
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 1

Neural Architecture Search
For LF-MMI Trained Time Delay Neural Networks

Shoukang Hu, Xurong Xie, Mingyu Cui∗, Jiajun Deng∗, Shansong Liu, Jianwei Yu, Mengzhe Geng,
Xunying Liu, Member, IEEE, Helen Meng, Fellow, IEEE

Abstract—State-of-the-art automatic speech recognition (ASR)
system development is data and computation intensive. The
optimal design of deep neural networks (DNNs) for these systems
often require expert knowledge and empirical evaluation. In this
paper, a range of neural architecture search (NAS) techniques
are used to automatically learn two types of hyper-parameters
of factored time delay neural networks (TDNN-Fs): i) the left
and right splicing context offsets; and ii) the dimensionality
of the bottleneck linear projection at each hidden layer. These
techniques include the differentiable neural architecture search
(DARTS) method integrating architecture learning with lattice-
free MMI training; Gumbel-Softmax and pipelined DARTS
methods reducing the confusion over candidate architectures
and improving the generalization of architecture selection; and
Penalized DARTS incorporating resource constraints to balance
the trade-off between performance and system complexity. Pa-
rameter sharing among TDNN-F architectures allows an efficient
search over up to 728 different systems. Statistically significant
word error rate (WER) reductions of up to 1.2% absolute and
relative model size reduction of 31% were obtained over a state-
of-the-art 300-hour Switchboard corpus trained baseline LF-
MMI TDNN-F system featuring speed perturbation, i-Vector
and learning hidden unit contribution (LHUC) based speaker
adaptation as well as RNNLM rescoring. Performance contrasts
on the same task against recent end-to-end systems reported
in the literature suggest the best NAS auto-configured system
achieves state-of-the-art WERs of 9.9% and 11.1% on the
NIST Hub5’ 00 and Rt03s test sets respectively with up to
96% model size reduction. Further analysis using Bayesian
learning shows that the proposed NAS approaches can effectively
minimize the structural redundancy in the TDNN-F systems
and reduce their model parameter uncertainty. Consistent per-
formance improvements were also obtained on a UASpeech
dysarthric speech recognition task. Our code is available at
https://github.com/skhu101/TDNN-F NAS.

Index Terms—Neural Architecture Search, Time Delay Neural
Network, Speech Recognition

I. INTRODUCTION

STATE-OF-THE-ART automatic speech recognition (ASR)
system are becoming increasingly complex. Deep learning

techniques play a key role in these systems [1]–[7] and
have in recent years evolved into a large set of advanced
deep neural network (DNN) models. These include the tra-
ditional hybrid HMM-DNN architecture [7]–[12] featuring

∗Two authors contributed equally. Shoukang Hu (e-mail:
skhu@se.cuhk.edu.hk), Mingyu Cui, Jiajun Deng, Shansong Liu, Jianwei Yu,
Mengzhe Geng, Xunying Liu (e-mail: xyliu@se.cuhk.edu.hk), Helen Meng
(e-mail: hmmeng@se.cuhk.edu.hk) are with the Department of Systems
Engineering and Engineering Management, The Chinese University of Hong
Kong, Hong Kong SAR, China. Xurong Xie (e-mail: xurong@iscas.ac.cn)
is with Institute of Software, Chinese Academy of Sciences, Beijing, China.
(Corresponding author: Xunying Liu.)

convolutional neural networks (CNNs) [8], [9], time delay
neural networks (TDNNs) [1], [5]–[7] or recurrent neural
networks (RNNs) [10]–[12] and their long short-term memory
variants [13], [14]; and the recently emerging all neural end-
to-end (E2E) modelling paradigm represented by listen, attend
and spell (LAS) [15], connectionist temporal classification
(CTC) [16], RNN transducers (RNN-T) [17] and neural trans-
former models [18]–[21].

The development of these systems is data and computation
intensive. The optimal design of neural architectures in these
systems often requires a large set of hyper-parameters encod-
ing varying structural configurations to be set, for example,
the hidden layer dimensionality and connectivity between
different layers. To date these are largely determined based on
expert knowledge or empirical choice. As explicitly training
and evaluating the performance of all possible neural struc-
tural configurations is highly expensive, the need of deriv-
ing suitable automated neural network architecture learning
techniques [22], [23] for speech recognition systems becomes
particularly salient.

To this end, neural architecture search (NAS) ap-
proaches [24] have gained increasingly interest in recent years
in both the computer vision [25]–[44] and speech [45]–[58]
communities. The key objectives of NAS methods can be
formulated as three fold. First, to allow the best system to be
selected, it is crucial for NAS methods to produce an accurate
performance rank ordering over different candidate neural
architectures. Second, when designing practical systems oper-
ating on a given ASR accuracy performance target, preference
should be given to neural architectures with fewer parameters
in order to reduce the parameter uncertainty and minimize
the risk of overfitting to limited training data. Furthermore, to
ensure the NAS algorithms’ scalability and efficiency on large
data sets, a compact search space containing all candidate
neural architectures of interest and exploiting the structural
commonalities among them needs to be defined.

Earlier forms of NAS techniques were based on neural
evolution [59]–[63], where genetic algorithms were employed
during mutation and crossover rounds by randomly select-
ing architecture choices. Performance and efficiency of these
evolution based NAS methods heavily depends on the pre-
cise choice over parent model structures, mutation population
groups and off-springs. For example, a pairwise competition
based tournament selection approach [64] was used to sam-
ple parents in [27], [28], while a Pareto optimality based
multi-objective approach was used in [29] to select neural
architectures and adjust the trade-off between the predicted

https://github.com/skhu101/TDNN-F_NAS

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 2

performance and number of parameters. NAS methods based
on Bayesian Optimization (BO) [65] were also explored to
predict the performance rank ordering. Performance ranking
prediction over candidate architectures was learned in non-
parametric fashion using Gaussian Process (GP) models [66]
in [30], [67], where the similarity metric among candidate
architectures was efficiently computed using kernel functions.

Reinforcement learning (RL) based NAS approaches [25],
[26] have also been investigated. In these methods, the search
space is formulated as a discrete state space and the generation
of neural architectures is regarded as the agent’s actions in
response to the reward based on the performance of the
sampled models. Explicit system training and evaluation of
candidate architectures are required in the above existing NAS
techniques. In addition, as the architecture hyper-parameters
and actual DNN parameters are separately learned, for exam-
ple, within the RL controller and candidate neural network
systems, a tighter integration of both is preferred.

Alternatively, differentiable neural architectural search
(DARTS) techniques [31]–[38] can be used. Neural architec-
ture search is efficiently performed over an over-parameterized
super-network model that contains all possible candidate ar-
chitectures to be considered. Within such a super-network, the
underlying NAS problem is transformed into the estimation
of the weight parameters assigned to each candidate neural
architecture. After the super-network model containing both
architecture weights and normal DNN parameters has been
trained to convergence, the optimal architecture is obtained
by pruning lower weighted paths. One prominent advantage
of DARTS based NAS methods is that they allow both the
architecture selection and candidate DNN parameters to be
consistently optimized within the same super-network model.

In this paper, a range of DARTS based NAS techniques are
used to automatically learn two architecture hyper-parameters
that heavily affect the performance and model complexity of
state-of-the-art lattice-free Maximum Mutual Information (LF-
MMI) trained factored time delay neural network (TDNN-
F) [1], [5]–[7] acoustic models: i) the left and right splicing
context offsets; and ii) the dimensionality of the bottleneck
linear projection at each hidden layer. These include the
standard DARTS method that fully integrates the estimation
of architecture weights and TDNN-F parameters in LF-MMI
training; the Gumbel-Softmax DARTS technique producing
approximately one-hot architecture distributions to reduce the
confusion during model search; the pipelined DARTS method
that circumvents the overfitting of architecture weights using
validation data; and the penalized DARTS approach that fur-
ther incorporates a resource penalty to flexibly adjust the trade-
off between performance and system complexity. Parameter
sharing among candidate architectures allows efficient search
over a large number (up to 728) of different TDNN-F systems
to be performed.

Experiments conducted on a state-of-the-art 300-hour
Switchboard corpus trained baseline LF-MMI TDNN-F sys-
tem featuring speed perturbation, i-Vector and learning hid-
den unit contribution (LHUC) [68] based speaker adaptation
as well as RNNLM rescoring suggest the NAS configured
TDNN-F models consistently outperform the baseline systems

using manually designed configurations or random architecture
search. Significant absolute word error rate (WER) reductions
up to 1.2% and model size reduction of 31% relative were
obtained. Performance contrasts on the same task against most
recent hybrid and end-to-end attention and transformer based
systems reported in the literature [69]–[72] suggest our best
NAS auto-configured system achieve state-of-the-art WERs of
9.9% and 11.1% on the NIST Hub5’00 and Rt03s test sets
respectively with up to 96% model size reduction. Further
analysis using Bayesian learning shows the proposed NAS
approaches can effectively minimize the structural redundancy
in the TDNN-F systems and reduce their model parameter
uncertainty. Consistent performance improvements were also
obtained on a UASpeech [73] dysarthric speech recognition
task.

The main contributions of this paper are summarized below:

1) This paper presents the first use of DARTS based NAS
techniques to automatically learn architecture hyper-
parameters that directly affect the performance and
model complexity of state-of-the-art LF-MMI trained
TDNN-F acoustic models. In contrast, previous NAS
researches conducted on similar systems either used
a) evolutionary algorithms requiring expert setting of
initial genes and long evaluation time for each individual
candidate architecture [49] (up to 4 days even with a
manual early-stopping mechanism) while in our NAS
approaches the entire architecture search is performed
over all possible 728 candidate systems and model
training cycle is limited to approximately 6.6 GPU days;
or b) architecture sampling based straight-through gradi-
ent approach [53] on a TDNN-CTC end-to-end system
producing much higher WERs (12.6% and 23.2%) on
the swbd and callhm subsets of Hub5’ 00 test set than
our NAS auto-configured TDNN-F systems on the same
data (6.9% and 13.0%) presented in this paper.

2) To facilitate efficient search over a very large number
of TDNN-F systems, this paper presents the first use
of a flexible model parameter sharing scheme that is
tailor-designed for specific hyper-parameters contained
in TDNN-F systems, to the best of our knowledge. The
generic nature of the proposed NAS methods accompa-
nying parameter sharing technique also allows them to
be employed to improve the efficiency and scalability
of similar neural architecture design issues encountered
during system development for end-to-end approaches
including transformers [54], [55].

3) This paper presents the best published NAS based LF-
MMI TDNN-F system performance reported in the
literature on the 300-hour Switchboard task to the
best of our knowledge. Performance contrasts on the
same task against most recent hybrid and end-to-end
attention and transformer based systems reported in
the literature [69]–[72] suggest our best NAS auto-
configured system achieves state-of-the-art WERs of
9.9% and 11.1% on the NIST Hub5’00 and Rt03s test
sets respectively with model size reduction of up to 96%
relative.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 3

4) This paper further presents the earliest work on
analysing the efficacy of NAS approaches when be-
ing used to minimize the structural redundancy in the
TDNN-F systems and reduce their model parameter
uncertainty when given limited training data. In con-
trast, only speech recognition accuracy performance
and model size reduction are investigated in previous
researches [49]–[56], [72].

The rest of this paper is organized as follows. In section 2, a
set of differentiable neural architecture search (DARTS) tech-
niques are first introduced. These include the standard DARTS,
Gumbel-Softmax DARTS, pipelined DARTS and penalized
DARTS methods. Time delay neural networks are reviewed
in Section 3. The search spaces for automatically learning the
settings of context offsets and bottleneck projection dimen-
sionality choices in TDNN-F models and the accompanying
efficient parameter sharing scheme are discussed in Section
4. Section 5 shows the experiments and results. Finally, the
conclusions are drawn in Section 6.

A. Related works

With the rapid development of NAS techniques in the
machine learning and computer vision communities, there has
been also increasingly interest in applying these to speech
recognition systems.

• Evolutionary algorithms were used in [49] to automat-
ically learn a series of architecture hyper-parameters
in time delay neural networks (TDNNs) [1], [5], and
achieved 0.9% absolute WER reduction and 36% relative
model size reduction over the Kaldi recipe trained base-
line system on a spontaneous Japanese speech recognition
task [74].

• Genetic algorithms were also used in [50] to automati-
cally configure transformer model architectures. The NAS
configured transformer achieves 12.9% WER on the Wall
Street Journal (WSJ) task, outperforming the baseline
transformer system by 0.6% absolute WER reduction.

• DARTS based NAS method have been investigated to
automatically configure hyper-parameters for CNNs [51],
[52], ST-NAS [53] and transformer models [54], [55]
respectively. In particular, the concurrent work ST-
NAS [53] applied an architecture sampling based straight-
through gradient approach on a TDNN-CTC end-to-end
system. WERs of 12.6% and 23.2% were reported on the
swbd and callhm subset of the Hub5’ 00 test set on the
Switchboard conversational telephone speech recognition
task. The ST-NAS configured system outperformed the
baseline system by 2.0% and 2.3% absolute WER reduc-
tion.

• Performance of various NAS techniques were also eval-
uated in [56] on the TIMIT task for CNN models.

II. NEURAL ARCHITECTURE SEARCH

In this section, we introduce several forms of differentiable
neural architecture search (DARTS) methods considered in
this paper, including the standard DARTS, Gumbel-Softmax
DARTS, pipelined DARTS and penalized DARTS methods.

With no loss of generality, the general form of DARTS
architecture selection methods [31], [32], [34], [36] are intro-
duced as follows. For example, the l-th neural network hidden
layer output hl can be computed as a linear combination
between the architecture weights λli and candidate architecture
choices φli(·) in the DARTS super-network:

hl =

N l−1∑
i=0

λliφ
l
i(W

l
ih

l−1) (1)

where λli is the architecture weight for the i-th candidate
choice in the l-th layer, N l is the total number of choices
in this layer. The precise form of neural architectures being
considered at this layer is determined by the linear transforma-
tion parameter Wl

i and activation function φli(·) used by each
candidate system. For example, when selecting the TDNN-
F hidden layer context offsets, the linear transformation is
a binary-valued matrix for each candidate architecture, and
φli(·) is represented by an identity matrix. When selecting
the dimensionality of the bottleneck linear projection at each
hidden layer, the linear transformation Wl

i = W̃l
iŴ

lT

i is a
decomposed matrix, while φli(·) is also an identity matrix.

A. Softmax DARTS

In the conventional DARTS [31] system, a Softmax function
is used to model the architecture selection weights λli:

λli =
exp(logαl

i)∑N l−1
j=0 exp(logαl

j)
(2)

where logαl
i is the architecture dependent parameter deter-

mining their contribution during NAS search.
When using the standard back-propagation algorithm to

update the architecture weights parameter λli, the loss function
(including LF-MMI criterion [6] considered in this paper)
gradient against the logαl

k is computed as below.

∂L
∂ logαl

k

=
∂L
∂hl

N l−1∑
i=0

(
1i=kλ

l
i − λliλlk

)
φli(W

l
ih

l−1) (3)

where 1i=k is the indicator function. When the DARTS super-
network containing both architecture weights and normal DNN
parameters is trained to convergence, the optimal architecture
can be obtained by pruning lower weighted architectures that
are considered less important. However, when similar architec-
ture weights are obtained using a flattened Softmax function,
the confusion over different candidate systems increases and
search errors may occur.

B. Gumbel-Softmax DARTS

In order to address the above issue, a Gumbel-Softmax
distribution [32], [33], [35], [75] is used to sharpen the ar-
chitecture weights to produce approximately a one-hot vector.
This allows the confusion between different architectures to
be minimised. The architecture weights are computed as,

λli =
exp((logαl

i +Gl
i)/T)∑N l−1

j=0 exp((logαl
j +Gl

j)/T)
(4)

where Gl
i = − log(− log(U l

i)) is the Gumbel variable, and U l
i

is a uniform random variable. When the temperature parameter

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 4

Softmax DARTS Gumbel-Softmax DARTS

e.g., 𝜆!=[0.3,0.4,0.3] e.g., 𝜆!=[0,1,0] (temperature 𝑇 → 0)

𝜆!" =
exp(log 𝛼!")
∑# exp(log 𝛼#")

𝜆"! =
exp((log 𝛼",$% + 𝐺"!)/𝑇)
∑$ exp(log 𝛼$! + 𝐺$!)/𝑇)

𝜆!" 𝜆#" 𝜆$"

0.3
0.4

0.3

𝜆!" 𝜆#" 𝜆$"

0

1

0

Fig. 1. Example architecture weights learned using Softmax DARTS (left)
and Gumbel-Softmax DARTS (right) respectively.

T approaches 0, it has been shown that the Gumbel-Softmax
distribution is close to a categorical distribution [75]. An
example contrast between the Softmax DARTS and Gumbel-
Softmax DARTS methods learned neural architecture weights
is shown in Fig. 1.

Different samples of the uniform random variable U l
i lead

to different values of λli in Eq. 4. The loss function gradient
w.r.t logαl

k is computed as an average over J samples of the
architecture weights,

∂L
∂ logαl

k

=
1

J

J∑
j=0

∂L
∂hl,j

N l−1∑
i=0

1i=kλ
l,j
i − λ

l,j
i λl,jk

T
φli(W

l
ih

l−1,j)

(5)
where λl,j is the j-th sample weights vector drawn from
the Gumbel-Softmax distribution in the l-th layer, hl,j is
the output of l-th layer by using the j-th sample λl,j . We
assume the Gumbel-Softmax variables λl at different layers
are mutually independent.

C. Pipelined DARTS

As both architecture weights and normal DNN parameters
are learned at the same time in Softmax and Gumbel-Softmax
DARTS systems, the search algorithms may prematurely select
sub-optimal architectures at an early stage. Inspired by [76],
we decouple the update of normal DNN parameters and
architecture weights into two separate stages performed in
sequence. This leads to the pipelined DARTS approach. In
order to prevent overfitting to the training data, a separate held-
out data set taken out of the original training data is used. In
Pipelined DARTS systems, the normal DNN parameters are
updated to convergence on the training data first (not contain-
ing the separate held-out data), while randomly sampled one-
hot architecture weights drawn from a uniform distribution
are used. In the following stage, we fix the normal DNN
parameters estimated in the first stage in the super-network
and update the architecture weights using the held-out data
for both Softmax DARTS and Gumbel-Softmax DARTS. This
produces the Pipelined Softmax DARTS (PipeSoftmax) and
Pipelined Gumbel-softmax DARTS (PipeGumbel) systems.

D. Penalized DARTS

In order to flexibly adjust the trade-off between system
performance and complexity, a penalized loss function incor-

porating the underlined neural network size is used, given as
follows:

L = LLF−MMI + η
∑
l,i

λliC
l
i (6)

where LLF−MMI is the lattice-free MMI criterion considered
in this paper. Cl

i is the term related with the model complexity
of the i-th candidate considered at the l-th layer, which can
be expressed in different forms, for example, the number
of model parameters, floating-point operations (FLOPs) or
the latency computed given the specified hardware. Unless
otherwise stated in this paper, we treat Cl

i as the number of
parameters of the i-th candidate considered at the l-th layer. η
is the penalty scaling factor empirically set for different tasks.

III. TIME DELAY NEURAL NETWORK

Time delay neural networks (TDNNs) [1], [5]–[7], [77],
[78] based hybrid HMM-DNN acoustic models in recent years
defined state-of-the-art speech recognition performance over a
wide range of tasks, due to their strong power in modelling
long range temporal dependencies in speech. In particular,
the recently proposed factored TDNN systems [7] featuring
lattice-free MMI sequence discriminative training [6] remain
highly competitive against all neural end-to-end approaches to
date [70]–[72], [78]–[81].

t
0 +3

-3 0

0 +1

-1 0

t t+3

t-3

t-3 t+4

t-4 t+4
Fig. 2. An example TDNN architecture with splicing context offsets {-1,0}
{0,1} {-3,0} {0,3} in turn from the bottom to the top layer.

TDNNs can be considered as a special form of one-
dimensional convolutional neural networks (CNNs) [82] when
parameters are tied across different time steps. An example
TDNN model is shown in Fig. 2. The bottom layers of
TDNNs are designed to learn a narrower temporal context
span, while the higher layers to learn wider, longer range
temporal contexts. One important type of hyper-parameters
in TDNN models controlling its temporal modelling ability
is the left and right splicing context offsets. These alter the
temporal context ranges learned in each TDNN hidden layer.
The splicing context offsets used in the example of Fig. 2 are
{-1,0} {0,1} {-3,0} {0,3} from the bottom to the top layer. To
further reduce the risk of overfitting to limited training data
and the number of parameters, a factored TDNN (TDNN-F)
model structure was proposed in [7], which compresses the
weight matrix by using semi-orthogonal matrix decomposition.
In this TDNN-F model, the hidden layer specific bottleneck

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 5

projection dimensionality settings present another group of
hyper-parameter that needs to be determined.

If we assume 7 possible context offset choices to the
left and another 7 context offset choices to the right to be
learned at each of the 14 TDNN-F layers, there are up to 728

context offset choices being considered in the search space.
When determining the number of bottleneck dimensions, for
example, out of a total of 8 possible settings, at each of
the 14 hidden TDNN-F layers, again a very large number of
possible system configurations of 814 need to be considered
during NAS. In this paper, we adopt the DARTS based NAS
methods presented in Sec. II to automatically learn the above
discussed two sets of hyper-parameters of TDNN-F models.
The over-parameterized super-network containing all possible
left and right splicing context offsets and bottleneck projection
dimensionality choices and the associated parameter sharing
technique will be introduced in the next section.

IV. SEARCH SPACE AND PARAMETER SHARING

This section describes the search space and its implementa-
tion when NAS methods of Sec. II are used to automatically
learn two sets of hyper-parameters of TDNN-F models: i)
the left and right splicing context offsets; and ii) the dimen-
sionality of the bottleneck linear projection at each hidden
layer. Parameter sharing among candidate architectures used
to facilitate efficient search over a large number of TDNN-F
systems is also presented. Finally, NAS lattice used to extract
top-ranked candidate models is introduced.

A. TDNN-F Context Offset Search Space

𝒛!"#$
…

𝒛!#$"#$𝒛!#%"#$

𝒉!"

#𝒉!" …#𝒉!&$" #𝒉!&%"

1/0 1/1 1/0

1/01/11/0

Affine
layer

Linear
layer

Fig. 3. Example part of a super-network containing all the context offsets for
a TDNN-F layer. Dashed lines with different colors represent different context
choices in each linear (left context) and affine (right context) transforms. The
blue integers denote the super-network system using all the context offsets,
while the red integers represent a candidate offset choice of ±1.

Context offset settings play an important role in modelling
the long temporal information in TDNN-F models. However,
manually selecting context offsets is time-consuming for dif-
ferent applications. Inspired by the parameter-sharing used
in earlier NAS research [26], we design a TDNN-F super-
network (Fig. 3) to contain all possible choices of context
offsets to the left ({-d,0}, · · · , {-1,0}, {0,0}) and right ({0,0},
{0,1}, · · · , {0,d}) at each layer during search. For the super-
network system, it requires the sparse context connection
weights to be densely set as 1 for all context offsets. Any
candidate TDNN-F model with particular context offsets out

of the total (d+1)2L possible choices contained in the super-
network is represented by setting the corresponding connection
weights to be 1, while setting the others to be 0.

B. TDNN-F Bottleneck Dimensionality Search Space

×𝑯

𝑯

…

#𝑾𝟎#𝑾𝟎:𝒌

#𝑾𝟎:𝒏%𝟏

…

𝑯
%𝑾𝟎
𝑻

%𝑾𝟎:𝒌
𝑻

Linear
matrix

Affine
matrix

Full
matrix ≈ 𝑯

(𝑾𝒊
𝑻 * (𝑾𝒋 = 𝟎

(𝑾𝒊
𝑻 * (𝑾𝒊 = 𝟏

%𝑾𝟎:𝒏%𝟏
𝑻

Semi-orthogonal

Fig. 4. Example part of a super-network containing different bottleneck
projection dimensionality choices in the TDNN-F hidden layer. The full
weight matrix is factored into one semi-orthogonal linear weight matrix
W̃0:n−1 and one affine weight matrix Ŵ0:n−1. Architectures with different
projection dimensions are represented by the corresponding submatrices
starting form the first column.

Similarly, a TDNN-F super-network containing all the can-
didate architectures with different projection dimensions is
designed, as shown in Fig. 4 for one hidden layer. When
applying the NAS methods in Sec.2, φli(·) of Eq. 1 is set as an
identity matrix. In common with the standard TDNN-F model,
the weight matrix Wl

i of the i-th architecture choice in the l-
th layer is factored into one semi-orthogonal weight matrix
W̃l

0:ni−1 and one affine weight matrix Ŵl
0:ni−1 as shown

in Fig. 4. ni is the dimensionality of the i-th architecture.
Parameter sharing among different candidate architectures’
linear matrices W̃0:k (left to right from the first column)
and affine matrices Ŵ0:k (bottom to up from the first row)
(0 ≤ k ≤ n− 1) is implemented by taking the corresponding
submatrices extracted from the largest matrix W̃0:n−1. Such
sharing allows a large number of TDNN-F projection dimen-
sionality choices at each of the 14 layers, e.g., selected from
8 values {25, 50, 80, 100, 120, 160, 200, 240} as considered
in this paper, to be compared for selection during search.
This leads to a total of 814 candidate TDNN-F systems to
be selected from.

C. NAS lattice

{0}/0.1

{-2,0}/0.7

{-1,0}/0.2

{0,2}/0.8

{0,1}/0.1

{0}/0.1

{-2,0}{0}: 0.7*0.1; {-2,0}{0,1}: 0.7*0.1; {-2,0}{0,2}: 0.7*0.8;
{-1,0}{0}: 0.2*0.1; {-1,0}{0,1}: 0.2*0.1; {-1,0}{0,2}: 0.2*0.8;

{0}{0}: 0.1*0.1; {0}{0,1}: 0.1*0.1; {0}{0,2}: 0.1*0.8;

… …

Fig. 5. Part of an example NAS lattice containing architecture weights. Blue
integers denote different TDNN-F left or right context offset choices, while
red integers are their associated weights. Among all 9 possible context choices
shown in the figure, the brown colored path with +/-2 offsets is chosen with
the highest probability 0.7 ∗ 0.8 = 0.56.

When the architecture weights are learned using various
NAS methods presented in Sec. II, all the candidate archi-
tectures contained in the super-network (as introduced in
Sec. IV-A and Sec. IV-B) can be represented by a NAS

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 6

lattice carrying their associated weights as the measure of their
ranking order. Top 1-best or top N-best candidate architectures
can then be extracted from the resulting NAS lattice. An
example part of a NAS lattice for determining the TDNN-F
left and right context offsets is shown in Fig. 5.

V. EXPERIMENTS

This section is organized as follows. Firstly, the performance
of learning two architecture hyper-parameters that heavily
affect the performance and model complexity of state-of-
the-art factored time delay neural network (TDNN-F) [1],
[5]–[7] acoustic models trained on the benchmark 300-hour
Switchboard corpus and featuring speed perturbation, i-Vector
and learning hidden unit contribution (LHUC) [68] based
speaker adaptation as well as RNNLM rescoring is presented
in Sec. V-A. Further analysis using Bayesian learning are
conducted to show that the proposed NAS approaches can
effectively minimize the structural redundancy in the TDNN-
F systems and reduce their model parameter uncertainty.
Secondly, to further evaluate the performance of the proposed
NAS techniques, they were applied to automatically configure
the same two sets of hyper-parameters of a state-of-the-art
dysarthric speech recognition task based on the UASpeech
corpus [73], [83] in Sec. V-B.

All of our models were trained with one thread on a single
NVIDIA Tesla V100 Volta GPU card. In the searching stage,
TDNN-F super-network models are trained on the training set
with one thread for 3 epochs, while architecture parameters
of PipeSoftmax and PipeGumbel systems are updated for
additional 3 epochs using a held-out data set by fixing the
normal DNN parameters. Note that we randomly select 5%
of the original training set as the held-out data set and T in
the Gumbel-Softmax distribution is linearly annealed from 1
to 0.03 in our experiments. Once candidate TDNN-F models
are derived from the searching stage, they are trained for
3 epochs from scratch. The matched pairs sentence-segment
word error (MAPSSWE) based statistical significance test [84]
was performed at a significance level α = 0.05.

A. NAS Experiments on 300-Hour Switchboard Task

This section presents our NAS experiments of learning
either the left and right splicing context offsets or bottleneck
linear projection dimensionality or both of them at each layer
on the 300-hour (900-hour after speed perturbation) Switch-
board telephone speech recognition task using the Kaldi toolkit
[85]. In all our experiments, we follow the Kaldi chain model
setup1, except that we used 40-dimension filterbank features
for neural network training instead of the 40-dimension high-
resolution Mel-frequency cepstral coefficients (MFCCs).

Task Description: The Switchboard I telephone speech
corpus consists of approximately 300 hours audio data released
by LDC (LDC97S62). The baseline GMM-HMM system
was trained based on 40-dimensional Mel-frequency cepstral
coefficients (MFCCs) to generate alignments for the neural

1All of this is in published Kaldi code at https://github.com/kaldi-
asr/kaldi/tree/master/egs/swbd/s5c/run.sh and https://github.com/kaldi-
asr/kaldi/tree/master/egs/swbd/s5c/local/chain/tuning/run tdnn 7q.sh.

network training. For performance evaluation, a four-gram
language model (LM) trained on the Switchboard and Fisher
transcripts (LDC2004T19, LDC2005T19) was used to eval-
uate NIST HUB5’ 00 (LDC2002S09, LDC2002T43), RT03
(LDC2007S10) and RT02 (LDC2004S11) test sets. In addi-
tion, the Kaldi recipe LSTM recurrent neural network language
model (RNNLM) trained on the Switchboard and Fisher
transcripts (LDC2004T19, LDC2005T19) was used to rescore
the nbest lists produced by the LF-MMI trained systems with
a four-gram language model (LM). The performance of LF-
MMI trained TDNN baseline system incorporated with i-
Vector [86] and speed perturbation is shown in line 1 of Tab. I,
Tab. II and Tab. III. Furthermore, the effects of LHUC [68]
based speaker adaptation were investigated.

1) TDNN-F Context Offset Search: In this section, we
describe the experimental results of searching context offsets
at each factored TDNN layer by using various NAS methods
of Sec. II. In Tab. I, system (1) is the baseline Kaldi recipe1

trained factored TDNN system. As a direct and exhaustive
search over all possible context offset settings is infeasible, a
heuristic based two stage manual search is adopted. First, the
position of the single hidden layer where the left and right
context offsets are both restricted to 0 (default position 4th
hidden layer in Sys (1)), was relocated to the 2nd, 3rd, 5th
and 8th hidden layers respectively. These changes produced
manual systems (2)-(5) shown in Tab. I, and were designed to
intuitively vary the ratio between the hidden layers in the lower
section of the system modelling shorter range of temporal
contexts, and those in the higher section capturing longer
span information. No significant performance difference can
be obtained over the baseline recipe setting (Sys (1)). Second,
this is then followed by fixing the L/R contexts as 0 in the
4th layer while further enlarging those used by the higher
positioned hidden layers (from layer 5 to 14) incrementally
to ±6, ±9, ±12. Among the resulting manually configured
systems (6)-(8), the setting of ±9 produced absolute WER
reduction up to 0.6% (Sys (7) in Tab. I) across three test sets
over the baseline recipe system (1). Based on these results,
the following NAS experiments were conducted to perform
the search over 728 TDNN-F configurations with maximum
context offsets set as ±62 at each layer. The remaining part
of Tab. I shows the performance and corresponding hidden
layer context offsets learned using the four DARTS based
NAS methods of Sec. II, Softmax, Gumble-softmax (Gum-
ble), Pipelined Softmax (PipeSoftmax) and Pipelined Gumbel-
softmax (PipeGumbel). For each of these four techniques, the
associated super-network system that averaging over all possi-
ble system configurations, and the top 1, 2 and 3 architecture
after system retraining are presented in turn, for example,
shown in system (9)-(12) for the Softmax DARTS method.
Similar experiments were conducted and shown for the other
three approaches in the remaining 3 parts of Tab. I from system
(13) to (24). Three main trends can be observed from the

2Systems performing the search over 1028 TDNN-F choices with the
maximum context offsets of ±9 can not produce better results in practice
than those with the maximum context offsets of ±6. Hence, all the following
NAS experiments perform the search over 728 TDNN-F choices with the
maximum context offsets of ±6.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 7

TABLE I
PERFORMANCE (WER%) COMPARISON OF TDNN-F MODELS CONFIGURED WITH CONTEXT OFFSETS PRODUCED BY THE BASELINE SYSTEM, MANUAL

DESIGNED SYSTEMS, SOFTMAX DARTS (SOFTMAX), GUMBEL-SOFTMAX DARTS (GUMBEL), PIPELINED SOFTMAX DARTS (PIPESOFTMAX),
PIPELINED GUMBEL-SOFTMAX DARTS (PIPEGUMBEL) SYSTEMS DESCRIBED IN SEC. II. {[a, b]}:{−c, d} DENOTES CONTEXT OFFSETS {−c, 0} TO THE

LEFT AND {0, d} TO THE RIGHT USED FROM a-TH LAYER TO b-TH LAYER INCLUSIVE. † DENOTES A STATISTICALLY SIGNIFICANT DIFFERENCE IS
OBTAINED OVER THE BASELINE SYSTEM (SYS (1)). (SWB1 AND CHM DENOTE THE SWITCHBOARD AND CALLHM SUBSETS OF THE HUB5’ 00 TEST

SET; FSH AND SWB2 DENOTE THE FISHER AND SWITCHBOARD SUBSETS OF THE RT03S TEST SET; SWB3, SWB4 AND SWB5 DENOTE THREE
SWITCHBOARD SUBSETS IN THE RT02 TEST SET.)

Sys Method I-Vec Context Offsets Hub5’ 00 Rt03S Rt02 Avg #param Time+SP SWB1 CHM FSH SWB2 SWB3 SWB4 SWB5
1 Baseline 3 {[1,3]}:{-1,1}; {4}:{0}; {[5,14]}:{-3,3} 9.7 18.0 12.6 19.5 11.5 15.3 20.0 15.5 18.6M 30h
2

Manual 3

{1}:{-1,1}; {2}:{0}; {[3,14]}:{-3,3} 9.4† 17.9 12.5 19.4 11.4 15.3 19.4† 15.4

18.6M 30h

3 {[1,2]}:{-1,1}; {3}:{0}; {[4,14]}:{-3,3} 9.4† 17.8 12.3† 19.6 11.4 15.0† 19.5† 15.3
4 {[1,4]}:{-1,1}; {5}:{0}; {[6,14]}:{-3,3} 9.6 17.6† 12.4 19.4 11.3 15.5 19.4† 15.3
5 {[1,7]}:{-1,1}; {8}:{0}; {[9,14]}:{-3,3} 9.4† 17.9 12.3† 19.6 11.4 15.4 19.4† 15.4
6 {[1,3]}:{-1,1}; {4}:{0}; {[5,14]}:{-6,6} 9.4† 17.5† 12.1† 19.0† 11.4 15.1 18.9† 15.1†
7 {[1,3]}:{-1,1}; {4}:{0}; {[5,14]}:{-9,9} 9.2† 17.7† 11.9† 18.7† 11.1† 14.9† 18.7† 14.9†
8 {[1,3]}:{-1,1}; {4}:{0}; {[5,14]}:{-12,12} 9.6 18.1 12.1† 18.9† 11.3 15.0† 18.8† 15.1†

9 Softmax
Supernet

3

{[1,14]}:{[-6,6]} 9.5 17.6 12.4 19.7 11.2 15.0 19.6 15.4 53.5M 113h

10 Softmax
Top1

{1}:{0,6}; {[2,4]}:{-2,2}; {5}:{0};
{6}:{0,1}; {7}:{-1,2}; {[8]}:{-2,6};
{9}:{-6,3}; {10}:{-4,6};{[11,14]}:{-6,6}

9.4† 17.4† 12.3† 19.4 11.1† 15.2 19.5† 15.2† 18.2M

30h11 Softmax
Top2

{1}:{0,6}; {2,4}:{-2,2}; {3}:{-2,3}; {5}:
{0}; {6}:{0,1}; {7}:{-1,2}; {[8]}:{-2,6};
{9}:{-6,3}; {10}:{-4,6};{[11,14]}:{-6,6}

9.4† 17.5† 12.2† 19.5 11.1† 15.0† 19.3† 15.2† 18.2M

12 Softmax
Top3

{1}:{0,6}; {2}:{-2,3}; {[3,4]}:{-2,2}; {5}:
{0}; {6}:{0,1}; {7}:{-1,2}; {[8]}:{-2,6};
{9}:{-6,3}; {10}:{-4,6};{[11,14]}:{-6,6}

9.4† 17.4† 12.2† 19.3 11.2† 15.3 19.2† 15.2† 18.2M

13 Gumbel
Supernet

3

{[1,14]}:{[-6,6]} 10.4 19.3 13.6 20.9 12.1 16.3 20.8 16.6 53.5M 113h

14 Gumbel
Top1

{1}:{0}; {2,3}:{-3,3}; {4}:{-4,3}; {5,6}:
{-4,4}; {7}:{-5,6}; {[8,14]}:{-6,6} 9.3† 17.6† 12.1† 19.3 11.2† 15.0† 19.0† 15.1† 18.6M

30h15 Gumbel
Top2

{1}:{0}; {2,4}:{-3,3}; {3}:{-2,3};
{5}:{-4,3}; {6,7}:{-4,4};
{8}:{-5,6}; {[9,14]}:{-6,6}

9.3† 16.9† 11.9† 19.1† 11.1† 15.0† 18.6† 14.9† 18.6M

16 Gumbel
Top3

{1}:{0,3}; {2}:{-3,3}; {3}:{-3,4};
{4}:{-3,2}; {5,6}:{-4,4};
{7}:{-5,6}; {[8,14]}:{-6,6}

9.5 17.6† 12.1† 19.6 11.0† 15.2 19.2† 15.2† 18.9M

17 PipeSoftmax
Supernet

3

{[1,14]}:{[-6,6]} 9.7 18.2 12.5 19.9 11.3 14.9 19.6 15.5 53.6M 80h

18 PipeSoftmax
Top1

{1}:{-1,2}; {2}:{-2,2}; {3}:{-2,5};
{4}:{-3,6}; {5}:{-4,5}; {6}:{-5,6};
{9}:{-6,5}; {7,8,[10,14]}:{-6,6}

9.2† 17.4† 12.2† 19.2† 11.2† 15.0† 18.7† 15.0† 19.2M

30h19 PipeSoftmax
Top2

{1}:{-1,2}; {2}:{-2,2}; {3}:{-2,5};
{4}:{-2,6}; {5}:{-4,5}; {6}:{-5,6};
{9}:{-6,5}; {7,8,[10,14]}:{-6,6}

9.4† 17.6† 12.0† 19.5 11.2† 15.0† 19.0† 15.1† 19.2M

20 PipeSoftmax
Top3

{1}:{-1,2}; {2}:{-2,2}; {3}:{-2,5};
{4}:{-3,6}; {5}:{-4,5}; {6}:{-5,6};

{9}:{-6,5}; {11}:{-6,0};
{7,8,10,[12,14]}:{-6,6}

9.4† 17.5† 12.1† 19.3 11.1† 15.0† 19.6† 15.2† 19.2M

21 PipeGumbel
Supernet

3

{[1,14]}:{[-6,6]} 10.5 19.8 13.8 21.9 12.1 16.5 21.8 17.0 53.6M 80h

22 PipeGumbel
Top1

{1}:{-2,2}; {2}:{-2,4}; {3}:{-5,5};
{5}:{-6,5}; {4,[6,14]}:{-6,6} 9.3† 17.3† 12.4 19.1† 11.0† 15.0† 19.0† 15.1† 19.2M

30h23 PipeGumbel
Top2

{1}:{-2,2}; {2}:{-2,5}; {3}:{-5,5};
{5}:{-6,5}; {4,[6,14]}:{-6,6} 9.4† 17.6† 12.2† 19.3 11.3 14.8† 18.9† 15.1† 19.2M

24 PipeGumbel
Top3

{1}:{-2,2}; {2}:{-2,4}; {3}:{-5,5};
{[4,14]}:{-6,6} 9.4† 17.9 12.3† 19.3 11.4 14.9† 19.3† 15.2† 19.2M

results in Tab. I.
1) NAS configured TDNN-F systems (Sys (10), (14),

(18), (22)) consistently outperform the baseline Kaldi
recipe [85] TDNN-F system (Sys (1)). For example,
PipeGumbel DARTS system (Sys (22)) significantly
outperforms the baseline system (Sys (1)) by 0.7% and
1.0% absolute WER reductions on the CHM subset of
Hub5’ 00 test set and SWB5 subset of Rt02 test set.

2) Compared with the manually designed systems (Sys (2)-
(8)) constructed using a total of 210 GPU hours (30*7

hours for 7 systems), the NAS configured TDNN-F sys-
tems (Sys (18) & (22)) produce comparable performance
to the best manually crafted system (Sys (7)) and a much
smaller number of GPU hours of 110 (reduced by 48%
relative) during both architecture search and subsequent
model retraining.

3) No significant WER difference averaged over all test sets
is obtained among the top 1-best Softmax (Sys (10)),
Gumbel-Softmax DARTS (Sys (14)), PipeSoftmax (Sys
(18)) and PipeGumbel DARTS (Sys (22)) systems, while

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 8

TABLE II
PERFORMANCE (WER%, NUMBER OF PARAMETERS) COMPARISON OF TDNN-F MODELS CONFIGURED WITH PROJECTION DIMENSIONS PRODUCED BY
THE BASELINE SYSTEM, MANUAL DESIGNED SYSTEMS, SOFTMAX DARTS (SOFTMAX), GUMBEL-SOFTMAX DARTS (GUMBEL), PIPELINED SOFTMAX
DARTS (PIPESOFTMAX), PIPELINED GUMBEL-SOFTMAX DARTS (PIPEGUMBEL) SYSTEMS IN SEC. II. η IS THE PENALTY FACTOR IN EQN. (6). THE

DIMENSIONALITY INDEX DENOTES THE INDEX OF 8 DIMENSIONALITY CHOICES: {25,50,80,100,120,160,200,240}. † DENOTES A STATISTICALLY
SIGNIFICANT DIFFERENCE IS OBTAINED OVER THE BASELINE SYSTEM (SYS (1)).

Sys Method I-Vec
η Bottleneck Dim Index Hub5’ 00 Rt03S Rt02 Avg #param Time+SP SWB1 CHM FSH SWB2 SWB3 SWB4 SWB5

1 Baseline 3 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 9.7 18.0 12.6 19.5 11.5 15.3 20.0 15.5 18.6M 30h
2

Manual 3 -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.0 18.8 13.1 20.7 11.9 15.9 20.9 16.3 7.5M 22h
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9.9 18.1 12.3† 20.0 11.6 15.6 21.0 15.8 9.6M 24h
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 9.5 17.8 12.0† 19.6 11.5 15.0† 20.4 15.4 12.1M 26h
5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9.5 17.5† 12.0† 19.4 11.3 14.8† 20.4 15.3 13.7M 27h
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9.6 17.8 12.1† 19.3 11.7 15.2 20.3 15.4 15.4M 28h
7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 9.8 18.2 12.7 19.9 12.1 16.0 20.5 15.9 22.0M 32h
8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10.0 18.6 12.6 19.8 12.1 15.8 20.5 15.9 25.3M 34h

9 Softmax
Supernet

3 0

{[1, 14]}:{0,1,2,3,4,5,6,7} 9.6 18.0 12.2 19.3 11.5 15.2 20.0 15.4 25.3M 45h

10 Softmax
Top1 0 0 0 0 7 7 0 7 7 7 7 7 7 7 9.6 17.7† 12.2† 19.4 11.6 15.3 20.2 15.4 19.4M 36h

11 Softmax
Top2 0 0 0 0 7 0 0 7 7 7 7 7 7 7 9.6 17.5† 12.2† 19.7 11.1† 15.1 19.9 15.4 18.1M 24h

12 Softmax
Top3 0 0 7 0 7 7 0 7 7 7 7 7 7 7 9.4† 17.6† 12.0† 19.5 11.3 15.2 19.9 15.3 20.7M 24h

13 Gumbel
Supernet

3 0

{[1, 14]}:{0,1,2,3,4,5,6,7} 10.0 18.5 13.1 20.3 11.9 15.8 20.4 16.1 25.3M 45h

14 Gumbel
Top1 2 3 2 0 4 5 5 6 5 5 6 5 5 5 9.2† 17.3† 12.0† 19.1† 10.7† 14.8† 19.3† 15.0† 17.2M 30h

15 Gumbel
Top2 2 3 2 0 4 5 5 6 6 5 6 5 5 5 9.3† 17.4† 11.8† 19.3 10.8† 14.6† 19.1† 15.0† 17.4M 30h

16 Gumbel
Top3 2 3 2 0 4 5 5 6 5 6 6 5 5 5 9.1† 17.4† 11.9† 19.1† 10.8† 14.7† 19.3† 15.0† 17.4M 30h

17 PipeSoftmax
Supernet

3 0

{[1, 14]}:{0,1,2,3,4,5,6,7} 9.7 18.2 12.6 20.4 11.4 14.6 20.0 15.7 25.3M 45h

18 PipeSoftmax
Top1 6 6 6 6 6 5 4 0 0 0 0 0 0 7 9.5 18.3 12.5 19.7 11.5 15.4 19.8 15.6 15.1M 27h

19 PipeSoftmax
Top2 6 6 6 6 6 5 6 0 0 0 0 0 0 7 9.7 18.1 12.6 20.0 11.7 15.4 20.1 15.7 15.6M 26h

20 PipeSoftmax
Top3 6 6 6 6 6 5 5 0 0 0 0 0 0 7 9.7 18.5 12.8 20.1 11.7 15.5 20.6 15.9 15.3M 27h

21 PipeSoftmax
Top1 3 0.3 2 2 2 0 2 2 2 2 2 0 0 0 0 5 9.5 17.8 12.2† 19.6 11.4 14.9† 20.3 15.4 11.0M 24h

22 PipeSoftmax
Top1 3 0.5 1 1 2 0 1 1 1 1 1 1 0 0 0 4 9.8 17.8 12.3† 20.1 11.3 15.0† 20.3 15.6 9.6M 23h

23 PipeGumbel
Supernet

3 0

{[1, 14]}:{0,1,2,3,4,5,6,7} 9.9 18.2 12.8 20.7 11.3 14.8 20.4 15.9 25.3M 45h

24 PipeGumbel
Top1 6 6 6 6 5 5 1 1 2 0 0 7 7 7 9.5 17.7† 12.3† 19.3 11.3 15.0† 19.7† 15.3 17.5M 30h

25 PipeGumbel
Top2 6 6 7 6 5 5 1 1 2 0 0 7 7 7 9.4† 17.5† 12.3† 19.2† 11.5 15.2 19.4† 15.2† 17.8M 30h

26 PipeGumbel
Top3 6 6 6 6 5 5 1 1 1 0 0 7 7 7 9.5 17.9 12.3† 19.2† 11.3 15.1 19.2† 15.2† 17.3M 30h

27 PipeGumbel
Top1 3 0.1 2 3 2 0 2 2 2 1 2 1 0 3 5 5 9.2† 17.4† 11.9† 19.2† 10.9† 14.4† 19.5† 15.0† 12.4M 26h

28 PipeGumbel
Top1 3 1.0 1 1 1 0 1 1 1 1 1 1 1 1 2 3 9.4† 17.8 12.3† 19.7 11.0† 14.9† 19.9 15.4 10.0M 24h

the super-network training for pipelined DARTS systems
(Sys (17) & (21)) were in practice found to converge
faster than those of the non-pipelined counterparts (Sys
(9) & (13)).

2) TDNN-F Bottleneck Projection Dimensionality Search:
To further evaluate the performance of DARTS based NAS
methods of Sec. II, a set of experiments comparable to those
in Tab. I are conducted to learn the suitable bottleneck pro-
jection dimensionality choices at each factored TDNN layer.
In Tab. II, system (1) is shown as the baseline Kaldi recipe1

trained TDNN-F system. Systems (2)-(8) are the manually
designed factored TDNN-F systems by uniformly setting all

the layer specific bottleneck projection dimensions to be one
of the following values: 25, 50, 80, 100, 120, 200 or 240.

Tab. II shows the performance of NAS based auto-
configuration of bottleneck projection dimensions at each
factored TDNN layer from the following choices: 25, 50, 80,
100, 120, 160, 200 or 240, using the four methods of Sec. II.
This set leads to a total of 814 factored TDNN systems to
be selected from. Again in common with the context offset
NAS experiments of Tab. I, for each of these four tech-
niques, Softmax, Gumble-softmax (Gumble), Pipelined Soft-
max (PipeSoftmax) and Pipelined Gumbel-softmax (PipeGum-
bel), the performance of the associated super-network system

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 9

(Sys (9), (13), (17) & (23) in Tab. II), and the respective top 1,
2 and 3 architecture based systems retraining (Sys (10)-(12),
(14)-(16), (18)-(22) and (24)-(28)) are presented in Tab. II.
Several trends can be observed from the results in Tab. II.

1) When compared with the baseline Kaldi recipe [85]
system (Sys (1)), the Gumbel and PipeGumbel systems
(Sys (14), (24)) with a similar model size of approx-
imately 17 million parameters achieve comparable or
better performance. For example, the Gumbel Top 1
system (Sys (14)) produces 0.5% absolute significant
WER reduction on average across all test sets.

2) When compared with the best-performing manually de-
signed system (Sys (5)), Gumbel Top 1 system (Sys
(14)) also produces 0.3% statistically significant absolute
WER reduction on average across all three test sets.

3) If we further add the resource penalty to the objective
loss function as presented in the penalized DARTS
method of Sec. II-D, the PipeGumbel system (Sys
(27), with penalty coefficient η = 0.1) can produce
statistically significant absolute WER reductions ranging
from 0.3% (SWB2 subset of Rt03S test set) to 0.9%
(SWB4 subset of Rt02 test set) and a relative model
size reduction of 33% over the baseline Kaldi recipe
trained TDNN-F system (Sys (1)), by selecting fewer
bottleneck projection dimensions at higher layers than
the PipeGumbel system (Sys (24)) using no model size
penalty.

4) The PipeGumbel system (Sys (28) with penalty coeffi-
cient η = 1.0) achieves the largest relative model size
reduction of 46% with a marginal WER reduction of
0.1% when compared with the baseline recipe TDNN-
F system (Sys (1)). This serves an alternative penal-
ized PipeGumbel system setting to system (27), which
favours the most aggressively compressed model archi-
tecture incurring no accuracy performance degradation.

Note that the resource penalty was not added to the archi-
tecture search stage of Softmax and Gumbel-Softmax DARTS
systems due to the requirement of retraining super-network
parameters for different resource penalty scaling factors. For
efficiency, in the following NAS experiments where both the
hidden layer L/R context offsets and bottleneck projection
dimensions are automatically determined, only Pipelined Soft-
max and Gumble-Softmax DARTS systems are used.

3) TDNN-F Context Offsets and Bottleneck Projection Di-
mensionality Search: The performance of Pipelined Gumbel-
Softmax and Pipelined Softmax DARTS methods are further
evaluated by searching both context offsets and bottleneck
projection dimensionality at each factored TDNN layer. In
Tab. III, their performance are again contrasted with those
of the baseline Kaldi recipe system (Sys (1)), the best
manually designed system (Sys (2)) and a random search
configured system (Sys (3)). The manually designed system
(2) is configured using the best-performing context offset and
dimensionality settings selected from those manually designed
systems in Tab. I and Tab. II. The Random Search system
(3) is obtained by selecting the best performing model from
6 randomly sampled models with different context offsets or

dimensionality choices during search.
Systems (4)-(5) in Tab. III are produced by using the

PipeSoftmax or PipeGumbel method to learn the context
offsets and bottleneck projection dimensionality settings in a
one by one, “two-stage” fashion. This means the architecture
search over these two attributes are separately performed in
each stage. In contrast, systems (6)-(7) are produced by using
the PipeSoftmax or PipeGumbel method to learn these two
attributes jointly in the same super-network during one single
round of architecture search. For all systems in Tab. III,
their performance prior to and after further applying addi-
tional LHUC [68] speaker adaptation and Kaldi recipe LSTM
RNNLM rescoring are also shown.

The details of Kaldi recipe LSTM RNNLM rescoring are as
follows: two unidirectional (forward/backward) context based
long short-term memory recurrent neural network language
models (LSTM LMs) [87] were built following the standard
Kaldi recipe. The transcripts of both the Switchboard training
data and the Fisher English corpora were encoded as 1024
dimensional embedding vectors to train the LSTM LMs. Each
LSTM LM consisted of 2 unidirectional LSTM layers with
1024 cells. Projections were used inside the LSTMs to reduce
the output dimensions to 512. A context splicing layer with
ReLU activation was exploited before and after each LSTM
layers. The splicing indices of the three context splicing
layers were {-1, 0}, {-3, 0}, and {-3, 0}. Finally, an affine
transformation was used to generate the output embedding
vectors. For performance evaluation, the two LSTM LMs were
employed in turn to rescore the lattices generated by the 4-
gram LM.

Several trends can be observed from Tab. III.

1) By searching the context offsets and bottleneck pro-
jection dimensionality in a sequential manner, the
PipeGumbel Top 1 system (Sys (5)3) produces 0.5%
(SWB1 subset of Hub5’ 00 test set) to 1.2% (SWB5
subset of Rt02 test set) absolute WER reductions on
three test sets and a relative model size reduction of 31%
over the baseline Kaldi recipe factored TDNN system
(Sys (1)).

2) When compared with the manually designed system
(2) in Tab. III, the PipeGumbel Top 1 system (Sys
(5)) achieves comparable performance and reduces the
overall system design and training time from 463 to
160 GPU hours. The PipeGumbel Top 1 system (Sys
(5)) also outperforms the Random Search system (3) in
Tab. III.

3) The two stage search over the above two groups
of hyper-parameters (PipeGumbel Sys (5)) in practice
outperforms performing a joint search over the two
(PipeGumbel Sys (7)) by statistically significant absolute
WER reduction of 0.3% on average across three test sets.
One possible explanation is that increased modelling
confusion and search errors are encountered in the latter

3NAS selected projection dimensions at each layer:{80, 80, 80, 50, 80, 50,
80, 50, 80, 80, 100, 120, 120, 160} and context configurations {-2,2}, {-2,4},
{-5,5}, {-6,6}, {-6,5}, {-6,6}, {-6,6}, {-6,6}, {-6,6}, {-6,6}, {-6,6}, {-6,6},
{-6,6}, {-6,6}

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 10

TABLE III
PERFORMANCE (WER%, NUMBER OF PARAMETERS) OF TDNN-F BASELINE SYSTEMS, TDNN-F MODELS CONFIGURED WITH BOTH CONTEXT OFFSETS

AND PROJECTION DIMENSIONALITY PRODUCED BY PIPELINED SOFTMAX DARTS (PIPESOFTMAX) OR PIPELINED GUMBEL-SOFTMAX DARTS
(PIPEGUMBEL) OR RANDOM SEARCH BEFORE AND AFTER APPLYING LHUC SPEAKER ADAPTATION AND RNNLM RESCORING. RANDOM SEARCH

SELECTS THE BEST PERFORMED MODEL FROM 6 RANDOMLY SAMPLED MODELS. η IS THE PENALTY FACTOR IN EQN. (6). ”TWO STAGE” DENOTES THE
CONTEXT OFFSETS AND BOTTLENECK PROJECTION DIMENSIONS ARE SEARCHED IN A SEQUENTIAL ORDER. ”JOINT” DENOTES CONTEXT OFFSETS AND

BOTTLENECK PROJECTION DIMENSIONS ARE SEARCHED IN THE SAME SUPER-NETWORK. † DENOTES A STATISTICALLY SIGNIFICANT DIFFERENCE IS
OBTAINED OVER THE BASELINE KALDI RECIPE SYSTEMS (SYS (1) & (8)).

Sys Method I-Vec LHUC LM Context
η

Hub5’ 00 Rt03S Rt02 Avg #param Time+SP & Dim SWB1 CHM FSH SWB2 SWB3 SWB4 SWB5
1 Baseline

3 7 4-gram

- -

9.7 18.0 12.6 19.5 11.5 15.3 20.0 15.5 18.6M 30h
2 Manual 9.1† 17.3† 11.9† 18.7† 10.6† 14.6† 19.0† 14.8† 13.7M 463h

3 Random
Search 9.5 18.2 12.3† 19.7 11.0† 15.0† 20.1 15.3 13.8M 162h

4 PipeSoftmax
(Top1) Two

Stage

0.1 9.5 17.4† 12.2† 19.5 11.2† 15.0† 19.5† 15.2† 13.7M

160h
5 PipeGumbel

(Top1) 0.3 9.2† 17.3† 11.8† 18.8† 10.7† 14.7† 18.8† 14.8† 12.9M

6 PipeSoftmax
(Top1) Joint

0.1 9.4† 17.5† 12.1† 19.4 11.2† 14.8† 19.5† 15.2† 11.7M

7 PipeGumbel
(Top1) 0.3 9.3† 17.6† 12.1† 19.2† 11.2† 15.2 19.2† 15.1† 11.7M

8 Baseline

3 3 +RNNLM

- -

7.9 15.2 10.1 16.3 9.5 12.4 16.1 12.8 18.6M 32h
9 Manual 7.4† 14.4† 9.5† 15.3† 8.7† 11.8† 15.2† 12.0† 13.7M 465h

10 Random
Search 7.6† 15.1 10.0 16.3 9.2† 12.3 16.3 12.7 13.8M 164h

11 PipeSoftmax
(Top1) Two

Stage

0.1 7.6† 14.6† 9.8† 15.9† 9.1† 11.9† 15.9 12.3† 13.7M

162h
12 PipeGumbel

(Top1) 0.3 7.4† 14.2† 9.4† 15.4† 8.8† 11.9† 15.1† 12.0† 12.9M

13 PipeSoftmax
(Top1) Joint

0.1 7.6† 14.3† 9.5† 15.8† 8.7† 11.8† 15.0† 12.1† 11.7M

14 PipeGumbel
(Top1) 0.3 7.7 14.7† 9.6† 15.7† 9.1† 12.2 15.3† 12.3† 11.7M

TABLE IV
PERFORMANCE (WER%, NUMBER OF PARAMETERS) COMPARISON OF TDNN-F SYSTEMS COMBINED WITH BAYESIAN ESTIMATION OR PIPELINED

GUMBEL DARTS (PIPEGUMBEL) OR BOTH OF THEM. ”PARAMETER VARIANCE” DENOTES THE AVERAGE PARAMETER LATENT DISTRIBUTION’S
VARIANCE IN THE BAYESIAN ESTIMATED FACTORED TDNN SYSTEMS. † DENOTES A STATISTICALLY SIGNIFICANT DIFFERENCE IS OBTAINED BY NAS

CONFIGURED TDNN SYSTEMS AND BAYESIAN ESTIMATED TDNN SYSTEMS (LINE 2-4) OVER THE TDNN BASELINE SYSTEM (LINE 1).

System I-Vec LHUC LM Context Offset & Hub5’ 00 Rt03S Rt02 Avg #Param Parameter
+SP Bottleneck Dim SWB1 CHM FSH SWB2 SWB3 SWB4 SWB5 Variance

1 TDNN
3 7 4-gram

Manual 9.7 18.0 12.6 19.5 11.5 15.3 20.0 15.5 18.6M -
2 NAS 9.2† 17.3† 11.8† 18.8† 10.7† 14.7† 18.8† 14.8† 12.9M -
3 Bayes Manual 9.4† 17.3† 12.1† 19.2† 11.4 14.7† 19.1† 15.1† 18.6M 0.033
4 TDNN NAS 9.3† 17.5† 11.8† 18.8† 11.1† 14.7† 18.6† 14.8† 12.9M 0.025

TABLE V
PERFORMANCE (WER%, NUMBER OF PARAMETERS) OF TDNN-F MODELS CONFIGURED WITH BOTH CONTEXT OFFSETS AND PROJECTION DIMENSIONS

PRODUCED BY NAS USING THE ORIGINAL 300-HOUR DATA AND THE 900-HOUR AUGMENTED DATA.

Sys Method Search Retrain LHUC LM Hub5’ 00 Rt03S Rt02 Avg #paramSWB1 CHM FSH SWB2 SWB3 SWB4 SWB5
1

NAS
300h 300h

7 4g
9.6 19.8 13.2 20.9 11.6 15.6 21.8 16.4 13M

2 300h 900h 9.5 17.3 12.2 19.7 11.4 15.1 19.6 15.3 13M
3 900h 900h 9.2 17.3 11.8 18.8 10.7 14.7 18.8 14.8 13M

case when optimizing both attributes in the same super-
network for the PipeGumbel Top 1 system (Sys (7)).

4) We further hypothesize that by reducing the model
size and structural redundancy of TDNN-F systems,
the auto-configured NAS systems, for example, using
the best performing penalized PipeGumbel system (Sys
(5) in Tab. III), with 12.9M parameters, the uncertainty
associated with the resulting TDNN-F model parameters
can also be reduced. In order to verify this hypothesis,
we apply Bayesian estimation [88]–[93] to both the

baseline Kaldi recipe configured TDNN-F system and
the PipeGumbel NAS configured TDNN-F system (Sys
(1) & Sys (5) in Tab. III, shown again as Sys (1) & (2)
in Tab. IV). Efficient variational inference and parameter
sampling based training approaches [93] were used to
estimate the latent parameter posterior distributions in
these Bayesian estimated systems. The performance of
the corresponding two Bayesian TDNN-F systems are
shown as system (3) and (4) in Tab. IV. It is found
that the NAS auto-configured TDNN-F system (Sys

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 11

TABLE VI
PERFORMANCE CONTRASTS OF TDNN-F/CNN-TDNN-F MODELS CONFIGURED WITH BOTH CONTEXT OFFSETS AND PROJECTION DIMENSIONALITY

PRODUCED BY BASELINE SYSTEM OR PIPELINED GUMBEL (PIPEGUMBEL) DARTS (AFTER APPLYING BAYESIAN LHUC AND LARGE RNNLMS)
AGAINST OTHER STATE-OF-THE-ART SYSTEMS CONDUCTED ON THE 300-HOUR SWITCHBOARD TASK. THE OVERALL WERS IN ”()” ARE NOT REPORTED

BY THE ORIGINAL PAPERS AND ARE RECALCULATED USING THE SUBSET WERS.

System #Param Hub5’ 00 Rt03S
SWB1 CHM Avg. FSH SWB2 Avg.

1 RWTH SMBR BLSTM [69] - 6.7 14.7 10.7 - - -
2 + Affine transform based environment adaptation - 6.7 13.5 10.2 - - -
3 JHU ESPNet Transformer [70] - 9.0 18.1 13.6 - - -
4 Google Listen, Attend and Spell network + SpecAugment [71] - 6.8 14.1 (10.5) - - -
5 IBM LSTM based Attention encoder-decoder

+ SpecAugment + weight noise [72]

29M 7.4 14.6 (11.0) - - -
6 75M 6.8 13.4 (10.1) - - -
7 280M 6.4 12.5 (9.5) 8.4 14.8 (11.7)
8 LF-MMI TDNN + BLHUC + Large RNNLM 19M 7.6 14.4 11.0 8.9 14.3 11.7
9 LF-MMI NAS TDNN + BLHUC + Large RNNLM 13M 7.1 13.3 10.2 8.5 13.9 11.3

10 LF-MMI CNN-TDNN + BLHUC + Large RNNLM 15.2M 6.9 12.9 9.9 8.3 13.9 11.2
11 LF-MMI NAS CNN-TDNN + BLHUC + Large RNNLM 10.8M 6.9 13.0 9.9 8.3 13.7 11.1

(4) in Tab. IV) has a smaller average parameter latent
distribution’s variance (0.025) compared with a larger
one (0.033) associated with the baseline system using
the baseline recipe configuration (Sys (3) in Tab. IV).
Furthermore, no performance is obtained by applying
Bayesian estimation to the NAS auto-configured fac-
tored TDNN-F system (Sys (2) vs. (4) in Tab. IV),
in contrast to the significant WER reduction of 0.4%
found on the baseline recipe systems without using NAS
(Sys (3) vs. Sys (1)). These results suggest the proposed
NAS approaches can effectively minimize the structural
redundancy in the TDNN-F systems and reduce their
model parameter uncertainty.

5) We also report an ablation study on the transferability
of NAS configured hyper-parameters across data sets
of different sizes, where we contrast the performance
of transferring the 300-hour subset set (without speed
perturbation) NAS learned TDNN-F context offsets and
projection dimensions to the 900-hour full set (with
speed perturbation) during system training (Sys (2)
in Tab. V), against performing both NAS and system
training exclusively using the 900-hour full set (Sys (3)
in Tab. V). The significant WER differences observed
between these two systems suggest further research is
required to improve the transferability and generalization
of NAS methods across different data sets and quantities.

6) By further incorporating both LHUC speaker adapta-
tion [68] and the Kaldi recipe LSTM RNNLM rescoring,
similar performance improvements can still be main-
tained. Statistically significant absolute WER reductions
of 0.5% (on SWB1 subset of Hub5’ 00 test set and
SWB4 subset of Rt02 test set) to 1.0% (on CHM subset
of Hub5’ 00 test set and SWB5 subset of Rt02 test set)
are obtained by the PipeGumbel Top 1 system (12) over
the Kaldi recipe configured baseline system (8).

In the following experiments, the performance of the best
PipeGumbel Top 1 system (Sys (12) in Tab. III) was further
refined by incorporating the more powerful Bayesian LHUC
adaptation [94] in place of the conventional deterministic
LHUC adaptation, and a larger LSTM RNNLM with a doubled
number of LSTM cells (2048) and projection dimensionality

(1024) compared with the smaller LSTM RNNLM used in
Tab. III. This is shown as system (9) in Tab. VI, together
with a comparable PipeGumbel configured CNN TDNN-F
system (11)4 whose TDNN layer context offsets and pro-
jection dimensionality settings are automatically determined.
The baseline Kaldi configured TDNN-F and CNN TDNN-
F systems are shown as system (8) and (10) respectively.
The PipeGumbel NAS configured TDNN-F and CNN TDNN-
F systems (Sys (9) & (11)) are further compared with the
state-of-the-art performance obtained using a series of recent
hybrid and end-to-end systems reported in the literature (Sys
(1)-(7) in Tab. VI). Among these, system (1) and (2) in
Tab. VI are the RWTH BLSTM hybrid systems without and
with affine transformation for environment adaptation [69].
System (3) is the JHU ESPNet based transformer end-to-end
system [70]. System (4) is the Google Listen, Attend and Spell
end-to-end system built with SpecAugment [71]. System (5)-
(7) are the IBM LSTM based attention encoder-decoder end-
to-end systems constructed using SpecAugment and weight
noise [72].

Competitive performance is obtained by the Pipelined
Gumbel-Softmax searched TDNN-F and CNN TDNN-F sys-
tems (Sys (9) & (11)) on the CHM subset of Hub5’00 test set
and Rt03S test sets when compared with the other hybrid and
end-to-end systems (Sys (1)-(7) in Tab. VI), while retaining
more compact system sizes. In particular, the NAS configured
CNN-TDNN-F system (Sys (11) with 10.8M parameters)
achieves a state-of-the-art WER of 11.1% on the Rt03S test
set, outperforming the most complex and best performing IBM
system (Sys (7) with 280M parameters) by a WER reduction of
0.6% absolute as well as a 96.1% relative model size reduction.

B. NAS Experiments on Dysarthric UASpeech Task
In order to further evaluate the performance of the proposed

NAS techniques, they were applied to automatically configure
the above discussed two sets of hyper-parameters of a state-
of-the-art dysarthric speech recognition task based on the
UASpeech corpus [73].

4NAS selected projection dimensions at each TDNN-F layer: {120, 100,
80, 80, 80, 80, 100, 100, 120} and context configurations {-6,6}, {-6,6},
{-6,6}, {-6,6}, {-6,6}, {-6,6}, {-6,6}, {-6,6}, {-6,6}

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 12

TABLE VII
PERFORMANCE (WER%, NUMBER OF PARAMETERS) OF TDNN-F SYSTEMS CONFIGURED WITH BOTH CONTEXT OFFSETS AND PROJECTION

DIMENSIONALITY PRODUCED BY BASELINE SETTING, PIPELINED GUMBEL-SOFTMAX DARTS (PIPEGUMBEL) OR RANDOM SEARCH BEFORE AND
AFTER APPLYING LHUC SAT AND TEST TIME UNSUPERVISED ADAPTATION. RANDOM SEARCH SELECTS THE BEST PERFORMED MODEL FROM 6

RANDOMLY SAMPLED MODELS (WITH MAXIMUM CONTEXT OFFSETS ±3). η IS THE PENALTY FACTOR IN EQN. (6). {[a, b]}:{−c, d} DENOTES CONTEXT
OFFSETS {−c, 0} TO THE LEFT AND {0, d} TO THE RIGHT USED FROM a-TH LAYER TO b-TH LAYER INCLUSIVE. THE DIMENSIONALITY INDEX DENOTES
THE INDEX OF 8 DIMENSIONALITY CHOICES: {25,50,80,100,120,160,200,240}. ”VERY LOW”, ”LOW”, ”MID” AND ”HIGH” DENOTE THE GROUP OF

SPEAKERS WITH DIFFERENT INTELLIGIBILITY. † DENOTES A STATISTICALLY SIGNIFICANT DIFFERENCE IS OBTAINED OVER THE BASELINE KALDI
RECIPE SYSTEMS (SYS (1) & (4)).

Sys Method SP LHUC
η

Context offsets & WER% #Param TimeSAT Bottleneck Dim Index Very Low Low Mid High Avg.

1 Baseline (Manual)

3 7
-

{[1,3]}:{-1,1}; {4}:{0};
{[5,7]}:{-3,3} & 5 5 5 5 5 5 5 57.5 31.5 23.6 13.3 29.4 9.5M 3h

2 Random Search
(1 best)

{[1,2]}:{-3,2};{[3]}:{-3,1};
{[4,5]}:{-3,3}; {[6]}:{-2,0};
{[7]}:{-3,1} & 4 3 4 6 7 6 5

57.7 31.8 22.8† 14.2 29.6 9.8M 17h

3 PipeGumbel
(Top1) 0 {[1,3]}:{0}; {[4,7]}:{-2,2}

& 3 4 7 2 3 3 0 58.6 30.6† 21.5† 11.7† 28.4† 6.4M 13h

4 Baseline (Manual)

3 3
-

{[1,3]}:{-1,1}; {4}:{0};
{[5,7]}:{-3,3} & 5 5 5 5 5 5 5 56.1 29.6 19.5 12.8 27.6 9.5M 7h

5 Random Search
(1 best)

{[1,2]}:{-3,2};{[3]}:{-3,1};
{[4,5]}:{-3,3}; {[6]}:{-2,0};
{[7]}:{-3,1} & 4 3 4 6 7 6 5

56.3 30.1 19.9 13.3 27.9 9.8M 21h

6 PipeGumbel
(Top1) 0 {[1,3]}:{0}; {[4,7]}:{-2,2}

& 3 4 7 2 3 3 0 55.8† 28.0† 19.7 11.2† 26.6† 6.4M 17h

Task Description: The UASpeech corpus is the largest
publicly available dysarthric speech corpus that is designed
as an isolated word recognition task [73]. Approximately 103
hours of speech was recorded from 29 speakers among which
16 are dysarthric speakers while the remaining 13 are healthy
control speakers. For speech recognition system development,
the entire corpus is further divided into 3 subset blocks per
speaker, with each block containing different speech contents
based on a mix of common and uncommon words. Among
these, the same set of common words contents are used in all
three blocks, while the uncommon words in each block are
different. The data from Block 1 (B1) and Block 3 (B3) of
all the 29 speakers are used as the training set (69.1 hours of
audio, 99195 utterances in total), while the data of Block 2
(B2) collected from all the 16 dysarthric speakers (excluding
speech from healthy control speakers) serve as the evaluation
data set (22.6 hours of audio, 26520 utterances in total). After
removing excessive silence at the start and end of speech audio
segments [95], a combined total of 30.6 hours of audio data
from Block 1 and 3 (99195 utterances) is used as the training
set, while 9 hours of speech from Block 2 (26520 utterances) is
used for performance evaluation. Similar as Sec. V-A, a GMM-
HMM system was trained with 39-dimensional PLP features
to generate alignments for the neural network training. The
factored TDNN baseline5 featuring speed perturbation6 was
trained following the Kaldi chain setup, except that i-Vector
was not incorporated. Following the configurations specified
in [95], [97], recognition is performed using a uniform lan-
guage model with a word grammar network constructed using
255 test set words.

The performance comparison among the baseline TDNN-F
system, a random search configured system and the PipeGum-

5The frames_per_eg variable was set to be 150,110,90,60,30.
6Following our previous work [96], data augmentation featuring speed

perturbation of both control and dysarthric speech was conducted, which leads
to an augmented training set of 130.1h.

bel DARTS auto-configured TDNN-F system, before and
after LHUC speaker adaptive training (SAT) and test time
unsupervised adaptation were applied, are shown in Tab. VII.
The same trend previously observed on the Switchboard task
of Sec. V-A can be found again. First, the PipeGumbel auto-
configured TDNN-F system (3) consistently outperforms the
baseline TDNN-F system (1) and random search configured
system (2). For example, statistically significant WER reduc-
tion of 1.0% on average and 33% relative model size reduc-
tion were obtained by PipeGumbel auto-configured TDNN-
F system (3) when compared with the baseline system (1).
Second, after further incorporating LHUC SAT and test time
unsupervised adaptation, similar performance improvements
can still be retained.

VI. CONCLUSION

This paper presents a range of DARTS based neural archi-
tecture search techniques to automatically learn two groups
of architecture hyper-parameters that heavily affect the per-
formance and model complexity of state-of-the-art lattice-free
MMI trained factored time delay neural network acoustic
models: i) the left and right splicing context offsets; and
ii) the dimensionality of the bottleneck linear projection at
each hidden layer. Parameter sharing among candidate neural
architectures was used to facilitate efficient search over a
very large number of (up to 728) different TDNN-F system
configurations.

Experiments conducted on both the benchmark 300-hour
Switchboard corpus and the 103-hour UASpeech dysarthric
speech recognition task suggest the resulting NAS auto-
configured TDNN-F models consistently outperform the base-
line systems using manually designed configurations or ran-
dom search by significant absolute word error rate (WER)
reductions up to 1.2% and model size reduction of 31%
relative. State-of-the-art recognition accuracy performance was
obtained on the NIST Hub5’ 00 and Rt03s test sets and

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 13

compared with those of the most recent hybrid and end-to-
end attention and transformer based systems reported in the
literature [69]–[72]. Further analysis using Bayesian learning
demonstrates that the proposed set of NAS approaches can
effectively minimize the structural redundancy in the TDNN-
F systems and reduce their model parameter uncertainty. The
generic nature of these techniques also allows their wider
application to other speech task domains as well as similar
automatic neural architecture configuration problems when
developing speech recognition systems using end-to-end ap-
proaches.

ACKNOWLEDGMENT

This research is supported by Hong Kong Research Grants
Council GRF grant No. 14200218, 14200220, 14200021,
Theme-based Research Scheme T45-407/19N, Innovation
& Technology Fund grant No. ITS/254/19, PiH/350/20,
InP/275/20 and Shun Hing Institute of Advanced Engineering
grant No. MMT-p1-19.

REFERENCES

[1] A. Waibel, “Consonant recognition by modular construction of large
phonemic time-delay neural networks,” in Advances in neural informa-
tion processing systems, 1989, pp. 215–223.

[2] B. Kingsbury, “Lattice-based optimization of sequence classification
criteria for neural-network acoustic modeling,” in ICASSP, 2009, pp.
3761–3764.

[3] K. Veselỳ, A. Ghoshal, and et al., “Sequence-discriminative training of
deep neural networks.” in INTERSPEECH, 2013, pp. 2345–2349.

[4] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for sequence
training of context-dependent deep networks for conversational speech
transcription,” in ICASSP, 2013, pp. 6664–6668.

[5] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural net-
work architecture for efficient modeling of long temporal contexts,” in
INTERSPEECH, 2015, pp. 3214–3218.

[6] D. Povey and et al., “Purely sequence-trained neural networks for asr
based on lattice-free mmi.” in INTERSPEECH, 2016, pp. 2751–2755.

[7] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, and
S. Khudanpur, “Semi-orthogonal low-rank matrix factorization for deep
neural networks.” in INTERSPEECH, 2018, pp. 3743–3747.

[8] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” in ICASSP, 2012, pp. 4277–4280.

[9] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural
network structures and optimization techniques for speech recognition.”
in INTERSPEECH, 2013, pp. 73–5.

[10] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, pp. 64–67, 2001.

[11] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in ICASSP, 2013, pp. 6645–6649.

[12] A. Amberkar, P. Awasarmol, G. Deshmukh, and P. Dave, “Speech recog-
nition using recurrent neural networks,” in International Conference on
Current Trends towards Converging Technologies, 2018, pp. 1–4.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” in INTERSPEECH, 2014, pp. 338–342.

[15] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in ICASSP, 2016, pp. 4960–4964.

[16] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in ICML. ACM, 2006, pp. 369–376.

[17] A. JGraves, “Sequence transduction with recurrent neural networks,” in
Proc. ICML Workshop on Representation Learning, 2012.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[19] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019, pp. 4171–4186.

[20] L. Dong, L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-
recurrence sequence-to-sequence model for speech recognition,” in
ICASSP, 2018, pp. 5884–5888.

[21] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, and et al., “Conformer:
Convolution-augmented transformer for speech recognition,” in INTER-
SPEECH, 2020, pp. 5036–5040.

[22] S. Baluja and S. E. Fahlman, “Reducing network depth in the cascade-
correlation learning architecture,” Tech. Rep., 1994.

[23] I. Kirschning and et al., “A parallel recurrent cascade-correlation neural
network with natural connectionist glue,” in International Conference
on Neural Networks, vol. 2, 1995, pp. 953–956.

[24] T. Elsken and et al., “Neural architecture search: A survey,” The Journal
of Machine Learning Research, vol. 20, no. 1, pp. 1997–2017, 2019.

[25] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” ICLR, 2017.

[26] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” ICML, pp. 4095–4104, 2018.

[27] E. Real, S. Moore, A. Selle, and et al., “Large-scale evolution of image
classifiers,” in ICML, 2017, pp. 2902–2911.

[28] H. Liu, K. Simonyan, O. Vinyals, and et al., “Hierarchical representa-
tions for efficient architecture search,” in ICLR, 2018.

[29] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural
architecture search via lamarckian evolution,” ICLR, 2019.

[30] K. Kandasamy, W. Neiswanger, and et al., “Neural architecture search
with bayesian optimisation and optimal transport,” in Advances in Neural
Information Processing Systems, 2018, pp. 2020–2029.

[31] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” ICLR, 2019.

[32] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architec-
ture search,” ICLR, 2019.

[33] B. Wu and et al., “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in CVPR, 2019, pp. 10 734–
10 742.

[34] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” ICLR, 2019.

[35] X. Dong and Y. Yang, “Searching for a robust neural architecture in
four gpu hours,” in CVPR, 2019, pp. 1761–1770.

[36] S. Hu, S. Xie, H. Zheng, and et al., “Dsnas: Direct neural architecture
search without parameter retraining,” in CVPR, 2020, pp. 12 084–12 092.

[37] X. Chen, R. Wang, M. Cheng, X. Tang, and C. Hsieh, “Drnas: Dirichlet
neural architecture search,” in ICLR, 2021.

[38] S. Xie, S. Hu, X. Wang, C. Liu, and et al., “Understanding the
wiring evolution in differentiable neural architecture search,” in Artificial
Intelligence and Statistics, April 2021.

[39] E. Real and et al., “Regularized evolution for image classifier architec-
ture search,” in AAAI, vol. 33, 2019, pp. 4780–4789.

[40] M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional
kernels,” in BMVA, 2019, p. 74.

[41] C. Liu, L.-C. Chen, F. Schroff, and et al., “Auto-deeplab: Hierarchical
neural architecture search for semantic image segmentation,” in CVPR,
2019, pp. 82–92.

[42] V. Nekrasov, H. Chen, C. Shen, and I. Reid, “Fast neural architecture
search of compact semantic segmentation models via auxiliary cells,” in
CVPR, 2019, pp. 9126–9135.

[43] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “Detnas:
Backbone search for object detection,” Advances in Neural Information
Processing Systems, vol. 32, pp. 6642–6652, 2019.

[44] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convo-
lutional neural networks,” in ICML, 2019, pp. 6105–6114.

[45] T. Véniat, O. Schwander, and et al., “Stochastic adaptive neural archi-
tecture search for keyword spotting,” in ICASSP, 2019, pp. 2842–2846.

[46] T. Mo, Y. Yu, M. Salameh, D. Niu, and S. Jui, “Neural architecture
search for keyword spotting,” in INTERSPEECH, 2020, pp. 1982–1986.

[47] S. Ding, T. Chen, X. Gong, and et al., “Autospeech: Neural architecture
search for speaker recognition,” INTERSPEECH, pp. 916–920, 2020.

[48] J. Li, C. Liang, B. Zhang, and et al., “Neural architecture search on
acoustic scene classification,” INTERSPEECH, pp. 1171–1175, 2020.

[49] T. Moriya, T. Tanaka, T. Shinozaki, S. Watanabe, and K. Duh,
“Evolution-strategy-based automation of system development for high-
performance speech recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 27, no. 1, pp. 77–88, 2018.

[50] K. Jihwan, W. Jisung, K. Sangki, and et al., “Evolved speech trans-
former: Applying neural architecture search to end-to-end automatic
speech transformer,” INTERSPEECH, pp. 1788–1792, 2020.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 14

[51] Y.-C. Chen, J.-Y. Hsu, C.-K. Lee, and H.-y. Lee, “Darts-asr: Differ-
entiable architecture search for multilingual speech recognition and
adaptation,” INTERSPEECH, pp. 1803–1807, 2020.

[52] L. He, D. Su, and D. Yu, “Learned transferable architectures can
surpass hand-designed architectures for large scale speech recognition,”
in ICASSP, 2021, pp. 6788–6792.

[53] H. Zheng and et al., “Efficient neural architecture search for end-to-
end speech recognition via straight-through gradients,” in IEEE Spoken
Language Technology Workshop (SLT). IEEE, 2021, pp. 60–67.

[54] Y. Liu, T. Li, P. Zhang, and Y. Yan, “Improved conformer-based end-to-
end speech recognition using neural architecture search,” arXiv preprint
arXiv:2104.05390, 2021.

[55] X. Shi, P. Zhou, W. Chen, and L. Xie, “Efficient gradient-based neural
architecture search for end-to-end asr,” in Companion Publication of the
2021 International Conference on Multimodal Interaction, 2021, pp. 91–
96.

[56] A. Mehrotra and et al., “Nas-bench-asr: Reproducible neural architecture
search for speech recognition,” in ICLR, 2021.

[57] S. Hu, X. Xie, S. Liu, M. Cui, M. Geng, X. Liu, and H. Meng, “Neural
architecture search for lf-mmi trained time delay neural networks,” in
ICASSP, 2021, pp. 6758–6762.

[58] J. Deng, F. R. Gutierrez, S. Hu, M. Geng, X. Xie, Z. Ye, S. Liu, J. Yu,
X. Liu, and H. Meng, “Bayesian parametric and architectural domain
adaptation of lf-mmi trained tdnns for elderly and dysarthric speech
recognition.” in INTERSPEECH, 2021, pp. 4818–4822.

[59] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,” IEEE transactions
on Neural Networks, vol. 5, no. 1, pp. 54–65, 1994.

[60] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[61] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62,
2008.

[62] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based en-
coding for evolving large-scale neural networks,” Artificial life, vol. 15,
no. 2, pp. 185–212, 2009.

[63] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in ICML, 2015, pp. 2342–2350.

[64] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Proceedings of the First
Workshop on Foundations of Genetic Algorithms. Bloomington Campus,
Indiana, USA, July 15-18 1990, G. J. E. Rawlins, Ed. Morgan
Kaufmann, 1990, pp. 69–93.

[65] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[66] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. MIT press Cambridge, 2006, vol. 1.

[67] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. A. Osborne,
“Raiders of the lost architecture: Kernels for bayesian optimization in
conditional parameter spaces,” in Proc. Neural Information Processing
Systems Workshop on Bayesian optimization, 2013.

[68] P. Swietojanski, J. Li, and S. Renals, “Learning hidden unit contributions
for unsupervised acoustic model adaptation,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 24, no. 8, pp. 1450–
1463, 2016.

[69] M. Kitza, P. Golik, R. Schlüter, and H. Ney, “Cumulative adaptation for
blstm acoustic models,” INTERSPEECH, pp. 754–758, 2019.

[70] S. Karita, N. Chen, and et al., “A comparative study on transformer vs
rnn in speech applications,” in ASRU, 2019, pp. 449–456.

[71] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method for
automatic speech recognition,” INTERSPEECH, pp. 2613–2617, 2019.

[72] Z. Tüske, G. Saon, K. Audhkhasi, and B. Kingsbury, “Single headed
attention based sequence-to-sequence model for state-of-the-art results
on switchboard-300,” INTERSPEECH, pp. 551–555, 2020.

[73] H. Kim, M. Hasegawa-Johnson, A. Perlman, and et al., “Dysarthric
speech database for universal access research,” in INTERSPEECH, 2008,
pp. 1741–1744.

[74] S. Furui, K. Maekawa, and H. Isahara, “A japanese national project on
spontaneous speech corpus and processing technology,” in ASR2000-
Automatic Speech Recognition: Challenges for the new Millenium ISCA
Tutorial and Research Workshop (ITRW), 2000.

[75] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A
continuous relaxation of discrete random variables,” ICLR, 2017.

[76] Z. Guo, X. Zhang, and et al., “Single path one-shot neural architecture
search with uniform sampling,” in ECCV, 2020, pp. 544–560.

[77] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE trans-
actions on acoustics, speech, and signal processing, vol. 37, no. 3, pp.
328–339, 1989.

[78] H. Hadian, H. Sameti, D. Povey, and S. Khudanpur, “End-to-end speech
recognition using lattice-free mmi.” in INTERSPEECH, 2018, pp. 12–16.

[79] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer, R. Schlüter,
and H. Ney, “Rwth asr systems for librispeech: Hybrid vs attention,” in
INTERSPEECH, 2019, pp. 231–235.

[80] W. Zhou, W. Michel, K. Irie, M. Kitza, R. Schlüter, and H. Ney, “The
rwth asr system for ted-lium release 2: Improving hybrid hmm with
specaugment,” in ICASSP, 2020, pp. 7839–7843.

[81] J. Li, Y. Wu, Y. Gaur, C. Wang, R. Zhao, and S. Liu, “On the comparison
of popular end-to-end models for large scale speech recognition,” in
INTERSPEECH, 2020, pp. 1–5.

[82] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[83] S. Liu, S. Hu, X. Xie, M. Geng, M. Cui, J. Yu, X. Liu, and H. M. Meng,
“Recent progress in the cuhk dysarthric speech recognition system,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2021.

[84] L. Gillick and S. J. Cox, “Some statistical issues in the comparison of
speech recognition algorithms,” in ICASSP, 1989, pp. 532–535.

[85] D. Povey, A. Ghoshal, G. Boulianne, and et al., “The kaldi speech
recognition toolkit,” Tech. Rep., 2011.

[86] N. Dehak, P. J. Kenny, R. Dehak, and et al., “Front-end factor analysis
for speaker verification,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 4, pp. 788–798, 2010.

[87] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in INTERSPEECH, 2012, pp. 194–197.

[88] D. J. MacKay, “A practical bayesian framework for backpropagation
networks,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[89] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012, vol. 118.

[90] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[91] A. Graves, “Practical variational inference for neural networks,” in
Advances in neural information processing systems, vol. 24, 2011, pp.
2348–2356.

[92] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” ser. Proceedings of Machine Learning
Research, vol. 37, 07–09 Jul 2015, pp. 1613–1622.

[93] S. Hu, X. Xie, S. Liu, J. Yu, Z. Ye, M. Geng, X. Liu, and H. Meng,
“Bayesian learning of lf-mmi trained time delay neural networks for
speech recognition,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 1514–1529, 2021.

[94] X. Xie, X. Liu, T. Lee, and L. Wang, “Bayesian learning for deep neural
network adaptation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, pp. 2096–2110, 2021.

[95] J. Yu, X. Xie, S. Liu, and et al., “Development of the cuhk dysarthric
speech recognition system for the ua speech corpus.” in INTERSPEECH,
2018, pp. 2938–2942.

[96] M. Geng, X. Xie, S. Liu, J. Yu, S. Hu, X. Liu, and H. Meng,
“Investigation of data augmentation techniques for disordered speech
recognition.” in INTERSPEECH, 2020, pp. 696–700.

[97] H. Christensen, P. D. Green, and T. Hain, “Learning speaker-specific
pronunciations of disordered speech.” in INTERSPEECH, 2013, pp.
1159–1163.

