c), we vary 𝑏𝑎𝑡𝑐ℎ from 2 to 64 and show
the performance of NLA-MMR. Overall, the performance of NLA-
MMR remains stable across different batch sizes. The performance
gap of NLA-MMR with varied batch size is 0.0123 and 0.0104 for
MIMIC-III andMIMIC-IV, respectively. Notably, the optimal batch
size for MIMIC-III and MIMIC-IV are 8 and 4, respectively.
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Figure 7: The impact of 𝑏𝑎𝑡𝑐ℎ, 𝑙𝑟 , and 𝛼 on MIMIC-III and
MIMIC-IV using BioBERT as PLM
Impact of 𝑙𝑟 .We conduct experiments with 𝛼 = 0.95 and 𝑏𝑎𝑡𝑐ℎ =
8. In Figure 7 (d)-(f), we vary 𝑙𝑟 in {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3,
1e-2} and show the performance of NLA-MMR. The results indicate
that our model is sensitive to the learning rate and the optimal
learning rate is 5e-4 across two datasets.
Impact of 𝛼 .We conduct experiments with 𝑙𝑟 = 5e-4 and 𝑏𝑎𝑡𝑐ℎ =
8. In Figure 7 (g)-(i), we set 𝛼=0 and the significant performance
degradation confirms the greater importance of the bce loss. An-
other observation is that our model is stable with varied 𝛼 from
0.90 to 1.0 and the optimal value for 𝛼 is 0.95 across two datasets.

4.8 Efficiency
We compare the training and inference time of NLA-MMR with 8
deep learning-based baselines forMIMIC-III andMIMIC-IV datasets
on a Quadro RTX 800 GPU in Table 5. The results demonstrate that
our NLA-MMR consistently outperforms most of the baselines in
terms of training time across two datasets. Additionally, its infer-
ence time is comparable to that of RETAIN, SafeDrug, and GAMENet,
and better than the other baselines across two datasets. Therefore,
we conclude that NLA-MMR is a viable solution for real deployment.

5 RELATED WORK
5.1 Molecular Representation Learning
Molecular representation learning aims to utilize deep learningmod-
els to encode the input molecules as numerical vectors, which pre-
serve the structural and property information about the molecules
and serve as feature vectors for downstream chemical applica-
tions. Existing medication recommendation approaches [31, 38,
39] mainly model the chemical structure of molecules through
one-dimensional description [8, 14], two-dimensional molecular
graphs [4, 18, 19, 21, 26] and three-dimensional geometric graphs [7,
9, 10]. Besides the chemical structural information, we have tex-
tual medication descriptions that are available on PubChem [13]

Table 5: Efficiency comparison on MIMIC-III and MIMIC-IV

Model Training time (s/Epoch) Testing time (s)
MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV

LEAP 317.24±9.27 422.83±14.70 26.55±0.44 28.26±0.16
RETAIN 45.81±2.82 54.44±2.10 3.78±0.10 5.62±0.27
GAMENet 140.11±9.23 185.05±0.89 7.50±0.37 10.69±0.04
MICRON 87.63±1.61 105.24±1.14 11.55±0.49 14.93±0.03
SafeDrug 194.47±21.19 303.54±13.03 7.64±1.06 9.76±0.47
COGNet 123.77±1.86 135.35±1.70 92.22±1.57 105.80±0.22
DrugRec 461.86±9.37 605.77±16.15 26.78±0.17 33.93±1.76
MoleRec 479.22±10.89 551.38±2.78 27.54±1.95 28.81±0.07
NLA-MMR 50.83±3.25 62.98±2.34 7.67±0.21 10.50±0.28

and DrugBank [35]. It is observed that these textual medication
descriptions offer a comprehensive perspective on the functional
aspects of molecules and explain their therapeutic applications. In
this paper, we aim to incorporate textual knowledge into molecular
representation learning.
5.2 Medication Recommendation
Existing approaches can be broadly classified into two main cate-
gories: instance-based methods and longitudinal methods. Instance-
based methods [5, 40] only take information of the current visit
as input. For example, LEAP [40] formulates the medication rec-
ommendation task into a sequential decision-making process and
adopts a multi-instance multi-label learning framework to generate
the medication recommendations based on the patient’s current
diagnosis information.

In contrast, longitudinal methods [15, 29, 33, 34, 37, 38] use the
historical information of patients and explore sequential depen-
dency within clinical visits. Most of them model longitudinal pa-
tient information using Recurrent Neural Networks. GAMENet [29]
and SafeDrug [38] further incorporated the BioKG and DDI, respec-
tively, to improve model performance. Despite significant progress
made in using structured domain knowledge in the CMR task, these
methods suffer from the inherent biases and information loss in
the structured data caused by the preprocessing stage. This paper
aims to encode the raw texts in patient and drug modalities by
using powerful PLMs as the foundation block to generate their rep-
resentations, which is an effective way of integrating multimodal
information in multimodal recommendation systems [22, 41].

6 CONCLUSION
In this paper, we consider the patient and medication as two dis-
tinct modalities and design a multi-modal framework NLA-MMR to
learn their representations according to the alignment. Besides, we
investigate the potential of PLMs to extract domain knowledge in
the textual descriptions from the patient and medication modali-
ties. In the medication modality, we incorporate both the chemical
structures and medication descriptions to enhance molecular repre-
sentation learning. Extensive experiments on three public datasets
show the effectiveness and efficiency of our proposed NLA-MMR.
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