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ABSTRACT 
 

This paper proposes two methods for identifying 
recognition error. The first method is a two-level schema 
[1]-- given the recognition hypothesis of an utterance, an 
utterance classifier (UC) is first applied to decide if the 
hypothesis is error-free or erroneous; followed by a word 
classifier (WC) which is applied to each word hypothesis 
in the erroneous utterance to decide if the word hypothesis 
is a misrecognition. The second method is a one-level 
schema in which a word classifier is applied directly to all 
word hypotheses to detect word recognition errors. We 
compare the two methods at both word and utterance 
levels. Experimental results show that the two methods 
are comparable in terms of word error detection. 
However, the two-level schema is very effective in 
filtering out error-free utterance hypotheses, which offers 
a key advantage to economize on word error detection.  

 
1. INTRODUCTION 

 

The currently prevalent language models in large-
vocabulary continuous speech recognizers (LVCSR) are 
N-gram language models (LM) [2], partly because of its 
simplicity and efficiency. However, to further improve 
speech recognition performance, more sophisticated LM 
that incorporates higher level linguistic knowledge 
(including syntax and semantics) should be utilized [2-4], 
but at the expense of greater complexity and lower 
computational efficiency. In order to strike a balance 
between complexity and efficiency, we attempt to make 
increasing use of linguistic knowledge. We conceive of a 
multi-pass recognition framework: the first pass uses N-
gram LM to generate N-best recognition hypotheses 
efficiently; the second pass detects possible recognition 
errors in the hypotheses; and a final pass applies more 
complex and expensive LM to error correction. This paper 
explores the feasibility of error detection in the second 
pass of the framework. Related previous work includes 
the rejection of erroneous word/utterance hypothesis prior 
to speech understanding [5-6] as well as confidence 

annotation in LVCSR to predict separate types of word 
errors [8]. 

This work proposes and compares a two-level schema 
[1] and a one-level schema to identify recognition errors 
in terms of both utterance and word levels. The two-level 
schema involves an utterance classifier (UC) in the first 
level and a word classifier (WC) in the second. The UC is 
applied to decide if the recognition hypothesis for every 
utterance is error-free or erroneous. In the latter case, the 
utterance is passed on to WC to decide whether or not it 
contains misrecognitions. The one-level schema directly 
uses the WC to identify erroneous utterances and words. 
How the two schemas will serve the final pass in the 
multi-pass recognition framework is similar: only those 
utterances labeled as error-containing need further 
processing, and efforts will be focuses on the erroneous 
regions pointed out by words labeled as wrong. 
Experiment results show that these two schemas perform 
similarly to find erroneous word hypotheses. However, 
the two-level schema outperforms one-level schema 
significantly in identifying error-free utterances. 

The rest of the paper is organized as follows: Section 
2 describes the LVCSR system with bigram LM we 
developed to provide N-best recognition hypotheses. 
Section 3 presents the utterance and word classifiers, 
which will be used in the error-identification schemas. 
Section 4 proposes the two schemas, together with 
experimental results and performance analysis. The 
conclusion is given in Section 5. 
 

2. LVCSR 
 

2.1. Recognizer Development 
 

We developed a Mandarin LVCSR to generate N-best 
recognition hypotheses to support the current work on 
error identification. We first train a bigram LM by the 
CMU LM toolkit [9], using a 44,402-word dictionary and 
the Mandarin Chinese News Text corpus from LDC. This 
corpus includes news text from three sources, and we 
divide it into training/testing data sets as table 1. 
 

Table 1: Content sources and training/testing sets 
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Content Source Amount Data Set 
People Daily (news text) 282M Training 
Xinhua News (news text) 60.2M Training 
China Radio International 

(radio scripts) 
218M Randomly select 1M 

as testing data 
 

After pruning all the bigrams with less than five 
occurrences, we obtained a final LM containing 267,172 
bigrams and 38,483 unigrams. The test set perplexity is 
233.85. 

Then, we directly use the context-dependent triphone 
models contained in the Speech-Lab-In-A-Box [10] 
resource as acoustic models, and develop a word 
recognizer for Mandarin by the use of the HTK toolkit to 
combine the acoustic models with the word bigram LM. 
 

2.2. Baseline Recognition Performance 
 

We use the test set included in the Speech-Lab-In-A-Box 
(SLB) to evaluate our recognizer’s performance. This test 
set includes 500 utterances, which are spoken by 25 
speakers, with each speaker recording 20 utterances. Our 
recognizer achieves a test-set character accuracy of 
82.1%, with 1,530 substitution errors, 159 deletion errors 
and 25 insertion errors.  

Analysis of errors in the recognition outputs suggests 
that by utilizing additional linguistic knowledge, it is 
possible to correct the errors. For example, the utterance “
虽 然 双 方 还 存 在 着 分 歧 …”(Although there is 
disagreement between the two parties…) was wrongly 
recognized as “孙双方还存在的分歧…” due to 
acoustical similarity. However, the correct recognition 
output was among the N-best hypotheses generated by the 
speech recognizer, and is possible to be picked out since it 
is the only grammatical and sensible utterance in these 
hypotheses. We set N to be 20 in all our experiments. 
Compared to the setting of N=10, using N=20 increases 
the chance of including the correct recognition hypothesis, 
while maintaining an acceptable computational speed. We 
believe that recognition errors can be corrected by 
utilizing more sophisticated linguistic knowledge that 
enforces appropriate syntactic and semantic constraints. 
 

3. CLASSIFICATION OF UTTERANCE AND 
WORD RECOGNITION ERRORS 

 

In this section, we will first introduce the organization of 
the data sets used to train and test the UC and WC. Then 
we present the utterance classifier and word classifier, 
which are used in the proposed error identification 
schemas. 
 

3.1. Experimental Corpora 
 

We perform all the classification experiments on the 500 
test utterances in Speech-Lab-In-A-Lab (SLB test set). 
The SLB training utterances are not involved because we 
need to evaluate the classifiers’ performance on unseen 

data. We manually label the recognition outputs for all 
500 utterances at both the utterance and word levels. 
Utterance-level recognition hypotheses are labeled as 
either correct (error-free) or wrong (erroneous). Word 
hypotheses are labeled in the following way – if it is a 
substitution or insertion error, the word hypotheses is 
labeled wrong; if there is a deletion error, the two 
neighboring words are both labeled as wrong, because a 
deletion error may influence the statistical properties of 
the former word, the latter word, or both; the remaining 
words are labeled correct. 

To train the classifiers, we randomly select 66% of 
the 500 utterances (330 utterances) to provide the training 
data, and use the remaining as the test data. All the 330 
utterances are utilized to train the UC (UC training). And 
among the UC training utterances, those marked “wrong” 
are used as training data for the WC (i.e. the WC training 
set). The data set organization is described in Figure 1. 
 

Figure 1: Organization of data sets for training and testing. 
Abbreviations include: Speech-Lab-In-A-Box (SLB), utterance 
classification (UC), word classification (WC). 

 
 

3.2. Utterance/Word Classifiers 
 

The objective for utterance classifier is to divide the 
recognized utterances into two classes: (i) erroneous 
utterances and (ii) error-free utterances, while the word 
classifier is to decide whether a word hypothesis is a 
misrecognition. For both utterance classifier and word 
classifier, we adopted the Support Vector Machine 
(SVM), not only because SVM is one of the best-
performing classification algorithms provided in WEKA 
[11]; but also because it can be transferred into a simple 
linear projection model as follows:  

cfpr T +•=
rr  

where f
r

is the normalized feature vector, pr is the 
projection vector, c  is the threshold, and r is the 
confidence score. 0>r  either implies that an utterance 
contains no recognition errors or that a word hypothesis is 
correct. 0<r  implies that errors are present. This 
confidence score should be convenient to be incorporated 
into a recognition system. 

The feature selection procedures for the two 
classifiers are similar. We first considered a set of 
candidate features such as acoustic scores, LM scores, 
combined scores, range of scores and the differences in 
scores between the top two recognition hypotheses at the 
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utterance/word level. Then, we proceeded to apply a data-
driven approach to refine this feature set as follows: We 
divided the training data (as depicted in Figure 1) into ten 
equal portions and conducted ten-fold cross-validation 
experiments. We deleted each feature one by one to see if 
the deletion has effect on the classification performance. 
If the performance is unchanged or improved, the feature 
will be removed from the existing feature (sub-)set.  

After feature selection, the final feature set for 
utterance classifier is composed of 10 features, such as 
Min top-choice N-best purity (The minimum value of the 
N-best purity for each word in the top-scoring recognition 
hypothesis. The N-best purity for a word is the fraction of 
the N-best paths in which that word appears in the same 
position of the path), High N-best Purity for top-scoring 
hypotheses (The percentage of words in the top-scoring 
hypothesis with N-best purity above 75%.), Mean LM 
score of top-scoring hypothesis (The average value of the 
LM scores for the words in the top-scoring hypothesis.), 
and Acoustic score span for top-scoring hypothesis (The 
difference between the maximum and minimum acoustic 
scores of the words in the top-scoring hypothesis.1). 

And the final feature set for word classifier has 8 
features, including N-best Purity of the word, Min LM 
score (The minimum LM score among all the 
hypothesized words in the same position in the N-best 
hypotheses.), Standard deviation of LM scores (The 
standard derivation of LM scores across all hypothesized 
words in the same position in the N-best hypotheses.), 
Number of observations (The number of different word 
hypotheses appearing in the same position in the N-best 
hypotheses.), Max Acoustic score (The maximum acoustic 
score among all hypothesized words in the same position 
in the N-best hypotheses.), and so on. 
 

4. ERROR-DETECTION SCHEMAS 
 

4.1. Two-level Schema 
 

The two-level schema first uses UC to filter out error-
free recognized utterances from further processing, then 
applies WC to the rest error-containing utterances to 
identify erroneous word hypotheses. The basic idea of the 
two-level schema is that advanced linguistic knowledge 
such as grammar should only applied to the error-
containing utterances, and efforts will be focused on the 
localized regions with erroneous word hypotheses, as 
detected by the utterance and word classifiers. 

We test the two-level schema on the 170 testing 
utterances, and analyze the results at both utterance and 
word levels. We define the detection error rate as: 

                                                 
1 We use the normalized acoustic score for each word, i.e. the 
raw acoustic score divided by the duration (in frames) of the 
word segment. This applies to all listed features in section 3. 
 

 
 
For utterance classification, an instance refers to an 

utterance and we obtained a 16.5% detection error rate. 
For word classification, an instance refers to a word and 
the error-rate is 16.8%. Details about the utterance and 
word classification are listed in Table 2. A noteworthy 
point is that the results presented for word classification is 
the overall result across all word hypotheses in the testing 
data. We obtain the overall word classification 
performance by combining the UC and WC, assuming all 
the words in those utterances classified as error-free by 
UC are classified as correct word hypotheses. 

Table 2: Classification Performance in terms of 
P (Precision), R (Recall) and F (F-measure). 

Kind Classified as 
 

True 
Class √ × 

P R F 

√ 25 22 0.806 0.532 0.641 Classify 
Utterances × 6 117 0.842 0.951 0.893 

√ 1499 121 0.874 0.925 0.899 Classify 
Words × 217 174 0.56 0.445 0.496 

 

4.2. One-level Schema 
 

The one-level schema directly applies the WC to all word 
hypotheses and does not involve UC at all. If all the word 
hypotheses in an utterance are classified as correct, the 
utterance will be labeled as error-free. Thus we can 
compare the two schemas at both utterance and word 
levels. We apply the one-level schema to all the 170 
testing utterances, and label error-free on those utterances 
in which all the word hypotheses are classified as correct. 
The classification results for both utterances and words 
are presented in Table 3. 

Table 3: Classification Performance in terms of 
P (Precision), R (Recall) and F (F-measure). 

Kind Classified as 
 

True 
Class √ × 

P R F 

√ 16 31 0.727 0.340 0.463 Classify 
Utterances × 6 117 0.791 0.951 0.864 

√ 1489 131 0.875 0.919 0.896 Classify 
Words × 212 179 0.577 0.458 0.511 

 

In this case, the utterance detection error-rate is 21.8%; 
while the word detection error-rate is 17.1%. 
 

4.3. Comparison and Analysis 
 

From Table 2 and Table 3, we can see that for word 
hypothesis classification, the two schemas perform 
similarly. The difference between the word detection error 
rates is only 0.3%. However, the one-level schema loses 
36.1% recall rate in detecting error-free utterances when 
compared to the two-level schema. This suggests that the 
two-level schema is computationally more efficient in 
LVCSR. 

Besides, the recall rates of erroneous word are low in 
both cases, only around 45%, possibly because of data 

instances  totalofnumber 
instances classifiedy incorrectl ofnumber  rateerror detection =
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sparseness. Among all the 3811 words in the training data, 
only 826 words are misrecognitions. In comparing with 
utterance classification, word classification is a more 
difficult task since a single word contains much less 
information than an utterance to make decision. We also 
tried to mix the utterance-level features and word-level 
features to train the word classifier, and found that adding 
utterance-level features only hurt the word classification, 
because the confusion the utterance-level features bring in 
outweighs the benefit. 

We envision that in a multi-pass recognition 
framework, increasingly advanced linguistic knowledge 
will be applied in subsequent passes to correct errors 
detected in earlier passes. Hence the use of utterance 
classification helps focus successive computation on 
erroneous utterance and word hypotheses. This renders 
the two-level schema more favorable. We should also 
point out, however, that utterance classification is 
imperfect, i.e. the utterances labeled error-free may 
actually contain recognition errors.  However, based on 
our experimental corpora, we found that among the 31 
utterances labeled error-free by UC, there are only 8 
erroneous word hypotheses and the overall character 
accuracy among these 31 utterances is as high as 98.1%. 

An example of the usage of the two-level schema is 
as follows: the recognizer output “我国在信息资源的开
发商相对落后” contains a recognition error (boldfaced). 
The single-character word “商” should be “上”. The first 
UC level decided that the recognition hypothesis for this 
utterance contained error(s). It also means that the 
hypothesis will be further processed by more advanced 
linguistic knowledge. Then this utterance was passed to 
the second level in our schema, which involved the WC. 
The WC located that the recognition error occurred for the 
hypothesized word “商”, due to its low value for N-best 
purity (Among the top twenty recognition hypotheses, ten 
include “商” and eight include “上”.) This more detailed 
erroneous region information can be utilized when 
applying advanced knowledge to do error correction. 
 

5. CONCLUSIONS 
 

This paper advocates a multi-pass framework for LVCSR 
in which an increasing amount of linguistic knowledge is 
applied in successive passes to achieve an overall high 
recognition performance. As an initial step, we develop 
methods for detecting recognition errors in interim passes, 
so as to localize regions in which successive passes 
should dedicate computing resources for processing. We 
describe a two-level schema that involves an utterance 
classifier (UC) that attempts to detect errors in the 
recognition hypothesis for an input utterance. The UC is 
implemented with a support vector machine (SVM). An 
utterance-level hypothesis that is deemed erroneous will 
be further processed by a word classifier (WC), also based 

on SVM. The WC examines each word hypothesis in the 
utterance in an attempt to detect word-level errors. As a 
basis for comparison, we have also implemented a one-
level schema that applies WC only and UC is bypassed. 
Instead, an utterance is deemed error-free if the WC does 
not detect any errors in the word hypotheses of the 
utterance. We performed experiments based on the 
Speech-Lab-In-A-Box corpora from Microsoft Research 
Asia. Results show that the two-level schema has a 
detection error rate of 16.5% for utterance-level 
misrecognitions. UC locates potentially problematic 
regions such that computational resources can be 
dedicated towards error correction in subsequent passes, 
e.g. detection of word-level misrecognition. Our word 
classifier has a detection error rate of 16.8%. In 
comparison, the one-level schema has a detection error 
rate of 21.8% for utterance-level misrecognitions and 
17.1% for word-level misrecognitions. Hence the two-
level schema is favored over the one-level schema. 
 

6. ACKNOWLEDGMENTS 
 

This work is partially supported by the Central Allocation 
Grant of the Research Grants Council of the Hong Kong 
Special Administrative Region (Project No.CUHK 
1/02C). We also wish to thank Dr. Eric Chang and 
Microsoft Research Asia for providing us the Speech-
Lab-In-A-Box data set. 
 

7. REFERENCES 
 

[1] Zhou, Z. & H.Meng, “A two-level schema for detecting 
recognition errors”, Proc. ICSLP 2004 
[2] S. Young, “Statistical modeling in continuous speech 
recognition”, Proc. UAI, 2001. 

[3] C. Chelba & F. Jelinek, “Structured language modeling”, 
Computer Speech and Language (2000) 14, pp.283-332. 

[4] S. Khudanpur & J. Wu, “Maximum entropy techniques for 
exploiting syntactic, semantic and collocational dependencies in 
language modeling”, Computer Speech and Language (2000) 14, 
pp. 355-372. 

[5] Y. He & S. Young, “A Data-Driven Spoken Language 
Understanding System”, Proc. ASRU, 2003. 

[6] T. J. Hazen, S. Seneff & J. Polifroni, "Recognition 
confidence scoring and its use in speech understanding systems", 
Computer Speech and Language (2002) 16, pp. 49-67. 
[7] C. Pao, P. Schmid & J. Glass, “Confidence scoring for 
speech understanding”, Proc. ICSLP, 1998. 
[8] L. Chase, “Word and acoustic confidence annotation for 
large vocabulary speech recognition”, Proc. Eurospeech 1997. 
[9] P. Clarkson & R. Rosenfeld, “Statistical language modeling 
using the CMU-Cambridge toolkit”, Proc. Eurospeech 1997. 
[10] E. Chang, Y. Shi, J. Zhou & C. Huang, “Speech Lab in a 
Box: A Mandarin speech toolbox to jumpstart speech related 
research”, Proc. Eurospeech 2001. 
[11] I. Witten & E. Frank, Data Mining: Practical machine 
learning tools with Java implementations, Morgan Kaufmann, 
San Francisco, 2000. 

24


