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Abstract—Controlling text-to-speech (TTS) systems to synthe-
size speech with the prosodic characteristics expected by users
has attracted much attention. To achieve controllability, current
studies focus on two main directions: (1) using reference speech as
prosody prompt to guide speech synthesis, and (2) using natural
language descriptions to control the generation process. However,
finding reference speech that exactly contains the prosody that
users want to synthesize takes a lot of effort. Description-
based guidance in TTS systems can only determine the overall
prosody, which has difficulty in achieving fine-grained prosody
control over the synthesized speech. In this paper, we propose
DrawSpeech, a sketch-conditioned diffusion model capable of
generating speech based on any prosody sketches drawn by
users. Specifically, the prosody sketches are fed to DrawSpeech
to provide a rough indication of the expected prosody trends.
DrawSpeech then recovers the detailed pitch and energy contours
based on the coarse sketches and synthesizes the desired speech.
Experimental results show that DrawSpeech can generate speech
with a wide variety of prosody and can precisely control the fine-
grained prosody in a user-friendly manner. Our implementation
and audio samples are publicly available'.

Index Terms—Speech Synthesis, Prosody Control, Sketch

I. INTRODUCTION

Given a piece of text, we can express it through various
prosodic patterns, each conveying distinct meanings [1]. For
example, in the same sentence, speakers may emphasize differ-
ent words to highlight specific information, leading to entirely
different interpretations [2]. Thus, controlling a text-to-speech
(TTS) system to synthesize the exact prosody desired by users
has attracted considerable attention from researchers [3]-[8].

Current research on prosody-controllable TTS systems has
explored two primary directions. One approach involves se-
lecting a reference speech as a prosody prompt and instructing
the TTS model to replicate the prosodic pattern on the target
text [8]-[15]. Typically, StyleTTS [10] extracted a style vector
from the reference speech and adopted a prosody predictor to
predict pitch and energy based on the extracted style vector.
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NaturalSpeech 3 [11] disentangled prosody attributes from the
reference speech, which then served as prosody condition for a
prosody diffusion model to generate prosody representations
for the input text. However, finding a reference speech that
precisely matches the desired prosody pattern can be time-
consuming [16]. In addition, transferring the prosody from the
reference speech results in reduced prosodic variations [17].
Another mainstream approach for controlling synthesized
prosody is to use natural language descriptions to specify
the desired prosody [18]-[25]. For example, PromptStyle [20]
aligns the description prompt embedding with the style embed-
ding during training, enabling description-based control during
inference. PromptTTS [21] leveraged a pre-trained language
model BERT [26] to capture the semantic information in the
descriptions, which was subsequently used to guide the speech
synthesis process. However, description-based guidance can
only manage utterance-level prosody with descriptions such
as “his voice has a low pitch”, “generate a voice with high
volume”, or “please use gentle tone”, leaving precise control
at a fine-grained level still an unsolved problem. Moreover,
constructing a dataset with descriptions to train such models
requires significant effort and a high level of expertise [21].
In this paper, we propose a novel prosody control signal,
called prosody sketch, for expressive and controllable TTS.
Since pitch and energy are crucial components of prosody [27],
[28], our focus is primarily on controlling these two attributes.
To be specific, the sketch serves as a guide, indicating the
desired prosody trends to the model, such as a rise and fall
in pitch or an increase in energy within a specific region.
Users can easily sketch the target prosody for each word,
making fine-grained prosody control effortless. To achieve the
new control paradigm, we propose DrawSpeech, which first
reconstructs the pitch and energy contours from the abstract
sketches, and then employs a diffusion model conditioned on
the sketches, contours, and target text to synthesize speech.
The contributions of this work are summarized as follows:
o We propose using a novel conditioning signal, called the
prosody sketch, which can be easily sketched and enables
fine-grained prosody control.
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Fig. 1. Overview structure of the proposed DrawSpeech. Paired speech and text data are used for training. User-supplied text and drawn pitch or energy

sketch are used as inputs during inference.

e We propose a diffusion-based generative model, named
DrawSpeech, which conditions on the sketch and is
capable of generating speech with varied prosody.

o Experiments show the effectiveness of the sketch-based
control paradigm and the DrawSpeech system, especially
on its capability to achieve precise prosody control.

II. METHODOLOGY

The architecture of DrawSpeech is shown in Fig. 1, where
the sketch extractor and sketch-to-contour predictor are used to
achieve the transformation between the sketches and contours.
Contour encoder and sketch encoder convert the correspond-
ing inputs into different embedding features. A text encoder
equipped with a duration predictor and length regulator han-
dles the input transcript. A latent diffusion model with a
variational autoencoder are employed to generate log-mel
spectrogram and a vocoder is used to reconstruct speech wave-
form. Details will be provided in the following subsections.

A. Sketch Extractor

DrawSpeech aims to allow users to easily control the
prosody of the synthesized speech. Taking pitch as an ex-
ample, as shown in Fig. 2(a), the pitch contour is vibrating
and changes quickly between the adjacent values. Therefore,
controlling prosody based on the contour requires users to
provide the detailed fluctuations of pitch or energy, which is
inconvenient and sometimes even impractical. A more feasible
solution is to simply ask the user to provide the sketch that
reflects the pitch or energy trend in the sentence. For example,
the pitch sketch shown in Fig. 2(b) tells the model that the
sentence should start out at a higher pitch then drop quickly,
followed by a gradual rise and arrive at the peaks on certain
positions, etc. It’s much easier for users to draw a pitch sketch

(a) Contour

\ VL

(b) Sketch

(c) Contour vs. Sketch

Fig. 2. Illustrations of (a) pitch contour and (b) pitch sketch. (c) Put the
contour and the sketch in the same frame for direct comparison.

as in Fig. 2(b) as a control signal because it relieve users’
burden to provide the detailed vibration of the pitch contour
as in Fig. 2(a), which will be handled by the model instead.

To obtain the sketch for model training, we first extract the
phoneme-level pitch contour P € RM and energy contour
E € RM of the input speech, where M denotes the number
of phonemes in the sentence. P and E are then smoothed
using Savitzky-Golay filter [29], which is useful for smoothing
data while preserving the shape of the signal. The resulting
pitch and energy sketches are denoted as P, € RM and
Egre € RM respectively. As shown in Fig. 2(c), the smoothed
sketch effectively captures the variation trends of the contour.

B. Sketch-to-Contour Predictor

While pitch and energy sketches are intuitive for users to
comprehend, they omit too much detailed information, making
it challenging for speech synthesis systems to reconstruct
natural speech. The sketch-to-contour predictor is designed to
leverage text and sketches to restore the detailed contours.

Given the input transcript y, we first convert it into
the phoneme sequence (with an open-sourced grapheme-to-



phoneme toolkit?). Then, a text encoder fi.,:(+) is employed
to extract the phoneme embedding HY € RM*P  where
D represents the phoneme dimension. The sketch-to-contour
predictor can then be written as:

Hy = ftemt(y) (1)
Ppreda Epred = P(Hy> PSk}€7 Eske) (2)

where P represents the sketch-to-contour predictor; Ppreq €
RM and E,..q € RM are the predicted pitch and energy
contours, respectively.

C. Latent Diffusion Model

Firstly, a variational autoencoder (VAE) model [30] is
employed to compress the mel-sgectrogram r € RT*F into a
small latent space zg € RCO* F X +, where T is the number of
frames and F is the frequency dimension, C is the channel
dimension and r is the compression rate. Simply put, the
calculation flow in VAE is as follows:

zo = Enc(z) 3)
Zree = Dec(zg) )

where Enc and Dec are the encoder and decoder part of VAE,
Trec denotes the reconstructed mel-spectrogram.

Secondly, a contour encoder and a sketch encoder are
employed to generate conditions for the latent diffusion model
(LDM). Specifically, the contour encoder quantizes pitch and
energy (P and E during training, and Ppycq and Ep,.q during
inference) into 256 discrete values, subsequently converting
them into pitch embedding H? € R™*¥ and energy embed-
ding H¢ € RM*F The same process takes place in the sketch
encoder, except that it utilizes Py, and Fgp. as inputs and
produces pitch sketch embedding H?, . € RM*¥" and energy
sketch embedding HS,, € RM*F To solve the problems
of word skipping and repetition, we introduce a duration
predictor and a length regulator following [31]. The ground-
truth phoneme durations are used to upsample embeddings
during training, while the predicted durations are used during
inference. The expanded embeddings are denoted as H v, H P,
e, v, HS, € RT*F. Note that a 1D convolutional
layer is applied to the phoneme embedding HY to project the
phoneme dimension from D to F' prior to the expansion.

Given all the conditions, we employ a LDM [32] to
generate the latent representation zy from Gaussian noise
zy ~ N(0,I), where N denotes the total sampling steps.
For each time step n € [1, N], the reverse process in LDM is:

HY = HY + H? + H° (5)
C, = Concat(zn,ﬁfke,ﬁjke,ﬁy) (6)
Zn—1 = Zn — €9 (Cnv t) N

where Concat(-) denotes the concatenation along the channel
dimension, ¢ denotes the timestep, ey denotes the diffusion
model with parameters . For further details on the forward
and reverse processes, as well as the training techniques of the
diffusion model, please refer to [32]-[34].

Zhttps://github.com/Kyubyong/g2p

III. EXPERIMENTS
A. Experimental Setup

1) Dataset: LISpeech dataset [35] is a widely used speech
corpus containing 13,100 short audio clips from a single
speaker, each paired with a transcription. The total recording
duration is roughly 24 hours. We randomly divided the dataset
into three subsets: 12,500 samples for training, 300 for vali-
dation, and 300 for testing, with a sample rate of 22,050 Hz.

2) Implementation Details: The text encoder and sketch-
to-contour predictor are composed of multiple stacked Trans-
former [36] blocks (6 blocks for the former and 2 blocks for
the latter). In both, the linear layer in the feed-forward network
is replaced by a 1D convolutional layer. The duration predictor
and length regulator are identical to those described in [31].
The VAE and LDM adopt the structures and configurations
used in [37]. The contours are normalized using the mean and
variance of the entire dataset. The sketches are normalized to
[0, 1]. The dimension of the phoneme embedding D is 256.
The window size and hop size for extracting mel-spectrogram
are 1024 and 256, respectively. The number of mel frequency
bins F' is 80. The pre-trained HiFi-GAN? vocoder [38] is
utilized to reconstruct speech waveform.

We first train the VAE on LJSpeech for 80k steps with
batchsize of 8. Subsequently, the VAE and vocoder remain
frozen, while the other modules are trained alongside the LDM
for 80k steps with batchsize of 32. We use the Adam [39]
optimizer to update the VAE and the AdamW [40] optimizer
to update the LDM along with other modules, and follow the
same learning rate schedule in [37]. We set either Pgg. or
Egk. to an all-zero vector with a probability of 20% during
model training, enabling DrawSpeech to require only a single
sketch input from the user during the inference phase. The
user-drawn sketch is used as the pitch sketch by default.

3) Baselines: We adopt two TTS models, FastSpeech 2
[41] and NaturalSpeech 2 [12], as our baseline models. This
selection is based on the fact that both models explicitly incor-
porate pitch or energy information in speech, allowing us to
easily insert the sketch conditions into the original models for
comparison. However, since FastSpeech 2 and NaturalSpeech
2 do not provide official implementations, we instead use the
widely adopted public implementation of FastSpeech 2* and
utilize the NaturalSpeech 2 checkpoint provided by Amphion®.

4) Evaluation Metrics: We use mean opinion score (MOS)
to evaluate the sound naturalness, with ratings ranging from
1 to 5 (1-bad, 2-poor, 3-fair, 4-good, 5-excellent). To evaluate
prosody controllability, we introduce sketch correlation (SC),
which measures the alignment between the speech and the
given sketch. SC is rated on a scale from 1 to 5, with
5 signifying that the sketch accurately reflects the prosody
trend of the speech, and 1 indicating no correlation between
the given sketch and the synthesized speech. We invite 22
listeners for subjective tests. Note that listeners are instructed

3https://github.com/jik876/hifi-gan
“https://github.com/ming024/FastSpeech2
Shttps://github.com/open-mmlab/Amphion/tree/main/egs/tts/NaturalSpeech2



TABLE I
MOS AND SC COMPARISON WITH 95% CONFIDENCE INTERVALS WHEN
ADOPTING SKETCHES (SKE) OR CONTOURS (CON) AS CONTROL SIGNALS

Method Control MOS 1 SC 1
FastSpeech 2 Ske 240 + 0.10 3.62 £ 0.09
Con | 337 +£0.08 2.82+ 0.09
FastSpeech 2 (FT)* Ske 355+ 0.14 398 + 0.13
Ske 2.51 +£0.09 2.38 £ 0.10
NaturalSpeech 2 Cont | 2514009 235 +0.10
DrawSpeech Ske 4.49 + 0.06 4.30 £+ 0.07

T The contours are adjusted based on the sketches.

 We fine-tune FastSpeech 2 with sketch conditions. The Sketch
Extractor and Sketch-to-Contour Predictor are integrated into
FastSpeech 2 during fine-tuning for a fair comparison.

TABLE 11
MOS WITH 95% CONFIDENCE INTERVALS IN THE ABLATION STUDIES
Method MOS 1 p-value
GroundTruth 4.46 + 0.10 -
DrawSpeech with text only 391 £0.09 1.3e-24
DrawSpeech with sketch conditions | 4.49 4+ 0.06 0.058

to disregard the speech quality when assessing SC. For objec-
tive metrics, root mean square error (RMSE) is employed to
assess the accuracy of the prosody control. We select 10 text
samples from the test set, with each sample synthesized using
two different sketches as prosody condition, resulting in 20
utterances from each system being used for evaluation.

B. Experimental Results

In this section, we aim to answer three questions: Can other
models without special designs utilize sketches as conditions?
Will using sketches reduce sound quality? Can using sketches
as conditions enable fine-grained and precise prosody control?

1) Applying sketches to other models: To incorporate
sketches as conditions into FastSpeech 2, we directly replace
the predicted pitch and energy contours in FastSpeech 2
with the pitch and energy sketches. We also try to multiply
the sketches with the predicted contours so that the result-
ing contours retain the overall trends of the sketches while
preserving the details of the original contours. In this case,
the control signals are the contours adjusted based on the
sketches. For NaturalSpeech 2, since it only predicts the pitch
contour, we incorporate only the pitch sketch as condition.
The results are shown in Table I. From the MOS scores,
we can observe that DrawSpeech outperforms its competi-
tors by a substantial margin. We speculate that the abstract
sketches provide insufficient information for FastSpeech 2 and
NaturalSpeech 2 to recover natural speech, and the adjusted
contours are out-of-domain data for the two baselines. From
the SC scores, we find that DrawSpeech excels at synthesizing
speech that closely matches the desired prosody variations,
confirming that DrawSpeech can effectively utilize the sketch
conditions. Additionally, when FastSpeech 2 is fine-tuned with
specialized modules, the SC score shows a significant improve-
ment compared to the case without fine-tuning, validating the
generalization ability of the proposed sketch control method.

TABLE III
RMSE BETWEEN SYNTHESIZED SPEECH AND REFERENCE SPEECH

RMSE |
Pitch (Hz)  Energy (dB)
110.65 19.04
62.48 9.48

Method

DrawSpeech with text only
DrawSpeech with sketch conditions

LN

I did’t say you stole the money

—— Emphasis on the word “didn’t”
Emphasis on the word “say”

Emphasis on the word “you”

Emphasis on the word “stole”

I did’t say you stole the money I did’t say you stole the money

Fig. 3. Drawing different sketches to achieve precise prosody control. The
solid line represents the drawn pitch sketch. The points indicate the pitch of
each frame in the synthesized speech.

2) Impact on sound quality: Table II presents the MOS
scores of DrawSpeech with and without the sketch conditions.
The samples generated by DrawSpeech under sketch condi-
tions even slightly surpass the ground truth speech, with a
Wilcoxon rank-sum test [42] at a p-level of p > 0.05. We con-
clude that sketch conditions introduce sufficient prosody vari-
ations, enhancing the naturalness of the synthetic speech. The
p-value serves as an indicator, demonstrating that DrawSpeech
can synthesize speech of high quality or, as defined in [4], that
DrawSpeech has achieved human-level quality.

3) Precise prosody control: When a reference speech is
provided, we can extract the pitch and energy sketches from
reference and use them as conditions to guide the generation
process. As shown in Table III, DrawSpeech conditioned on
the sketches of the reference speech achieves lower pitch and
energy RMSE compared to the case without sketch conditions,
indicating that DrawSpeech successfully imitate the prosody of
the reference speech. To clearly demonstrate the fine-grained
prosody control, we draw four different sketches to emphasize
four different words in sentence “I didn’t say you stole the
money”. The visualization shown in Fig. 3 suggests that the
pitch variations in the synthesized speech closely follow the
trends of the corresponding sketches. Also, the highest pitch is
accurately assigned to the intended emphasis words, indicating
that DrawSpeech can achieve prosody control precisely.

IV. CONCLUSION

In this paper, we propose to use the pitch and energy
sketches to control the synthesis process. Accordingly, we pro-
pose DrawSpeech to generate speech with rich prosody based
on the sketches. Experimental results show the effectiveness
of DrawSpeech and its capability to achieve precise prosody
control. In the future, we plan to incorporate more control
signals, such as jitter and shimmer, in a user-friendly manner.
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