
ISIS: A Multi-Modal, Trilingual, Distributed Spoken Dialog System
developed with CORBA, Java, XML and KQML

Helen Meng1, P. C. Ching2, Yee Fong Wong 1 and Cheong Chat Chan1
1Human-Computer Communications Labora tory, 2Digital Signal Processing Laboratory,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
{hmmeng@se.cuhk.edu.hk}

Abstract

ISIS (Intelligent Speech for Information Systems) is a trilingual
spoken dialog system in the stocks domain. It supports the
three languages commonly used in Hong Kong (Cantonese,
Putonghua and English), and serves as a test-bed for our
research in various speech and language technologies. ISIS
also features combined interaction and delegation dialogs, and
automatic assimilation of newly listed stock names into the
system’s knowledge base. This paper focuses on the
architecture and multi-modality of ISIS. We use the CORBA
middleware to implement a distributed system that is
interoperable across platforms. We also describe the
incorporation of KQML (Knowledge Query and Manipulation
Language) software agents in ISIS to handle delegation dialogs.
The latest enhancement supports multi-modal and
mixed-modal input which suit the natural affordances of certain
interactions in order to improve usability. Input modalities
include speaking, typing or mouse-clicking. Output media
include synthesized speech, text, tables and graphics.

1. Introduction
Over the past two years our group has been developing a
trilingual, distributed spoken dialog system known as ISIS
(Intelligent Speech for Information Systems). The ISIS
knowledge base is restricted to the stocks domain, and the
system serves as a test-bed for our research and development in
speech and language component technologies, which includes
trilingual speech recognition, biliteral natural language
understanding, trilingual speech generation, speaker
authentication and dialog management that combines online
interaction with offline delegation dialogs. The latest
enhancement allows the handling of multi-modal and
mixed-modal input.

Details regarding the components can be found in [1,2].
These component technologies run on different platforms.
Integrating them into an end-to-end system presents a challenge
in distributed system architecture design and development.
Previous work in this area includes [3,4]. For ISIS, we have
chosen a unique blend of number of Internet technologies with
attractive properties – (i) CORBA offers location transparency,
interoperability and scalability; (ii) Java offers an object
infrastructure with platform independence, and Java Applets are
used to achieve multimodality; (iii) XML offers clear language
semantics for communication between objects; and (iv) KQML
supports implementation of software agents for offline
delegation dialogs.
 A reference implementation of ISIS that includes
software, documentation and an online demo is available from
our website (http://www.se.cuhk.edu.hk/~isis/download).

2. The ISIS Architecture – CORBA
CORBA (Common Object Request Broker Architecture) is a
middleware with specifications produced by OMG (Object

Management Group). It provides ease and flexibilit y for
distributing components. CORBA provides the ORB (Object
Request Broker) that handles communication between objects,
including object location, request routing and result returning.
 Figure 1 illustrates the ISIS client/server architecture,
which includes six server objects, another server object
encapsulating KQML agents, together with the client object.
Some are implemented in Java or C on UNIX; others in Visual
C++ on Windows NT. These server objects extend the
stubs/skeletons (i.e. the glue to the ORB from the client/server)
to the core speech and language engines. The objects can
communicate with each other via the intranet or the Internet
using IIOP (Internet InterORB Protocol).

Figure 1. The ISIS Architecture.

2.1 Location Transparency
Consider the case of a socket-based implementation – the server
needs to start a listener at a given port, e.g.,1
ServerSocket serverSocket = new ServerSocket (4410);

and then establishes a connection with the client to receive input.
Similarly, the client needs to start a connection with the server
at a specified host and port, e.g.,
Socket socket = new socket (“pc3.se.cuhk.edu.hk”, 4410);
and then establishes a connection with the server to send input.
Hence the implementation needs to explicitly manage the host/
port for every server in the system.
 Contrastively, CORBA offers the desirable feature of
location transparency to ISIS. No host/port information is
needed explicitly. Only the names of the server objects need
to be known for two-way (receiving/sending) communication
(see Figure 2 for an example).

1 Examples of Java code fragments.

//CORBA-based implementation of a server (e.g. NLU)
public class corbaserverUnderstanding{…
 //activate the server manager named
corbaserverUnderstanding
 recognizerManagerPOA.activate_object_with_id

(“corbaserverUnderstanding”.getBytes(),
recognizerManagerServant);

}
//CORBA-based implementation of the client
public class corbaclient{…
 //locate an NLU server manager named
corbaserverUnderstanding
 Server.ServerManager manager =
 Server.ServerManagerHelper.bind(orb,
 “/server_agent_poa”,
 “corbaserverUnderstanding”.getBytes());
…
 //sends a string to the NLU server
 cse.send2corbaserver(“testing”); …}
}
Figure 2. Java code fragments from a CORBA-based
implementation of the natural language understanding (NLU)
server and the client. Only the name of the server needs to be
known for communication. There is no need to manage the
corresponding host or port information.

2.2 Interoperability
CORBA enables distributed object applications to interoperate
across platform through the network, by providing the IDL
(Interface Definition Language) to communicate with different
programming languages running on multiple operating systems.
Hence, we can abstract away from hardware characteristics.
IDL is a declarative language and can be used to define
modules, interfaces, data structures, etc. Figure 3 shows an
IDL of the module named ISIS.
module ISIS {
 interface Recognizer { (1)
 void send2recognizer(in string str, in bytearray byte);};
 interface RecognizerManager { (2)
 void registerClientHandler(in Client ch);};
…..}
Figure 3. Example of the ISIS IDL showing the Recognizer
server object. send2recognizer has two arguments, one
corresponds to the XML message and the other to the .wav file.

Since the Recognizer server object is implemented in
C++, the IDL in Figure 3 is compiled by idl2cpp into an object
class also named “ISIS”. The Recognizer interface (see label
#1 in Figure 3) provides a single member function for receiving
incoming messages. The RecognizerManager (see label #2 in
Figure 3) creates a recognizer object instance for each specific
client session and exchanges it with the client object reference.
Compilation produces isis_c.hh and isis_c.cpp, which are
internal definitions and client stub routines for the Recognizer
and RecognizerManager classes to build client applications.
Compilation also produces isis_s.hh and isis_s.cpp, which are
the internal definitions and server skeleton routines . Hence
the Recognizer server object can function as a client or server.

For other server objects implemented in Java, we compile
the IDL by idl2java, and the subsequent processes remain
similar to those described above.

2.3 Scalability
CORBA also offers a scalable architecture, where a new class
can be added to the system simply by adding its corresponding
interface definition to the IDL, followed by recompilation.
For example, to augment ISIS with speaker verification, we
may add the following to the ISIS IDL in Figure 3:

interface SpeakerVerification {…};
interface SpeakerVerificationManager {…};

2.4 Quality of Service
CORBA also offers QoS(Quality of Service) which defines and
manages the connection between the client and server objects.
If the client encounters a communication problem with a server
object, which may be caused by the termination of a server or
server reboot, a rebind attempt will be made automatically if
invocation is retried.

3. Delegation to KQML Software Agents
ISIS supports asynchronous human-computer interaction in
terms of offline delegation. The system can launch a software
agent to monitor the dynamic financial feed on the user’s
behalf. When the user’s pre-specified condition is met, the
software agent sends an alert message back to the user. The
software agents are implemented in KQML (Knowledge Query
Manipulation Language) [5]. KQML is both a
message-format language and a message -handling protocol for
agent-to-agent communication. It provides run-time
information exchange and knowledge sharing among agents.
The ISIS implementation uses JKQML that is entirely in Java.
The integration between KQML and CORBA is consistent with
the methods described in the previous section.
 There are three KQML software agents in ISIS – the
Requester Agent, Facilitator and Alert Agent. If a user’s
requested transaction (e.g. “Buy three lots of HSBC at eighty
nine dollars please”) cannot go through due to a mismatch
between the requested and market prices, ISIS will trigger the
offline delegation procedures. First, a non -blocking XML
message is sent from the dialog manager server to the
Requester Agent (see Figure 4).
<DIALOG_MANAGER>
 <TRIGGER LANG =English STATUS =launchAgent>
 <USER_ ID>005</ USER_ ID> <ACTION>buy</ ACTION>

 <MARKET>95.0</ MARKET> <LOTS>3</ LOTS >
 <STOCK>0005.HK</ STOCK> <SHARE>---</ SHARE>
 <PRICE >89</ PRICE>
<TIME_STAMP >Aug_02_2001_14:00:38</TIME_STAMP >
</TRIGGER>

</DIALOG_MANAGER>
Figure 4. An example XML message sent by the dialog
manager server to the Requester Agent.

The Requester Agent receives this XML message, decodes it
and transmits a corresponding KQML message (see Figure 5)
to the Facilitator. The Facilitator is a software substrate for
agent-to-agent communication, as it maintains a registry of all
agents . In Figure 5, ASK-ALL is a performative (speech act) to
request for service from all agents. The :SENDER
and :RECEIVER fields constitute the communication layer.
The :LANGUAGE field specifies the format of the :CONTENT
parameter. The :ONTOLOGY field specifies the set of term
definitions used in the :CONTENT parameter.

The Facilitator receives the KQML message, interprets it
and stores the request in a database of similar requests. The
Alert Agent keeps track of these requests and monitors the
real-time financial information feed accordingly. If the
pre -specified condition is met (i.e. HSBC’s market price hits 89
dollars per share), the Alert Agent will send a KQML message
(see Figure 6) through the Facilitator to alert the Requester
Agent. The performative TELL is the expected response to
ASK-ALL. Hence the Facilitator knows to re -route this KQML
message back to the Requester Agent.

(ASK-ALL
: SENDER requester agent : RECEIVER interpreter
: REPLY-WITH messageID
: LANGUAGE xml : ONTOLOGY insertion
: CONTENT (theaction : buy theuser_id : 005

theprice: 89 thetimestamp: Aug 02 2001 14:00:38
theric: 0005.HK thelot: 3 theshare:---))

Figure 5. An example KQML message sent by the Requester
Agent to the Facilitator.

(TELL
: SENDER alert agent : RECEIVER interpreter
: REPLY-WITH messageID
: LANGUAGE xml : ONTOLOGY insertion
: CONTENT (theaction: buy theuser_id : 005 themarket: 89

theprice: 89 thetimestamp: Aug 02 2001 14:00:38
theric: 0005.HK thelot: 3 theshare:---
theresponse: alert!))

Figure 6. An example KQML message sent by the Alert
Agent to the Facilitator.

In the final step, the Requester Agent returns a KQML alert
message (see Figure 7) to the dialog manager server.

<KQML _AGENT>
 <MARKET>89</ MARKET>
<TIME_STAMP >Aug_02_2001_15:37:02</TIME_STAMP >
… (other parameters identical to those in Figure 4)

</ KQML _AGENT>
Figure 7. An example XML message sent by the Requester
Agent to the dialog manager server.

4. Multi-modality in ISIS
The ISIS client is implemented as a Java applet, and can be
viewed by an applet viewer or a web browser with Java plugin
by providing a URL. The client incorporates support for
multi-modal interactions. More specifically, the system can
accept user input in the form of speech, typed text or mouse
clicks. The system also presents output to the user in the form
of synthesized speech as well as textual, graphical and tabular
displays. Multi-modal I/O involves nine java classes, such as:
ClientApplet.java : starts and maintains the connection with

the speech and language server objects ;
ClientImpl.java: message passing via JPanelISIS.java (see

below) for textual input, captures input mouse clicks and
displays text/graphical outputs;

RecordPlayback.java: records input speech and plays back
the synthesized speech using Java Sound API ;

EndPointDetection.java: uses Java Sound API, and detects
the start and end points of the speech input based on
energy, zero-crossing rate and periodicity;

JPanelISIS.java: captures user input via text (by JText), and
radio button selections (by JRadioButton).

4.1 Scenario incorporating multi-modal inputs
In the following we will traverse an example scenario to
illustrate multi-modal interactions in ISIS. In this scenario,
ISIS “learns” about the newly listed company, ARTEL
Solutions Group Holdings Ltd (abbreviated as “ARTEL”), and
incorporates the new listing into the ISIS knowledge base.

Our scenario begins with the user’s spoken query,2 “Do
you have the real-time quotes of ARTEL?” Figure 8 is a
screenshot of our client. Here, the radio buttons corresponding
to language selection and input modality show that the user has
chosen to input via spoken English. Selected radio buttons are
captured by JRadioButton in JPanelISIS.java prior to every
user request. Hence the user can switch freely in between
languages and input modalities while maintaining a coherent
conversation with ISIS.

Figure 8. Screen shot of the client presenting information in
response to the user’s spoken input “do you have the real-time
quotes of ARTEL?”
 Next, the input speech recorded by the client is sent to
the English recognizer, which returns the (correct) transcription
in XML (see Figure 9).

<RECOGNIZER>
< ENGLISH >

do you have the real time quotes of ART EL
</ ENGLISH >

</ RECOGNIZER >
Figure 9. XML string sent from the recognizer to the client.

The client then displays this transcription as output text
onscreen (also shown in Figure 8) by calling a Java class
JTextPaneHelper.java that extends JTextPane.
 Additionally, the speech generation server returns two
XML responses to the client (see Figure 10). For the first
XML message, the client displays the textual part via
JTextPaneHelper, and the list of possible RIC names as a
table via JTable. The textual message states that “ARTEL” is
uknown to the ISIS system, and presents a table of possible
stock names that may correspond to “ARTEL”. Upon
receiving the second XML message, the client retrieves the

2 We are only handling out-of-vocabulary (OOV) words
starting at the NLU level. Recognition of OOV will be
addressed at a later stage.

synthesized speech wave from the specified URL, and plays it
for the user by invoking the class RecordPlayback.java.

First XML message:
<RESPONSE_GENERATION>

<TXT>I don’t know of the stock listed as ARTEL …/TXT>
<RIC_NAME >Code-StockName | 0931.HK-ARTEL GROUP |
 1229.HK-ARTFIELD GROUP |…</RIC_NAME >

</RESPONSE_GENERATION >
Second XML message:
<RESPONSE_GENERATION>
 <SYNTH_FILE>http:// (URL) </SYNTH_FILE>
</RESPONSE_GENERATION>
Figure 10. Two XML strings sent from the response
generation server to the client.
 The synthesized speech asks the user to select the stock
code corresponding to “ARTEL” either by speaking or clicking.
These multi-modal interactions derive synergy to suit the
natural affordances of the application to enhance usability of
ISIS. As shown by the arrow in Figure 8, user clicked on the
stock code “0931.HK”. The client class ClientImpl.java
extends ListSelectionListener (a class provided by JDK1.2).
ListSelectionListener can capture the mouse action for row
selection in JTable and obtain a row index from the JTable
object. Contents from this row is retrieved by the client and
sent to the natural language understanding (NLU) server. The
NLU server extends its knowledge base to include “ARTEL” by
adding two grammar rules: STOCK_NAME à ARTEL and
STOCK_CODE à 0931.
4.2 Mixed-modal input
We have also begun to implement support for mixed-modal
input in ISIS. Figure 11 shows a screen shot with the system’s
response to the user query “Show my account information.”
ISIS provides a table of all transactions. A possible
mixed-modal input at this point may involve both speech and
mouse clicks, e.g. “Show the transaction details of these two
stocks <click1> <click2>.”

To handle such a request, ClientImpl.java starts a thread
to measure the duration of the spoken input plus three seconds
beyond the detected endpoint. The recorded speech is sent to
the recognizer as usual, and all mouse clicks captured within the
entire duration are registered. The client extracts the row
contents corresponding the mouse clicks, appends the contents
to the recognizer’s transcription, and produces an integrated
XML message (see Figure 12 for an example) based on the
mixed-modal input. The message is sent to the NLU server.

<CLIENT>
 <ENGLISH>Show me the transaction details of these two
stocks. zero zero six six .HK. one one two two .HK.

 </ENGLISH>
</CLIENT>
Figure 12. Example of an integrated XML message
incorporating mixed-modal input information.

5. Conclusions and Future Work
This paper presents the design and development of ISIS, a
trilingual spoken dialog system for the stocks domain. We
describe the use of a suite of Internet technologies to develop a
multi-modal, distributed system. The Internet technologies
include:

Figure 11. Screen shot of the client presenting information in
response to the user’s spoken input, “Show my account
information.”

(i) CORBA, which offers location transparency, interoperability
and scalability; (ii) Java, which offers an object infrastructure
with platform independence; (iii) XML, which offers clear
language semantics for communication between objects; and (iv)
KQML, which supports implementation of software agents for
offline delegation dialogs. We also describe system
implementation that supports multi-modal and mixed-modal
input, which suit the natural affordances of certain
domain -specific interactions and enhance the usability of ISIS.
A possible future direction is to migrate ISIS towards a Web
services model, e.g. migrating the ORB towards UDDI and IDL
towards WSDL/SOAP, to increase accessibility to a wide range
of users.

6. Acknowledgments
This research is supported by the Joint Center for Intelligence
Engineering between Peking University and The Chinese
University of Hong Kong. We thank the past and present
members of the Human-Computer Communications Laboratory
and Digital Signal Processing Laboratory of CUHK, as well as
the National Key Laboratory for Machine Perception of PKU.
In particular, we thank Professor Hui-Sheng Chi, Professor Ke
Chen, Professor Tan Lee and Ms. Lan Wang for their
partic ipation in this project. We are grateful to Reuters Hong
Kong for donating their satellite feed to support our research.

7. REFERENCES
[1] Meng H., et al., “ISIS: A Multilingual Spoken Dialog

System developed with CORBA and KQML agents ,”
Proceedings of ICSLP, 2000.

[2] Meng, H. et al., “ISIS: A Learning System with Combined
Interaction and Delegation Dialogs” Proceedings of
Eurospeech, September 2001.

[3] Cohen, P. et al., “An Open Agent Architecture,” in AAAI
Spring Symposium, March 1994.

[4] Bayer S. et al., “Exploring Speech-Enabled Dialog with
the GALAXY Communicator Infrastructure,” Proceedings
of HLT Conference, 2001.

[5] Finin, T. et al, “KQML – A Language and Protocol for
Knowledge and Information Exchange,” Technical Report
CS-94-02, Univ. of Maryland, UMBC .

