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ABSTRACT

Speaker Change Detection (SCD) is a task of determining the time
boundaries between speech segments of different speakers. SCD
system can be applied to many tasks, such as speaker diarization,
speaker tracking, and transcribing audio with multiple speakers. Re-
cent advancements in deep learning lead to approaches that can di-
rectly detect the speaker change points from audio data at the frame-
level based on neural network models. These approaches may be fur-
ther improved by utilizing speaker information in the training data,
and utilizing content information extracted in an unsupervised man-
ner. This work proposes a novel framework for the SCD task, which
utilizes a multitask learning architecture to leverage speaker infor-
mation during the training stage, and adds the content information
extracted from an unsupervised speech decomposition model to help
detect the speaker change points. Experiment results show that the
architecture of multitask learning with speaker information can im-
prove the performance of SCD, and adding content information ex-
tracted from unsupervised speech decomposition model can further
improve the performance. To the best of our knowledge, this work
outperforms the state-of-the-art SCD results [1] on the AMI dataset.

Index Terms— Multitask Learning, Speaker Change Detection,
Unsupervised Speech Decomposition

1. INTRODUCTION

Speaker Change Detection (SCD) is a task of determining the time
boundaries between speech segments of different speakers. Apply-
ing proper SCD techniques can benefit not only the speaker diariza-
tion systems [2], which aims at detecting “who spoke when”, but
also the tasks of transcribing audio with multiple speakers [3, 4] and
speaker tracking in multimedia data processing [5].

Some approaches to detecting the speaker change points in an
audio stream are based on the distance between two adjacent sliding
windows. More specifically, two adjacent windows are shifted along
the audio, and the distance between them is computed based on a
pre-defined distance metric. The change point is determined if the
distance between two adjacent windows is larger than a fine-tuned
threshold. In order to apply this approach, proper features that rep-
resent the windowed signal, as well as proper distance metrics are
important. Commonly used features include Mel-frequency cepstral
coefficients (MFCC) [6, 7], I-vectors [8, 9] and features extracted
from neural networks [10, 11, 12]. As regards distance metrics, com-
mon ones are the Bayesian information criterion [13, 14], the gen-
eralized likelihood ratio [15] and the Kullback-Leibler divergence
[16].

With the recent advancements of deep learning, many new ap-
proaches utilize trained neural network models from labeled audio
data to directly predict the speaker change points, which usually

yield state-of-the-art results. Some approaches build on a pre-trained
Automatic Speech Recognition (ASR) system, which first split the
speech into word-level segments and then train a neural network
model to detect whether there’s a speaker change between these
segments [3, 17]. However, these approaches rely on a good ASR
system to narrow down the search space of speaker change point,
which is also their limitation, because the performance of ASR sys-
tem will affect the word-level segmentation. Some methods that
do not require a pre-trained ASR system are also proposed. These
methods directly detect the speaker change point from audio data
in frame-level based on neural network models, such as Deep Neu-
ral Networks (DNN) [18], Convolutional Neural Network (CNN)
[2, 19, 20] and Long Short-Term Memory (LSTM) [21, 1, 22]. We
believe that there is space for further improvement of these methods.
On the one hand, speaker information in the training data are rarely
used in these methods but can be leveraged. On the other hand, con-
tent information of speech should be useful for SCD task, but are
also rarely used in these methods. In particular, to obtain spoken
content information, we should investigate the use of unsupervised
methods because manual transcription is costly.

This work builds upon a state-of-the-art system that utilizes a
neural network to predict the speaker change points from audio data
at the frame-level [1]. A novel framework is proposed to leverage
speaker information during training by using a multitask learning
architecture. Meanwhile, spoken content information of speech is
extracted based on an unsupervised speech decomposition method
[23]. The extracted content information is then fed into the multitask
learning framework to help detect the speaker change points.

The paper is organized as follows: Section 2 introduces how the
baseline system work for the SCD task. Section 3 illustrates our
proposed framework for improving the baseline system. Section 4
shows the details of experiments. Section 5 presents the conclusions
of this work.

2. BASELINE SYSTEM

2.1. SCD as a sequence labeling problem

The state-of-the-art system of utilizing neural network to predict
the speaker change points from audio data at the frame-level
treats the SCD task as a sequence labeling task [1]. The input
of this sequence labeling task is the sequence of feature vectors
X = {x1, x2, ..., xT } extracted from the audio recording (T is
the sequence length), and the expected output is the corresponding
sequence of labels y = {y1, y2, ..., yT } with yt ∈ {0, 1}. If there
is no speaker change at time step t, then yt = 0, otherwise yt = 1.
The objective is then to find a function f : X −→ Y that matches a
feature sequence to a label sequence.



2.2. Model architecture
The neural network is applied to estimate the function f : X −→ Y .
As shown in Fig. 1, two kinds of inputs are independently used to
perform the SCD task. The first is a 57-dimensional MFCC extracted
every 10ms on a 20ms window. The second is the waveform, which
is fed to SincNet convolutional layers [24] to form an end-to-end
system. MFCC or the output of SincNet layers are then passed into
two Bi-LSTM layers and three fully connected dense layers whose
weights are shared across the sequence. The activation function of
the first two dense layers is the tanh activation function, and the last
dense layer is a linear layer followed by the softmax function to be
the output layer.

Fig. 1. Model architecture of the baseline system

2.3. Training
The long audio sequences are split into fixed-length (2s) overlapping
sequences as shown in Fig. 2. Random noise which includes tech-
nical noises (Dual Tone Multiple Frequencies (DTMF) tones, fax
machine noises, etc) and ambient sounds (car idling, footsteps, ani-
mal noises, etc) is then added to each split sequence of audio for data
augmentation. Then, the MFCC or waveform of the split sequences
are randomly put into the model mentioned in section 2.2. The label
of output is a sequence of ones (with speaker change) and zeros (not
speaker change). Note in Fig. 2 that 200ms on both sides of the ex-
act change point are all labeled as ones. Finally, cross entropy loss
is used to train the model.

Fig. 2. Training process for speaker change detection

2.4. Prediction
As shown in Fig. 3, the long audio sequences are also split into fixed-
length (2s) overlapping sequences. Then, the MFCC or waveform of
split sequences are input to the trained model to obtain a sequence of
scores between 0 and 1. Since the input sequences are overlapped,
each time step (0.1s) has multiple candidate scores. These candidate
scores are averaged to obtain the final prediction score of a time step.
Final prediction scores of all time steps of a long audio sequence
form a curve, where the local maxima (peak) greater than a tunable
threshold θ are marked as speaker change points.

Fig. 3. Prediction process for speaker change detection

3. APPROACH

Fig. 4 illustrates our proposed approach, which mainly consists of a
multitask learning step, and an unsupervised speech decomposition
step. We will elaborate on these two parts below.

3.1. Multitask learning for utilizing speaker information

Intuitively, speaker information would benefit speaker change detec-
tion. In order to fully utilize the speaker information that exist in
the training data of the SCD task, a multitask learning architecture is
proposed. As shown in Fig. 4 (a), different from the baseline system,
a new speaker branch is added to learn the speaker information after
the recurrent layers, instead of only using one SCD branch to predict
the speaker change point.

Two methods are proposed to learn the speaker information
through the speaker branch. The first method is utilizing the speaker
branch to predict speaker ID information. The output of the feed-
forward layers of the speaker branch is a sequence of predicted
speaker ID vectors in frame-level, and the output of the feed-forward
layers of the SCD branch is the same as the output of the baseline
system mentioned in section 2.3. Cross entropy loss of the two
branches are independently computed, and then added together as
the total loss. This method forces the recurrent layers to learn a bet-
ter hidden representation to identify speakers, which should benefit
the performance in SCD.

The second method use triplet loss [25] to be the loss of speaker
branch. The triplet loss is shown as equation (1)

L = max(d(a, p)− d(a, n) +margin, 0) (1)

where a is an anchor input, p is a positive input of the same speaker
as a, n is a negative input of a different speaker from a, d(x, y) is the
distance between x and y, and margin is a positive constant which
can be set manually. Minimizing the triplet loss is equivalent to mak-
ing d(a, p) − d(a, n) + margin close to 0. Thus, the triplet loss
would make the embedding of the same speaker more similar and
make the embedding of different speakers more different. The cross
entropy loss of the SCD branch and the triplet loss of the speaker
branch are added together as the total loss. This method forces the
recurrent layers to learn a better hidden representation to distinguish
between speakers, which will also benefit the task of SCD.



Fig. 4. Framework of proposed method

3.2. Unsupervised speech decomposition for extracting content
information
Spoken content information is also important for the SCD task, be-
cause the human is able to do the SCD task only based on dialog text
data without audio. In this work, we use an unsupervised speech
decomposition method proposed by Qian et al. [23] to extract con-
tent information of speech – this method decomposes spoken infor-
mation into rhythm, pitch, timbre, and content in an unsupervised
manner. As shown in Fig. 4 (b), the model mainly consists of a
content encoder (Ec), a pitch encoder (Ef ), a rhythm encoder (Er),
and a decoder whose input is the speaker ID (timbre) information
and three encoder layers’ outputs. The mel spectrogram is fed into
the Random Resampling (RR) module before it is fed into the con-
tent encoder (Ec). The RR module first randomly splits the input
signal into segments, then randomly stretches or squeezes each seg-
ment before concatenating them together. The purpose of setting this
module is to disrupt the time information, which makes the output
signal of the RR module contains partially and randomly contam-
inated rhythm information, while keeping other information intact.
The pitch contour, which is pitch frequency against time, is fed into
the Random Resampling (RR) module before being fed into the pitch
encoder (Ef ). The pitch contour contains pitch information and parts
of the rhythm information (the reason why the rhythm block of pitch
contour in Fig. 4 (b) misses a corner). After the pitch contour passes
through the RR module, the rhythm information is disrupted and
pitch information keeps intact. Furthermore, the mel spectrogram
which contains all speech information is fed into the rhythm encoder
(Er) directly. Then, the output of three encoders and speaker ID in-
formation are input to a decoder module. Finally, the mean square
error loss is computed between the output of the decoder module and
the original mel spectrogram.

The unsupervised speech decomposition method essentially per-
forms several key functions – first, timbre information is directly fed
to the decoder, so timbre can be ignored by all the encoders. Second,
only the rhythm encoder has access to the full rhythm information,
while other types of information can be obtained elsewhere. Hence
the rhythm encoder will prioritize passing the rhythm information,
and remove other information given bottleneck constraints. Hence,
the content encoder becomes the only module that encodes the spo-
ken content information. Finally, with only the rhythm encoder en-
coding rhythm information and only the content encoder encoding

spoken content information, the pitch encoder must encode the pitch
information. Therefore, after the training of unsupervised speech de-
composition model, the content encoder, rhythm encoder, and pitch
encoder are able to extract the content, rhythm, and pitch informa-
tion of speech respectively.

3.3. Training and prediction
First, the audio clips that only containing one speaker in the training
data of the SCD task are used to train the unsupervised speech de-
composition model. Then, same as the baseline system, the long au-
dio sequences are split into fixed-length (2s) overlapping sequences
with 0.4 second shift. The 2-second audio clips are randomly fed into
the multitask learning framework to train the SCD model. Mean-
while, these audio clips are also fed into the pre-trained unsuper-
vised speech decomposition model to extract the content informa-
tion of the corresponding clips, which are the output vectors of the
content encoder. Since the content information of speech is useful
for detecting the speaker change point, the content vectors are then
concatenated together with the input of feed-forward layers of the
SCD branch. The loss from the two branches are added to form
the total loss. Parameters of the pre-trained unsupervised speech de-
composition model are not updated during the training of the SCD
model.

The prediction processes are nearly the same as the baseline sys-
tem as shown in Fig. 3. The only difference is that the “trained
model” in Fig. 3 becomes the proposed model shown in Fig. 4.
The audio clips are fed into both the trained SCD model with mul-
titask learning architecture and the trained unsupervised decomposi-
tion model. The extracted content vectors are concatenated together
with the input of the feed-forward layers in the SCD branch. The
output of SCD branch will be further processed to obtain the seg-
mentation boundaries as mentioned in section 2.4.

4. EXPERIMENTS
4.1. Dataset
Experiments are conducted on the AMI corpus [26], which is an
open-source dataset with 100 hours of conversational recordings.
Each conversation is conducted in English with 4 to 5 speakers in
the meeting domain. The information of “who spoke when” is pro-
vided in the annotation. The training, validation, and test sets are
exactly the same as the baseline system. The training set includes



118 conversations (about 70 hours), the validation set includes 26
conversations (about 15 hours) and the test set includes 24 conversa-
tions (about 15 hours).

4.2. Evaluation metric
Coverage, purity, and F1 are used as the evaluation metrics for this
task. Given R the set of reference speech turns, and H the set of
predicted segments, the coverage is calculated as equation (2)

coverage(R,H) =

∑
r∈R maxh∈H |r ∩ h|∑

r∈R |r| (2)

where |r| is the duration of segment r and r ∩ h is the intersection
of segments r and h. Purity is the dual metric where the role of R
and H are interchanged. Detecting too many speaker changes would
result in high purity but low coverage, while missing many speaker
change points would result in high coverage but low purity. F1 is the
harmonic average of coverage and purity.

4.3. Experimental setup
The reproduced baseline system and the proposed methods are com-
pared in our experiments. All systems for the SCD task use the
Adam [27] as optimizer with learning rate of 0.0005. The batch
size of training is 512 when taking MFCC as the input, and 128
when taking waveform as the input. The threshold θ (mentioned in
section 2.4) and model using for test are selected on the validation
set. The best model is selected in terms of the maximal F1 score.
Given the best model, the θ is selected in terms of the maximal cov-
erage score whose corresponding purity score is marginally larger or
equal to 85%. The settings of SincNet convolutional layers, LSTM
layers, dense layers and the methods for adding random noise fol-
low exactly the same as the work of Bredin et al. [1] (our base-
line). The triplet loss in the proposed methods is calculated in each
batch, which is based on the output of the last feed-forward layer in
the speaker branch. Every frame in a batch is treated as the anchor
once. The positive input is selected as a random frame with the same
speaker as the corresponding anchor. The negative input is selected
as a random frame with a different speaker from the corresponding
anchor. The margin in triplet loss is set to 1. The Euclidean distance
is used to calculate the distance between frames. The implementa-
tion of pre-training the unsupervised speech decomposition model
follows the work of Qian et al. [23], except that the hop length for
the extraction of mel spectogram and pitch contour is set at 10ms,
which is consistent with the extracted MFCC.

4.4. Results and discussions
Table 1 shows the experiment results with MFCC as the input, and
Table 2 shows the results of using waveform as the input. The F1
results from Bredin et al. [1] for the validation set and test set
are 81.94% and 83.71% when using the MFCC as the input, and
86.63% and 87.19% when using waveform as the input. The base-
line result presented in this work is reproduced based on the publica-
tion. As shown in Tables 1 and 2, the F1 of the reproduced baseline
is comparable or even higher than those originally reported. Both
methods for utilizing speaker information with multitask learning ar-
chitecture bring improvement over the baseline for both input forms.
This demonstrates that utilizing speaker information with the pro-
posed multitask learning architecture can improve the performance
of SCD task. We also tried to use the speaker triplet loss to pretrain
a neural network model with 2 LSTM layers and 2 dense layers se-
quentially, and then adding another 2 dense layers after the original
2 dense layers to fine-tune the model on the SCD task. The result
(please see the second row in both tables) is better than the baseline,

but worse than the proposed multitask learning architecture. Finally,
as shown in Tables 1 and 2, adding spoken content information into
the multitask learning framework further improves the performance
of the SCD task for both input forms. To the best of our knowledge,
the proposed method has attained a new state-of-the-art result on the
AMI dataset for the SCD task in terms of the F1 score of purity and
coverage.

Table 1. Results of using MFCC as the input on both validation and
test set in terms of purity (%), coverage (%), and F1 (%).

Validation Test
Purity Coverage F1 Purity Coverage F1

Baseline 85.01 79.90 82.27 86.54 80.72 83.53
Pretrain+finetune 85.08 80.78 82.87 87.04 81.18 84.01
Multitask (spk id) 85.07 79.98 82.44 86.84 82.97 84.34
Multitask (triplet) 85.02 81.14 83.03 86.04 83.31 84.65
Triplet + content 85.04 81.68 83.33 86.16 84.56 85.35

Table 2. Results of using waveform as the input on both validation
and test set in terms of purity (%), coverage (%), and F1 (%).

Validation Test
Purity Coverage F1 Purity Coverage F1

Baseline 85.38 89.49 87.39 85.62 89.71 87.62
Pretrain+finetune 85.00 90.51 87.67 85.16 90.92 87.95
Multitask (spk id) 85.00 91.74 88.24 85.61 91.04 88.24
Multitask (triplet) 85.26 91.49 88.27 85.66 91.02 88.26
Triplet + content 85.00 91.92 88.32 85.68 91.75 88.61

5. CONCLUSIONS

This work proposes a novel neural network framework for detecting
speaker change points from audio data at the frame level. First, a
multitask learning architecture is designed to utilize the speaker in-
formation in training data. A speaker branch is added based on the
baseline system to help the model learn to identify speakers, or learn
to distinguish different speakers using triplet loss. Experiments show
that both methods for utilizing speaker information with multitask
learning architecture outperform the baseline system, which demon-
strates that utilizing speaker information with the proposed multitask
learning architecture can improve the performance of the SCD task.
Then, a spoken content vector extracted from a pre-trained unsuper-
vised speech decomposition model is added to the multitask learning
architecture to help predict the speaker change points. Experimen-
tal results show that this can further improve the performance of the
SCD task. Overall, to the best of our knowledge, the proposed ap-
proach has achieved a new state-of-the-art result on the AMI dataset
for the SCD task.
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to online speaker change point detection using DNNs and WF-
STs,” in Interspeech, 2019, pp. 649–653.
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