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ABSTRACT

With the global population ageing rapidly, Alzheimer’s disease
(AD) is particularly prominent in older adults, which has an insidi-
ous onset followed by gradual, irreversible deterioration in cognitive
domains (memory, communication, etc). Thus the detection of
Alzheimer’s disease is crucial for timely intervention to slow down
disease progression. This paper presents a comparative study of
different acoustic and linguistic features for the AD detection using
various classifiers. Experimental results on ADReSS dataset reflect
that the proposed models using ComParE, X-vector, Linguistics, TF-
IDF and BERT features are able to detect AD with high accuracy
and sensitivity, and are comparable with the state-of-the-art results
reported. While most previous work used manual transcripts, our
results also indicate that similar or even better performance could
be obtained using automatically recognized transcripts over manu-
ally collected ones. This work achieves accuracy scores at 0.67 for
acoustic features and 0.88 for linguistic features on either manual or
ASR transcripts on the ADReSS Challenge1 test set.

Index Terms— Alzheimer’s Disease detection, ADReSS, fea-
tures, ASR

1. INTRODUCTION

Alzheimer’s disease (AD), a major kind of neurocognitive disease
(also called dementia), is characterized by clear decline of cognitive
functioning, including memory, language, thinking and behavior [1].
It has been estimated in 2019 that AD affects over 50 million people
globally, and worse still, the disease has insidious onset with irre-
versible deterioration and unknown therapy nowadays [2]. There-
fore, the detection of AD is crucial for the timely intervention and to
decelerate progression. Conventional methods for AD detection are
mainly based on clinical tests for cognitive decline and independence
in everyday activities [3]. However, these diagnostic processes are
constrained due to time requirements and accessibility to resources.
Since spoken language is an easily captured signal that can reflect the
speaker’s cognitive abilities, researchers have been motivated to in-
vestigate the use of speech (the acoustic signal) and language (words
and sentences) features as biomarkers for AD detection [4, 5, 6, 7].

Feature selection is an important first step to search for speech
and language features that can help distinguish between participants
in the dataset who are healthy and participants who have AD. Weiner
et al [6] proposed a screening method and ranked the importance of
hand-selected acoustic and linguistic features for longitudinal AD
prediction. Most of the top-ranking features are linguistic, such

1The ADReSS Challenge: http://www.homepages.ed.ac.uk/
sluzfil/ADReSS/

as parts-of-speech and word categories, while the acoustic features,
such as I-vector and pause-based features, did not fare as well in AD
detection In addition to the use of hand-crafted features, deep neural
networks and transfer learning models have shown promising per-
formance in recent years as feature extractors for AD detection in
recent years [8, 9, 10]. In utilizing the speech signal, much of the
existing research efforts are manual transcriptions, which is costly
to obtain. This paper aims to further explore the use of acoustic fea-
tures, especially in the use of automatic transcriptions in deriving
linguistic features for AD detection .

This paper presents a comparative study of comprehensive
acoustic and linguistic features for Alzheimer’s Disease detection
using different classifiers. The features covered include ComParE,
X-vector derived from the acoustics signal, and linguistic features,
TF-IDF, BERT derived from the manually/automatically transcribed
text. This involves a comparison in detection performance between
manual and automatic transcriptions. The classifiers covered in-
clude Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM) and Attention-based Long Short-Term Memory Recurrent
Neural Network (AT-LSTM) [11]. We adopt Pearson’s correlation
test for feature selection and principal components analysis (PCA)
for dimensionality reduction [12]. Evaluation of these features and
models are based on the balanced benchmark ADReSS dataset [13],
which is a subset of Pitt Corpus in DementiaBank database [14].

The main contributions of this paper are summarized below. We
compare and improve the performance of speech and language fea-
tures on different classifiers, followed by further analysis to uncover
the features that are highly related to Alzheimer’s Disease (AD). Our
experimental results also indicate that the AD detection performance
based on textual features derived from ASR (i.e. Automatic Speech
Recognition) transcripts can be as good as manual transcripts.

In the next section, we propose the overall detection system, and
describe the dataset, AD-related features and classifiers used in our
work. Following that, we introduce the experimental details and re-
sults of the proposed detection systems. We compare the perfor-
mance of the proposed systems with the published benchmarks in
[13], and highlight the results on the proposed ASR-based detection
system. Finally, in Section 4, we discuss the performance of the fea-
tures and classifiers, identify the features that are highly related to
AD, and present our conclusions and future directions of research.

2. METHODOLOGY

In this section, we first introduce our proposed AD detection sys-
tem, and then describe the ADReSS dataset, the different types of
features, and the various classifiers LDA, SVM and AT-LSTM used
in our work.

http://www.homepages.ed.ac.uk/sluzfil/ADReSS/
http://www.homepages.ed.ac.uk/sluzfil/ADReSS/


2.1. Overall AD Detection System

The overall process for AD detection mainly consists of data prepa-
ration, feature engineering and classification, as shown in Fig. 1.
The input to the detection system are elderly speech recordings from
the ADReSS dataset, together with their corresponding manual tran-
scription. To achieve automatic detection, we also use automatic
transcriptions of the speech recordings generated by an ASR system.
We extract different types of features from the audio or text, and se-
lect AD-related features with the Pearson’s correlation test. To avoid
over-fitting, we also perform PCA to reduce the feature space. Then
we feed the processed features into the classifiers for training, and
finally the trained systems can perform AD detection.

Fig. 1. Overall process for AD detection.

2.2. Dataset

The dataset we used in this work is the ADReSS Challenge 2020
dataset, which is a selected part of Pitt Corpus in the DementiaBank
database. The dataset consists of 156 speech samples and associated
transcripts from non-AD (35 male, 43 female) and AD (35 male, 43
female) English-speaking participants for the Cookie Theft picture
description task, and is divided into standard train (108 participants,
about 2 hours) and test (48 participants, about 1 hour) sets that bal-
anced for age, gender and disease condition.

2.3. Feature Engineering

2.3.1. Acoustic & Linguistic Features

Speech and language impairments caused by Alzheimer’s disease
affect temporal changes in speech, verbal fluency, word finding and
word retrieval abilities in language [4, 6, 15]. Based on these find-
ings, we explore the ComParE [16] and Linguistics [17] feature sets,
which include various descriptors for speech (the acoustic signal)
and language (words and sentences) respectively. ComParE is a
feature set that consists of generic acoustic emotion descriptors and
their statistical functionals, including temporal features, voicing re-
lated low-level descriptors (LLDs), etc. The Linguistics features set
is a set of language outcome measures, including lengths of utter-
ances, type-token ratios, statistics of parts-of-speech (POS), etc.

Based on the differences in lexical richness and fluency between
AD and non-AD participants, we use the Term Frequency-Inverse

Document Frequency (TF-IDF) vector as the representation of words
[18]. Moreover, we also explore the use of representations based
on transfer learning, such as X-vector [19] and BERT [20]. The
X-vector captures long-term speaker characteristics for speech, and
BERT is a kind of deep bidirectional representation for text. Both
of them have achieved state-of-the-art results on a wide variety of
speech and language tasks. We adopt the pre-trained models for X-
vector and BERT as mentioned respectively in [19] and [20], and
extract the corresponding features from the ADReSS dataset.

2.3.2. ASR-derived Linguistic Features

We use the ASR transcripts [21] to derive linguistic features includ-
ing TF-IDF vector and BERT embeddings. The ASR systems are
trained on original Pitt Corpus data that excluded ADReSS test par-
ticipants, and testing on the ADReSS test set gave word error rates
(WER) 44.89% (Sys. 4) and 33.17% (Sys. 10) for the respective
participant parts. The methods of extracting the TF-IDF vectors
and BERT embeddings from the manual and ASR transcripts are
the same.

2.3.3. Features Selection / Reduction

We perform Pearson’s correlation test to select AD-related features,
i.e., select the features that have high correlation coefficient with the
occurrence of the disease. To avoid over-fitting, we perform PCA
to reduce the dimensionality of the feature space, i.e., we first fit the
parameters of PCA with the features from training set, and transform
the features from all data with the fitted PCA model.

2.4. Models

We formulate AD detection as a binary classification problem, i.e.
classifying AD and non-AD participants. We refer to the LDA clas-
sifier as baseline, as reported in [13], and then proposed SVM and
AT-LSTM based on supervised learning.

2.4.1. LDA

Suppose the two classes of observations have means µ0, µ1 ∈ RM
and covariances Σ0,Σ1 ∈ RM×M . The objective of LDA is to
find a projection direction w ∈ RM , such that the ratio between the
variance of projected points between to within classes is maximized,
i.e.:

arg max
w

wT (µ0 − µ1)(µ0 − µ1)Tw

wT (Σ0 + Σ1)w
. (1)

Assuming that the singular value decomposition (SVD) of ma-
trix (Σ0 + Σ1) is UΣV T , then Eq. 1 can be solved as:

w = V Σ−1UT (µ0 − µ1). (2)

2.4.2. SVM

Suppose the training set of N points are {(xi, yi), xi ∈ RM}Ni=1.
The SVM classifier tries to find the “maximum-margin hyperplane”
that divides the two different groups of points, represented bywTx+
b = 0. Then the objective of SVM is to minimize the aggregate
distance between the maximum-margin hyperplane and the support
vectors of AD and non-AD classes, i.e.:

arg min
w,b

1

2
‖w‖2 + C

N∑
i=1

L(yi(w
Tφ(xi) + b)), (3)



where C is the regularization parameter for soft margin, L(∗) is the
surrogate loss and φ(∗) is the kernel function. In this work, we set
C = 1, surrogate loss L(z) = max(0, 1 − z) and kernel function
as linear kernel. Then Eq. 3 can be solved by dual programming
method.

2.4.3. AT-LSTM

In addition to the LDA and SVM classifiers, we also propose to
use AT-LSTM for AD versus non-AD classification. The common
LSTM has feedback connections and is composed of the memory
cell, input, output and forget gates, which can capture time domain
representations. The attention mechanism can capture the key parts
of feature vector in response to a given aspect. Fig. 2 represents the
AT-LSTM architecture used in our work.
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Fig. 2. The architecture of Attention-based LSTM module.

Suppose the input features X = [x1, x2, . . . , xN ] ∈ RM×N ,
the hidden and output vectors of LSTM cells for X are H =
[h1, h2, . . . , hN ] ∈ Rdh×N and O = [o1, o2, . . . , oN ] ∈ Rdo×N
respectively. Then the attention weight is

α = softmax(wT tanh([
WhH
WoO

])), (4)

where w ∈ Rdh+do ,Wh ∈ Rdh×dh ,Wo ∈ Rdo×do are projec-
tion weights of attention, LSTM hidden and output cells respectively,
and softmax, tanh are activation functions. Then the output of AT-
LSTM module is r = HαT ∈ Rdh , followed by a dense layer
d = wTd r ∈ R2 for AD classification.

Suppose the predicted output probability of the neural network
is ŷ = softmax(d) = f(X|θ) and the expected output probability
is y, where wd are the dense layer weights, f and θ are the overall
function and parameter set of the neural network respectively. Then
the objective of the network is to minimize the cross entropy loss
between the output probability distributions of ŷ and y, i.e.

arg min
θ
−

1∑
i=0

yi log(f(X|θ)i) + λ‖θ‖2, (5)

where λ is L-2 regularization term.
To solve Eq. 5, we update the parameters by the Adam opti-

mizer [22], which is a stochastic optimization method with adaptive
moment estimators and weight decay regularization.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Feature Extraction

All features are derived from participant speech and corresponding
transcripts from the Cookie-Theft Picture Description Task [14] of
ADReSS dataset. We extracted and concatenated the participant
parts in each interview by manual timestamps, including the seg-
ments of silence/filled-pauses. We then extracted the features at ac-
cording to participants, which means that each participant was rep-
resented by a feature vector.

The ComParE and Linguistics feature sets are extracted by
OpenSMILE [23] and CLAN [24] respectively. The TF-IDF vec-
tor is derived by term inverse document frequencies. And the
X-vector and BERT embeddings are extracted by encoders that are
pre-trained, as mentioned in Section 2. TF-IDF vectors and BERT
embeddings are also extracted from ASR transcripts. The sizes of
the ComParE and Linguistics feature sets are 6,373 and 34, and
dimensions of TF-IDF, X-vector and BERT are 1,035, 512 and 768
respectively.

For feature selection, we perform Pearson’s correlation test for
the ComParE and Linguistics feature sets to remove features with
correlation coefficients |R| < 0.25. Thereafter, 210 ComParE fea-
tures and 10 Linguistics features are retained. Features in the Com-
ParE set with the highest correlation are the relative spectral filtering
(RASTA) representation [25], segment length, and zero cross rates
group. Features in the Linguistics set that have highest correlations
are verbs per utterance, mean length of an utterance and type/token
ratio.

3.1.2. Implementation Details

There are mainly three systems for AD detection, i.e. Baseline LDA,
the proposed SVM and AT-LSTM classifiers. In each system, we
first select the features with Pearson’s correlation test and reduce the
feature space with PCA method, and then input these features into
the classifiers.

In the pre-processing step, we perform standard normalization
for all features. In the SVM system, we further perform PCA after
the normalization to reduce the dimensionality. In the training step,
the baseline LDA system is solved by the SVD method as Eq. (2),
SVM is solved by the dual optimization method, and AT-LSTM are
trained by the Adam optimizer with 5e− 4 learning rate and 1e− 2
weight decay regularization. The hidden size of LSTM cells is set to
64, with dropout rate of 0.2 to avoid over-fitting. The training epoch
is 500 with 16 epochs tolerance of early stopping, and the batch size
is 32.

3.1.3. Evaluation Metrics

The systems are evaluated by 10-fold cross-validation (CV) on the
training data and tested on ADReSS test data. We ran 10-fold CV 10
times and averaged the resulting scores. The scores for evaluating
classification performance include accuracy scores (ACC), precision
(PRE), recall (REC), F1, receiver operating characteristic (ROC)
curve and area under curve (AUC) with respect to the positive class
(AD).



Model Feature ACC PRE REC F1 AUC
LDA [13] ComParE 0.56 / 0.62 0.57 / 0.60 0.52 / 0.75 0.54 / 0.67 N/A
LDA [13] Linguistics 0.77 / 0.75 0.77 / 0.83 0.76 / 0.62 0.77 / 0.71 N/A
SVM [9] BERT 0.82 / 0.83 0.84 / 0.81 0.79 / 0.88 0.81 / 0.84 N/A

LDA

ComParE 0.66 / 0.65 0.65 / 0.64 0.62 / 0.62 0.64 / 0.64 0.71 / 0.66
X-vector 0.63 / 0.58 0.62 / 0.59 0.66 / 0.54 0.62 / 0.57 0.66 / 0.63

Linguistics 0.81 / 0.83 0.86 / 0.94 0.73 / 0.71 0.78 / 0.81 0.90 / 0.90
TF-IDF 0.76 / 0.71 0.79 / 0.81 0.73 / 0.54 0.74 / 0.65 0.84 / 0.88
BERT 0.76 / 0.79 0.74 / 0.79 0.80 / 0.79 0.76 / 0.79 0.83 / 0.89

SVM

ComParE 0.71 / 0.58 0.73 / 0.62 0.68 / 0.42 0.68 / 0.50 0.76 / 0.60
X-vector 0.61 / 0.58 0.62 / 0.60 0.61 / 0.50 0.60 / 0.55 0.62 / 0.62

Linguistics 0.80 / 0.83 0.82 / 0.90 0.75 / 0.75 0.76 / 0.82 0.89 / 0.90
TF-IDF 0.86 / 0.71 0.91 / 0.73 0.82 / 0.67 0.85 / 0.70 0.93 / 0.83
BERT 0.75 / 0.88 0.74 / 0.91 0.79 / 0.83 0.75 / 0.87 0.83 / 0.89

AT-
LSTM

ComParE 0.80 / 0.64 0.81 / 0.64 0.80 / 0.64 0.79 / 0.64 0.87 / 0.71
X-vector 0.58 / 0.67 0.58 / 0.66 0.65 / 0.69 0.59 / 0.67 0.65 / 0.71

Linguistics 0.82 / 0.81 0.88 / 0.88 0.76 / 0.73 0.79 / 0.79 0.90 / 0.88
TF-IDF 0.82 / 0.66 0.84 / 0.67 0.79 / 0.65 0.80 / 0.66 0.87 / 0.77
BERT 0.80 / 0.83 0.80 / 0.91 0.80 / 0.74 0.78 / 0.81 0.89 / 0.90

Table 1. Results of benchmark and proposed models on ADReSS dataset, metrics denoted as CV / Test.

3.2. Results & Analysis

3.2.1. Baseline v.s. Proposed

The classification results of LDA, SVM and AT-LSTM for differ-
ent features under CV and test settings are shown in Table 1.These
results show that the SVM system generally achieves the best per-
formance over the baseline and AT-LSTM for given features. The
TF-IDF and BERT features generally achieve the best performance
for a given classifier. Linguistic features generally achieve better
performance than acoustic features, and more robust performance
when we compare performance across the CV and test settings. The
best accuracy scores for acoustic features is 0.67 from the X-vector
on AT-LSTM, and 0.88 from the linguistic features on BERT.

Comparing with the benchmarks in [13] shows that the improve-
ment is significant for the ComParE and Linguistics feature sets,
mostly because of the different selection and PCA methods men-
tioned in Section 3.

3.2.2. Manual v.s. Automatic

The classification results using TF-IDF and BERT features extracted
from manual and ASR-derived transcripts are shown in Table 2, us-
ing SVM with linear kernel. The ASR systems are adopted from
[21], i.e. Sys. 4 and Sys. 10, with participant word error rates
(WER) 44.89% and 33.17% on ADReSS test data respectively. The
results indicate that the use of ASR transcriptions for feature extrac-
tion to detect AD achieves results that are as good as the use of man-
ual ones. The best performance come from BERT features extracted
from ASR Sys. 10, with same accuracy and better AUC compared
with manual one.

4. DISCUSSION & CONCLUSION

In this work, we have presented a comparative study of different
speech and language features for AD detection using different classi-
fiers. The features we explored include the ComParE set, X-vectors,
the Linguistics set, TF-IDF and BERT embeddings, extracted from
speech, manual or ASR transcripts. The models we proposed include

System Feature ACC PRE REC F1 AUC
Sys. 4
(0.45)

TF-IDF 0.69 0.74 0.58 0.65 0.85
BERT 0.79 0.72 0.96 0.82 0.87

Sys. 10
(0.33)

TF-IDF 0.69 0.74 0.58 0.65 0.82
BERT 0.88 0.82 0.96 0.88 0.92

Manual TF-IDF 0.71 0.73 0.67 0.70 0.83
BERT 0.88 0.91 0.83 0.87 0.89

Table 2. Test results of manual and ASR-based features. (*) denotes
WER.

LDA, SVM and AT-LSTM, covering unsupervised, supervised and
transfer learning.

The size of the dataset limits the performance of neural net-
works, and we find that Pearson’s correlation test and PCA are useful
for improving the classification performance. We also find that the
features with highest correlation with the presence/absence of AD
include acoustic features (namely, the RASTA-style filtered audi-
tory spectrum, segment length and zero cross rate and their statistical
functionals), and linguistic features (namely, verbs, mean lengths of
utterances and type/token ratios).

Experiments on the ADReSS dataset indicate that the use of
acoustic and linguistic features are viable for AD detection, and lin-
guistic features outperform acoustic features. Results also indicate
that linguistic features extracted from ASR transcripts can achieve
detection performance as good as manual transcripts. This result
suggests the feasibility of fully automatic AD detection from speech
and language features.

Future work will include applying the proposed approach to na-
tive Cantonese data, as well as feature fusion to boost performance
on AD detection.

5. ACKNOWLEDGEMENTS

This project is partially supported by the HKSARG Research Grants
Council’s Theme-based Research Grant Scheme (Project No. T45-
407/19N).



6. REFERENCES

[1] P. S. Sachdev, D. Blacker, D. G. Blazer, et al., “Classifying
neurocognitive disorders: the DSM-5 approach,” Nature Re-
views Neurology, vol. 10, no. 11, pp. 634, 2014.

[2] Alzheimer’s Disease International, “World Alzheimer report
2019: attitudes to dementia,” 2019.

[3] L. Velayudhan, S.-H. Ryu, M. Raczek, et al., “Review of brief
cognitive tests for patients with suspected dementia,” Interna-
tional psychogeriatrics, vol. 26, no. 8, pp. 1247–1262, 2014.

[4] G. Szatloczki, I. Hoffmann, V. Vincze, et al., “Speaking in
Alzheimer’s disease, is that an early sign? Importance of
changes in language abilities in Alzheimer’s disease,” Fron-
tiers in aging neuroscience, vol. 7, pp. 195, 2015.

[5] K. C. Fraser, J. A. Meltzer, and F. Rudzicz, “Linguistic features
identify Alzheimer’s disease in narrative speech,” Journal of
Alzheimer’s Disease, vol. 49, no. 2, pp. 407–422, 2016.

[6] J. Weiner, C. Frankenberg, J. Schröder, and T. Schultz,
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