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Abstract
Though significant progress has been made for the voice con-
version (VC) of typical speech, VC for atypical speech, e.g.,
dysarthric and second-language (L2) speech, remains a chal-
lenge, since it involves correcting for atypical prosody while
maintaining speaker identity. To address this issue, we propose
a VC system with explicit prosodic modelling and deep speaker
embedding (DSE) learning. First, a speech-encoder strives to
extract robust phoneme embeddings from atypical speech. Sec-
ond, a prosody corrector takes in phoneme embeddings to infer
typical phoneme duration and pitch values. Third, a conversion
model takes phoneme embeddings and typical prosody features
as inputs to generate the converted speech, conditioned on the
target DSE that is learned via speaker encoder or speaker adap-
tation. Extensive experiments demonstrate that speaker adap-
tation can achieve higher speaker similarity, and the speaker
encoder based conversion model can greatly reduce dysarthric
and non-native pronunciation patterns with improved speech in-
telligibility. A comparison of speech recognition results be-
tween the original dysarthric speech and converted speech show
that absolute reduction of 47.6% character error rate (CER) and
29.3% word error rate (WER) can be achieved.
Index Terms: dysarthric speech reconstruction, accent conver-
sion, prosodic modelling, speaker encoder, speaker adaptation

1. Introduction
Voice conversion (VC) is a technique for converting non-
linguistic and para-linguistic information, such as speaker iden-
tity [1], prosody [2] and accent [3], with potential applications
in assistive speech technologies and language acquisition tech-
nologies [4, 5]. This work aims to apply VC techniques to con-
vert atypical speech to a typical form. Specifically, we consider
two types of atypical speech [6] – dysarthric speech and second-
language (L2) speech. Dysarthric speech results from neuro-
motor disorders [7] that cause disturbances in muscular control
during articulation. L2 speech is spoken by L2 learners with
non-native accents [8]. Both dysarthric and L2 speech exhibits
atypical prosody, imprecise articulation and reduced intelligibil-
ity. These may engender substantial communication difficulties
for dysarthric patients and hinder the pronunciation clarity of
L2 learners.

To enhance the quality of the atypical speech, our previous
work [9, 10] presented an end-to-end VC (E2E-VC) method,
where a speech-encoder is used to extract linguistic representa-
tions, e.g., phoneme embeddings, from the atypical speech, and
a text-to-speech (TTS) decoder with attention maps phoneme
embeddings to typical speech features. The speaker identity of

the converted speech is controlled by the target speaker embed-
ding produced by a speaker encoder [10]. Though high-fidelity
speech can be generated, the prosody, speaker similarity and
speech intelligibility require further improvement.

In this paper, we propose an improved VC system, where
the previous TTS-decoder with attention is broken into a
prosody corrector and a conversion model. The prosody cor-
rector contains phoneme duration and pitch predictors that are
introduced to explicitly model the prosody for predicting typ-
ical phoneme duration and pitch features. The conversion
model maps pitch and phoneme embeddings expanded by the
duration to mel-spectrograms, conditioned on the target deep
speaker embedding (DSE). To obtain effective DSE that cap-
tures speaker characteristics, two different approaches are in-
vestigated in our work: (1) Speaker encoder, where a speaker
classifier trained independently is adopted to extract DSE from
the reference target speech; (2) Speaker adaptation, where the
DSE is jointly learned and fine-tuned with a pre-trained multi-
speaker conversion model by using the target speech. We as-
sume that the DSE obtained using the two approaches con-
tains no prosody cues, so prosody and speaker identity are
controlled by individual conditions, i.e., the prosody is con-
trolled by phoneme duration and pitch, and speaker identity
is controlled by the DSE. As a result, with the predicted typ-
ical prosody features and the effective DSE as conditions, the
converted speech has typical pronunciation patterns with high
speaker similarity and improved speech intelligibility.

The main advantages of the proposed approach include: (1)
Explicit prosody correction to reduce dysarthric or non-native
pronunciation patterns; (2) Improvements over previous meth-
ods [9,10] in generating speech with enhanced speaker similar-
ity, naturalness and intelligibility; (3) Potential extensibility to
other atypical voice conversion and enhancement tasks.

2. Related work
Dysarthric speech reconstruction (DSR) aims to convert
dysarthric speech to be near-normal speech with higher in-
telligibility and naturalness. Various VC techniques have
been applied for DSR. Rule-based VC modifies the tempo-
ral or frequency characteristics of speech according to spe-
cific rules [11]. Statistical VC builds a mapping function be-
tween the acoustic features of dysarthric and normal speech
[9,12–14]. Significant progress has been achieved, but the con-
verted speech has low speaker similarity.

Accent conversion (AC) aims to convert the non-native L2
accented speech to become near-native speech. [15] proposed
a GMM based VC by using vocal tract length normalization



and linguistic content similarity matching. [16,17] utilized pho-
netic posteriorgrams (PPG) of the native speaker to generate
target acoustic features. Although the non-native accent can be
reduced, these methods require native reference utterances that
may not be readily available. E2E-VC [10] can effectively solve
this issue, but speaker similarity needs to be improved as well.

We intend to convert dysarthric and L2 speech respec-
tively to become near-normal and near-native speech with typ-
ical prosody, high speaker similarity and improved intelligibil-
ity. We reference multi-speaker TTS [18, 19] that uses prosody
features for speech synthesis, and DSE obtained via speaker
encoder or speaker adaptation to control the speaker identity.
Inspired by Deep Voice 2 [18], we introduce predictors of
phoneme duration and pitch to attain typical values in order to
generate the speech with typical (i.e., normal or native) prosody
characteristics.

3. Baseline method
In this paper, we adopt the previously proposed E2E-VC for
DSR [9] and AC [10] as the baseline method. E2E-VC is
composed of three components: (1) A sequence-to-sequence
(seq2seq) based TTS model, e.g., Tacotron [20], is first trained
with transcribed typical speech. The TTS-decoder with atten-
tion implicitly models the prosody, e.g., phoneme duration and
pitch, which are inflexible to control during inference. (2) Given
the transcribed atypical speech, a speech-encoder is trained to
produce similar linguistic representations with those produced
by the TTS-encoder. (3) By concatenating the speech-encoder
and TTS-decoder with attention, an E2E-VC is formed to con-
vert atypical speech to its typical version. Note that speaker
similarity issue was not considered in the DSR work [9], so we
extend the E2E-VC based DSR with the speaker encoder intro-
duced in AC [10] to preserve speaker identity.

4. Proposed method
This section elaborates on the proposed VC approach with ex-
plicit prosodic modelling and DSE learning. The main differ-
ences from the baseline E2E-VC approach lie in two aspects:
(1) Prosody is modelled in an explicit manner, so the prosody
of the converted speech can be effectively controlled and cor-
rected; (2) Speaker adaptation is proposed to obtain more ef-
fective DSE that is strongly related with speaker characteristics,
leading to higher speaker similarity. As shown in Figure 1, the
whole VC system consists of three key modules, i.e., speech-
encoder, prosody corrector and conversion model.

4.1. Speech-encoder for phoneme embeddings extraction
To preserve the linguistic content of original atypical speech, a
speech-encoder is used to extract robust linguistic representa-
tions. Following [9, 10], the speech-encoder adopts a seq2seq
network to predict phoneme sequence. The speech-encoder is
first pre-trained on large-scale typical speech data, then fine-
tuned on the atypical speech of the dysarthric or L2 speaker
sk to improve phoneme prediction accuracy. The pre-trained
and fine-tuned speech-encoders are denoted as Φp and Φsk re-
spectively. We adopt the speech-encoder outputs that denote the
phoneme probability distribution as the phoneme embeddings.

4.2. Prosody corrector for explicit prosodic modelling
As atypical speech has atypical prosody, e.g., phoneme duration
and pitch values, we propose explicit prosodic modelling by de-
signing a prosody corrector to amend the atypical prosody to its

Figure 1: Diagram of the proposed VC system: (1) DSE ẽ is
extracted from the speaker encoder, which corresponds to Enc-
CM; (2) DSE e is obtained by joint learning with the conversion
model, which corresponds to Ada-CM.

typical version. As shown in Figure 1, the prosody corrector
contains the phoneme duration and pitch predictors, where the
pitch can be described by fundamental frequency (F0). Both du-
ration and F0 predictors are trained with L1 loss by using typical
speech of a single speaker: (1) For duration prediction, the in-
puts are phoneme embeddings extracted by the speech-encoder
Φp using the teacher-force mode. The targets are ground-truth
phoneme durations, which are obtained from pairs of text and
audio by forced alignment with Montreal Forced Aligner [21].
(2) For F0 prediction, the expanded phoneme embeddings p by
using the ground-truth phoneme duration are used as the inputs,
and the targets are the ground-truth F0, denoted by v, which has
the same length of p. When the duration and F0 predictors are
well-trained, the prosody corrector is expected to infer typical
phoneme duration and F0 values that are used to replace their
abnormal counterparts for typical speech generation.

4.3. Conversion model for speech generation

As shown in Figure 1, we adopt a conversion model with
function f and parameters W to generate mel-spectrograms
f (p,v;W,e), where the spoken content and duration are both
controlled by the expanded phoneme embeddings p, the pitch
and speaker identity are separately controlled by F0 v and DSE
e. e is repeated and concatenated with p and v for generation.
Given the typical speech of a set of speakers S and atypical
speech of a dysarthric or L2 speaker sk, let Tsi and Tsk de-
note the set of mel-spectrogram features for speaker si (si∼S)
and speaker sk, respectively. Two DSE learning approaches are
investigated and incorporated into the conversion model, i.e.,
speaker encoder based conversion model (Enc-CM) and speaker
adaptation based conversion model (Ada-CM). For clarity, we
denote the DSE used in Enc-CM and Ada-CM as ẽ and e re-
spectively.

4.3.1. Speaker encoder based conversion model

The speaker encoder is a neural network for speaker verifica-
tion and produces a fixed-dimensional DSE from acoustic fea-
ture frames of a speech utterance with variable length. It is
trained to optimize a generalized end-to-end (GE2E) loss for
DSE learning [22], so that the DSEs extracted from utterances
of the same speaker and different speakers have high and low
similarity, respectively. The DSE ẽsi derived from the speaker
encoder is expected to capture speaker characteristics of si. By
using typical speech data, Enc-CM is trained to minimize a loss



L (e.g., L1 loss) measuring the distance between the predicted
and ground-truth mel-spectrograms:

W̃SE =argmin
W

Esi∼S,ai,j∼Tsi
{L(f (pi,j ,vi,j ;W,̃esi ),ai,j)} (1)

where pi,j are phoneme embeddings extracted by speech-
encoder Φp and expanded by ground-truth duration, vi,j and
ai,j are ground-truth F0 and mel-spectrograms for speaker si
(si∼S), respectively.

At the conversion phase, the atypical speech of the speaker
sk is used as the input of the speaker encoder and the fine-tuned
speech-encoder Φsk to extract DSE ẽsk and phoneme embed-
dings, respectively. The phoneme embeddings are used as the
inputs of the prosody corrector to obtain the expanded phoneme
embeddings p̂ with typical duration and F0 v̂. Finally, the sys-
tem generates converted mel-spectrograms as f (p̂,v̂;W̃SE ,̃esk ).

4.3.2. Speaker adaptation based conversion model

Instead of obtaining the speaker representations from an exter-
nal network, DSE can be jointly learned with the conversion
model. The joint learning enables the DSE to directly cap-
ture the speaking characteristics related with speech generation,
leading to higher speaker similarity. Specifically, Ada-CM in-
volves two-stage training: First, the conversion model is pre-
trained with typical speech data, where the DSE esi for each
speaker si is randomly initialized and jointly trained with W:

ŴSA,{êsi}=argmin
W,{esi}

Esi∼S,ai,j∼Tsi
{L(f (pi,j ,vi,j;W,esi ),ai,j)}

(2)
Second, with the speech data of multiple speakers for training,
the conversion model ŴSA has good generalization capacity
and can be fine-tuned well to unseen speakers for DSE learning.
Therefore, for the dysarthric or L2 speaker sk with the expanded
phoneme embeddings pk,j and F0 vk,j , speaker adaptation is
performed as:

WSA,esk =argmin
W,esk

Eak,j∼Tsk
{L(f (pk,j ,vk,j;W,esk ),ak,j)} (3)

where W is initialized by ŴSA and DSE esk is also randomly
initialized. After adaptation, target speaker characteristics that
are beneficial for speech generation are encoded into esk .

Similar with Enc-CM, at the inference phase, we can use
the adapted conversion model WSA to generate the converted
mel-spectrograms as f (p̂,v̂;WSA,esk ) with high speaker simi-
larity achieved by esk , and typical prosody controlled by pre-
dicted typical phoneme duration and F0.

5. Experiments
5.1. Experimental settings

Experiments are conducted on the LibriSpeech [23], VCTK
[24], LJSpeech [25], UASpeech [26] and L2-ARCTIC [27]
datasets. Parallel WaveGAN (PWG) [28] is adopted as the
vocoder to synthesize the waveform from the converted mel-
spectrograms. We use 960h training data of LibriSpeech for
pre-training the speech-encoder Φp, 105 native speakers of
VCTK for the training of PWG, and the training of Enc-CM
and Ada-CM to obtain W̃SE and ŴSA, respectively. The typ-
ical speech of single female speaker from LJSpeech is used
for training duration and F0 predictors. For atypical speech,
we select speaker M05 of UASpeech and speaker LXC of L2-
ARCTIC for experiments. M05 has moderate-severe dysarthria
with the speech having middle intelligibility. Following [9], we
use the speech of blocks 1 and 3 for speech-encoder and Ada-
CM fine-tuning, and the speech of block 2 for testing. As the

audio of M05 has strong background noise which degrades the
speaker adaptation performance, we adopt log-MMSE speech
enhancement algorithm [29] to pre-process the audio. LXC
speaker is a non-native English speaker with Mandarin accent
and has 1131 recorded utterances, which are randomly divided
into 1000/66/65 for training/validation/testing, where training
and validation data are used for fine-tuning the speech-encoder
and Ada-CM. The speech is sampled or resampled to 16kHz,
and all speech features are calculated with 25ms Hanning win-
dow, 10ms frame shift and 400-point fast Fourier transform.

The speech-encoder has a similar architecture as in [9], in-
cluding a 6-layer VGG extractor and a 5-layer BLSTM with 512
units per direction in the encoder, 512-dimensional location-
aware attention and 2-layer LSTM with 1024 units in the de-
coder. The inputs to the speech-encoder are 40-band mel-
spectrograms appended with delta and delta-delta features.
Adadelta optimizer [30] with learning rate of 1 and batch size
8 is applied for the pre-training and fine-tuning of the speech-
encoder with 1M and 2k steps, respectively. Duration and F0

predictors adopt the same structure, which consists of a 3-layer
BGRU with 256 units per direction, 3 convolution layers with
kernel size of 5, 9 and 19 respectively, and a 1-dimensional
fully-connected (FC) layer to predict the duration or F0 value.
Both predictors are trained by the Adam optimizer [31] with
a learning rate of 0.001, batch size of 16 and 30k steps. The
settings and training of speaker encoder is same as [10], and
DSE is set to 256-dimensional for both Enc-CM and Ada-CM.
The conversion model is a frame-to-frame network composed of
two 512-dimensional FC layers, 4-layer BLSTM with 512 units
per direction and one 80-dimensional FC layer to predict mel-
spectrograms. Both Enc-CM training and Ada-CM pre-training
use the learning rate of 0.001 and batch size of 16 with 50k
steps, and Ada-CM fine-tuning takes 3k steps. Readers are en-
couraged to listen to our audio samples1.

We compare the Enc-CM and Ada-CM with our previously
proposed E2E-VC for DSR [9] and AC [10], where the orig-
inal settings are adopted. To evaluate the performance of all
methods, 20 listeners are invited to give subjective evaluations,
including mean opinion score (MOS) tests (1-bad, 2-poor, 3-
fair, 4-good, 5-excellent) to evaluate speech naturalness and
speaker similarity, AB preference tests to evaluate the impact of
phoneme duration and F0, and objective evaluation of speech
intelligibility based on a speech recognition model.

5.2. Experimental results

5.2.1. Speech naturalness and speaker similarity comparison

Figure 2 shows the MOS results for speech naturalness
and speaker similarity, where ‘Original’ denotes the original
dysarthric or L2 speech. We randomly select 15 testing utter-
ances of M05 or LXC for evaluation. For DSR experiments
as shown in Figure 2(a), we observe that compared with the
original dysarthric speech, the converted speech by all meth-
ods achieves improvements in naturalness. The proposed Enc-
CM achieves higher naturalness than E2E-VC, indicating that
the effectiveness of the proposed prosody corrector to gener-
ate the speech with stable and accurate prosody. Ada-CM
achieves lower naturalness than E2E-VC, partially due to the
speech enhancement algorithm degrading the quality of M05
audio for speaker adaptation. Besides, speaker adaptation also
inevitably incorporates the abnormal speaking characteristics
of the dysarthric speaker into the converted speech, such as

1Audio samples: https://wendison.github.io/VC-DSR-AC-demo/

https://wendison.github.io/VC-DSR-AC-demo/


(a) DSR experiments

(b) AC experiments
Figure 2: Comparison results of MOS with 95% confidence in-
tervals for speech naturalness and speaker similarity

atypical prosody and articulation, which partially contribute to
the speaker characteristics. As a result, Ada-CM can achieve
highest speaker similarity, followed by Enc-CM and E2E-VC.
For AC experiments as shown in Figure 2(b), all methods
achieve high and similar speech naturalness, while Ada-CM
also achieves the highest speaker similarity. This verifies the
effectiveness of explicit prosodic modelling and DSE learned
by speaker adaptation for achieving high speaker similarity.

5.2.2. Impact of phoneme duration and F0

We investigate the impact of the phoneme duration and F0 on
the normality and accentedness of the converted speech. We ex-
plore three combinations of phoneme duration and F0 used by
Enc-CM to generate the speech: (1) Ground-truth Duration and
Ground-truth F0 (GD+GF); (2) Ground-truth Duration and Pre-
dicted F0 (GD+PF); (3) Predicted Duration and Predicted F0

(PD+PF). The AB preference test is conducted, and results are
shown in Figure 3. From the comparison ‘GD+GF vs GD+PF’,
we can see that the predicted typical F0 facilitates the conver-
sion model to generate near-normal or near-native speech. From
the comparison ‘GD+PF vs PD+PF’, we observe that using the
predicted typical duration can further improve the quality of the
converted speech, this shows that both phoneme duration and
F0 affect speech normality or the degree of accentedness, and
the proposed prosody corrector is helpful for attaining typical
phoneme duration and F0 values, which are beneficial for gen-
erating speech with normal or native prosody characteristics.

5.2.3. Speech intelligibility comparison

To show the effectiveness of proposed methods to improve the
intelligibility of atypical speech, a publicly released automatic
speech recognition model, i.e., Jasper [32], is used to test the
character error rate (CER) and word error rate (WER) with
greedy decoding. The results are illustrated in Table 1, we
also report the results for ’Original (Mel+PWG)’ that uses the
original mel-spectrograms to synthesize the waveform by using
PWG vocoder. We can see that ’Original (Mel+PWG)’ is infe-
rior to ’Original’, which indicates that the PWG vocoder tends
to degrade the speech quality. For DSR experiments, we can

(a) DSR experiments

(b) AC experiments
Figure 3: AB preference test results for different combinations
of phoneme duration and F0.

Table 1: Comparisons based on CER (%) and WER (%).

Methods DSR experiments AC experiments
CER WER CER WER

Original 90.2 91.0 17.7 35.5
Original (Mel+PWG) 94.3 95.3 22.4 40.8

E2E-VC 50.6 69.8 22.7 41.3
Enc-CM 42.6 61.7 15.3 31.1
Ada-CM 56.5 80.5 21.5 40.2

observe that CER and WER of the original dysarthric speech
can be significantly reduced by the proposed methods, where
Enc-CM performs the best and achieves 47.6% and 29.3% ab-
solute reduction for CER and WER respectively. As the original
dysarthric speech used in Ada-CM to perform speaker adapta-
tion contains strong background noise, even though log-MMSE
is used for denoising, the pre-processed audio still contains arti-
ficial noise that hurts Ada-CM performance, thus smaller CER
and WER reduction is achieved for Ada-CM. For AC experi-
ments, the proposed Enc-CM can still achieve 2.4% CER and
4.4% WER reduction compared with Original speech, the base-
line E2E-VC and proposed Ada-CM have no improvements
over Original speech while achieve similar CER and WER with
’Original (Mel+PWG)’, adopting a more powerful vocoder is
expected to enhance the speech intelligibility.

6. Conclusions
This paper presents a VC system for converting atypical speech
to typical speech, by explicit prosodic modelling and DSE
learning. prosodic modelling is proposed to leverage phoneme
duration and F0 predictors to obtain typical values for prosody
correction, while speaker encoder and speaker adaptation ap-
proaches are separately proposed to obtain effective DSE to
capture speaker characteristics. DSR and AC experiments show
that proposed methods can achieve reduction of dysarthric and
non-native speaking characteristics, where significant intelli-
gibility improvements can be achieved for dysarthric speech.
Enc-CM outperforms previously proposed E2E-VC, and Ada-
CM achieves the highest speaker similarity. However, for Ada-
CM, atypical pronunciation patterns are also incorporated into
the converted speech after speaker adaptation. Explicitly mod-
elling more para-linguistic information may be helpful to mit-
igate this problem. In addition, using better speech denoising
algorithms or cleaner audio data is expected to further improve
the performance of Ada-CM, this will be studied in the future.
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