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Abstract
Automatic Speech Recognition (ASR) plays an important

role in speech-based automatic detection of Alzheimer’s dis-
ease (AD). However, recognition errors could propagate down-
stream, potentially impacting the detection decisions. Recent
studies have revealed a non-linear relationship between word
error rates (WER) and AD detection performance, where ASR
transcriptions with notable errors could still yield AD detec-
tion accuracy equivalent to that based on manual transcriptions.
This work presents a series of analyses to explore the effect
of ASR transcription errors in BERT-based AD detection sys-
tems. Our investigation reveals that not all ASR errors con-
tribute equally to detection performance. Certain words, such
as stopwords, despite constituting a large proportion of errors,
are shown to play a limited role in distinguishing AD. In con-
trast, the keywords related to diagnosis tasks exhibit signifi-
cantly greater importance relative to other words. These find-
ings provide insights into the interplay between ASR errors and
the downstream detection model.
Index Terms: Alzheimer’s disease, speech recognition, pre-
trained language model, spoken language processing

1. Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder char-
acterized by progressive cognitive impairment, including deteri-
oration in memory, attention, and executive function. Due to the
irreversible progression of AD pathology [1], early detection
and diagnosis play a pivotal role in facilitating timely interven-
tion and management, conventionally relying on in-person clin-
ical assessments [2, 3]. With recent progress in spoken language
technology, speech-based automatic AD detection has emerged
as a promising area due to its potential for more cost-effective
and scalable AD screening [4, 5].

Automatic detection of Alzheimer’s Disease (AD) from
speech has attracted increasing attention in recent years. Early
research attempted to identify AD by utilizing handcrafted
acoustic and linguistic features [6, 7, 8, 9]. For example, Winer
and Frankenberg et al. [8, 9] demonstrated that parts-of-speech
(POS), word categories, and pause features are highly related to
AD. More recently, deep embedding features from pre-trained
models have been widely explored for AD detection, leverag-
ing either speech-based models [10, 11, 12] or text-based mod-
els [13, 14, 15]. Among these models, pre-trained language
models (PLMs) such as BERT [16] and RoBERTa [17], have
shown remarkable performance by leveraging their strong abil-
ity to capture rich linguistic and semantic patterns. These PLMs
can be used either as feature extractors [13, 18, 19] or directly
fine-tuned on the AD detection task [14]. Moreover, researchers
have made further enhancements to PLMs [20, 21, 22], pushing
the state-of-the-art detection accuracy to new heights.

While PLMs have achieved impressive performance in AD
detection, the practical applications of these approaches largely

rely on Automatic Speech Recognition (ASR) front-ends to
transcribe speech into text, as transcription errors could lead to
significant bias in PLM embeddings and alter the decisions of
downstream AD detection models. Many works have investi-
gated tailored ASR systems for AD or other disordered speech.
Early works explored incorporating language models [23] and
Maximum A Posteriori (MAP) adaptation [24] for ASR in AD
detection. Recent efforts have investigated novel approaches
such as data augmentation [25, 26, 27], domain adaptation [28]
and neural architectural search [29]. Nevertheless, due to the
difficulty in collecting in-domain data, there is still a substantial
accuracy gap between ASR for disordered speech and normal
speech.

On the other hand, many studies have shown a non-linear
relationship between ASR Word Error Rate (WER) and AD de-
tection accuracies. For instance, ASR transcription with notable
errors (WER ˜30%) could yield equivalent AD detection accu-
racy as manual transcription does [19, 30], while ASR models
with lower WER might not necessarily lead to better AD detec-
tion results [31, 29]. Few studies have investigated the in-depth
relationship between ASR errors and AD detection. [23] might
be the first work revealing that the performances of ASR and
AD detection systems are weakly correlated. Balagopalan et
al. [32] demonstrated that deletion error is effective in the AD
detection model using a handcrafted feature set. Recently, Li
et al. [31] showed that ASR errors could serve as helpful cues
for fine-tuned PLMs to identify speech with AD. These findings
suggest that certain ASR error words might be trivial and harm-
less to the downstream AD detection task, while others could
have a strong effect.

This work aims to explore the impact of ASR errors
on Alzheimer’s Disease (AD) detection using a BERT-based
model. We first implement a subject ASR and AD detection
systems which achieves the same accuracy when evaluated with
ASR and manual transcriptions. We then conducted a thorough
analysis based on the ASR errors. It reveals that not all ASR er-
rors are equally detrimental to downstream AD detection. Cer-
tain words, such as stopwords, constitute a large proportion of
errors but are less significant concerning the picture description
tasks performed in the ADReSS data used in this study. In con-
trast, task-related keywords occupy only 9% of all ASR errors
but have proven to play a pivotal role compared to other words.
These findings provide insights into the interplay between ASR
errors and the downstream detection model, benefiting the de-
velopment of ASR-robust AD detection systems.

2. Approach
2.1. Data
The data used in this work comes from the Alzheimer’s Demen-
tia Recognition Through Spontaneous Speech (ADReSS) Chal-
lenge 2020 corpus [33]. This challenge selects a sub-task of Pitt
Corpus in the DementiaBank database [34], which requires all



the participants to describe the Cookie Theft picture [35]. The
ADReSS corpus consists of 156 different English speakers’ au-
dio samples with corresponding transcripts. Among them, 78 of
the speakers are healthy controls (35 male, 43 female) while the
rest are with AD (35 male, 43 female). The corpus is divided
into a standard train (108 speakers, about 2 hours) and test (48
speakers, about 1 hour) sets with balanced distributions of age,
gender, and disease conditions.

2.2. Automatic Speech Recognition Models
We employed a tailor-made ASR system based on the Time
Delay Neural Network (TDNN). This model was trained with
1000-hour Librispeech corpus and adapted on 59-hour Pitt cor-
pus [34]. Additionally, data augmentation, speaker adaptation,
and a Transformer language model were adopted to enhance
the performance on the in-domain speech. As a result, the em-
ployed system has shown state-of-the-art level performance on
the ADReSS corpus. More details can be found in [25].

2.3. AD Detection Models
We formulate AD detection as a binary classification problem,
i.e. classifying participants as healthy controls or individu-
als with AD. The development of the detection system follows
work [19], which has shown superior detection performance on
the ADReSS corpus. This system utilizes the BERT model [16]
to generate embeddings from the automatically transcribed text.
Specifically, we take the embedding corresponding to the [CLS]
token for each speaker throughout the entire transcript. This
process yields a feature vector with a dimensionality of 768,
which serves as the input representation for the following anal-
ysis. To avoid the over-fitting problem, we use the Principal
Component Analysis (PCA) method to reduce the dimension
of the embeddings to 108, which is the size of the training set.
The compressed embeddings are then fed into a Support Vector
Machine (SVM) with linear kernel and regularization parame-
ter C = 1 for classification. Both PCA and SVM models are
fitted with manual transcription. As for evaluation, we use ac-
curacy scores as the main criterion, where precision, recall, and
F1 scores are also used for analysis.

3. AD Detection with ASR Transcriptions
The non-linear dependency between ASR WER and AD de-
tection accuracy has been observed in multiple studies [19, 29,
30, 31]. To look into this observation, we first set up a subject
system using the above-mentioned settings. Table 1 shows the
classification results of the subject detection system. Note that
the detection model was fitted with manual transcription, and
ASR transcriptions were only used in the test stage. We can see
that even though the ASR system has a WER of 33.9%, it still
achieves an equivalent detection accuracy of 88% compared to
manual transcriptions.

Table 1: AD detection performance using Manual and ASR
transcription. “Trans.” stands for transcriptions.

Trans. WER Accuracy Precision Recall F1 AUC

Manual − 0.88 0.91 0.83 0.87 0.88

ASR 33.9% 0.88 0.82 0.96 0.88 0.88

Table 2 further breaks down prediction results into confu-
sion matrices. It reflects that although two types of transcrip-
tions achieve the same accuracy, prediction with ASR transcrip-
tions tends more false positive errors. Compared to manual
transcription, using ASR transcriptions results in 7 additional

Table 2: Confusion matrix of AD detection results. “TP, TN,
FP, FN” stands for true positive, true negative, false positive
and false negative, respectively.

Transcriptions TP TN FP FN Total

Manual 20 22 2 4 48

ASR 23 19 5 1 48

positive predictions (3 cases changed from true negatives to
false positives, 4 cases changed from false negatives to true pos-
itives), and only one more negative prediction (a case changed
from false negative to true positive). This suggests that tran-
scriptions with ASR errors might be more likely to be classi-
fied as originating from AD patients. However, there are 40/48
ASR-robust cases where manual and ASR transcriptions yield
the same classification results, despite the high word error rate
of 30%. This raises questions about how these errors influence
downstream decision-making.

Figure 1: The top 20 error word distribution of the ASR system.

4. Analysis of speech recognition errors
Based on the detection system in Section 3, this section char-
acterizes the composition of ASR errors and investigates why
a high word error rate did not significantly degrade AD detec-
tion performance. We will start with error distribution and then
examine certain types of errors using the test set transcriptions.

4.1. Basic analysis
The classification results show that there are 40 out of 48
cases (ASR-robust cases) where ASR and manual transcriptions
yielded identical predictions. To look into details, we first draw
the distribution of the top 20 ASR errors. Given that these errors
did not lead to prediction changes, we assume that frequent er-
rors play a relatively marginal role in AD detection. As shown
in Figure 1, we can first observe these errors follow a long-
tail distribution, with a small proportion of words constituting
a large proportion of errors. Moreover, we noticed that most of
these top word errors are stopwords, which have been consid-
ered to carry less semantic weight and are not directly related to
the picture description task used to diagnose AD patients.

In addition to overall errors, we conducted a thorough case
study to observe the individual patterns of ASR errors. Particu-
larly, we generated alignment maps for each participant to visu-
alize the compositions of ASR transcriptions and their discrep-
ancy with manual transcription. As showcased in Figure 2, the
alignment map compares manual and ASR transcriptions word-
by-word, where correct words are marked as squares and errors
are marked as crosses. Following the findings in the previous
section, we highlight the low-semantic stopwords1 with blue
colors. In comparison, we additionally highlight the relatively
high-semantic task-related keywords with red colors. As the di-
agnosis of AD in the ADReSS corpus is based on a picture de-
scription task, we hypothesize that content words related to the
elements in the target picture may play a role in distinguishing

1Following NLTK [36] (v3.8.1) Stopwords List



Figure 2: Samples of alignment map for participants s170 (a)
and s179 (b). Squares represent correctly transcribed words,
while crosses (’x’) indicate ASR errors. Blue color for stop-
words, red for keywords, and gray for other words.

Table 3: List of the task-related keywords
Task-related Keywords

boy, girl, two, children, cookie, jar, brother, sister. steal, cupboard,
door, finger, women, lady, dry, washing, dish, water, overflow,
floor, kitchen, window, curtain, mother, plate, stand, sink, running,
fall, outside, tree, house, look, open, hand, glass

AD patients from healthy controls. Table 3 lists 39 task-related
keywords used in this experiment, drawing on study [31].

Going through the alignment maps of ASR-robust cases, we
have the following findings. First, stopwords and keywords cov-
ered most of the words in transcriptions, thus investigations of
these words considered a majority of content. Second, healthy
participants generally could mention two times of keywords
than participants with AD, which was reflected by more red
markers in their alignment maps. Additionally, aligning with
the error distribution, a large proportion of ASR errors are on
stopwords, which means most keywords are well preserved in
ASR transcriptions. These observations suggest that ASR errors
are dominated by low-semantic stopwords, while keywords re-
lated to AD diagnosis are relatively well recognized. This may
explain why these errors have a limited impact on the final AD
classification. The following part will present our detailed in-
vestigation of stopwords and keywords.

4.2. Anayisis of stopwords
A series of experiments was conducted to examine the role of
stopwords in AD detection. First, Table 4 presents a detailed
breakdown of stopwords and non-stopwords in ASR errors from
the ASR-robust cases. It shows that a small proportion of stop-
word types (24%) constitute the majority of errors (60%), while
the remaining 76% types of words constitute only 40% of er-
rors. This aligns with the observation in Figure 1 and 2. Given
these errors did not affect AD classification, we hypothesize that
when using BERT features, the misrecognized stopwords error
may not significantly propagate to the downstream detection de-
cision. Meanwhile, we note that the non-stopword errors also
show an insignificant impact on classification results, suggest-
ing that words other than stopwords could also play a marginal
role in distinguishing AD. We will discuss this further in the
later part of this paper.
Words ablation experiments To verify the impact of stop-
words on downstream classification, we conduct a word abla-
tion experiment to probe the variation of BERT embeddings
when stopwords are misrecognized. Starting from manual tran-
scriptions, we randomly removed or substituted 10% to 100%
of stopwords in 10% increments and observed the correspond-

Table 4: Word error rates (WER) and counts (ratio %) of stop-
words and non-stopwords in manual transcription (Counts) and
ASR errors (Errors Counts). “tokens” represents the count of
words and “types” represents the count of distinct words.

WER
Counts Errors Counts

tokens types tokens types

Stopwords 32.4% 2574(58%) 95(18%) 834(60%) 87(24%)

Non-stopwords 29.8% 1897(42%) 447(82%) 566(40%) 281(76%)

ing BERT embeddings. For substitution, we replaced random
stopwords with an equal number of non-stopwords randomly
sampled from all manual transcriptions. We then projected the
high-dimensional BERT embeddings of the edited transcrip-
tions onto a 2-dimensional subspace orthogonal to the origi-
nal SVM decision hyperplane. The two sides of the decision
boundary were filled with white (healthy) and gray (AD) col-
ors to demonstrate the relationship between BERT embeddings
and SVM decisions. Figure 3 shows the resulting visualiza-
tions from an example participant. When gradually removing
or substituting stopwords (Figure 3 (a) & (c)), BERT embed-
dings show a shift towards the decision boundary. This suggests
that stopwords may have an effect on AD detection. However,
the edited transcription still falls on the negative (recognized
as healthy) side until all stopwords are removed/substituted. In
contrast, when gradually removing/substituting the same num-
ber of non-stopwords (Figure 3 (b) & (d)), the embeddings shift
across the decision boundary with a more direct trend. More-
over, in this case, substitutions result in a larger embedding vari-
ance compared to removal. We attribute this to the randomness
in the substitution operation, as random words were sampled for
replacement.

(a) Removing Stopwords (b) Removing Non-stopwords

(c) Substituting Stopwords (d) Substituting Non-stopwords

Figure 3: BERT embedding variations as stopwords are incre-
mentally removed/substituted from manual transcriptions (par-
ticipant s172). Light to dark blue: fewer to more stopwords re-
moved/substituted. ’x’: ASR transcript. White/gray: health/AD
decision regions.

Furthermore, to reduce randomness and quantify this ex-
periment across participants, we calculate the hyperplane offset
for each participant and each removal/substitution. This offset
represents a signed distance from BERT embedding to the SVM
hyperplane.

d = (wTx+ b)/||w|| (1)

The above equation presents calculation details where w and
b are the norm vector and interception of SVM, x is the input
vector, and || · || stands for L2 norm. The resulting d reflects
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Figure 4: Average hyperplane offset for transcription embed-
dings as stopwords (a) and keywords (b) are incrementally re-
moved or substituted. Edit ratio represents the percentage of
words removed/substituted.

how embeddings move toward or against the decision bound-
ary. We averaged d across participants to observe the aver-
age embedding movement when transcriptions are edited. In
Figure 4 (a), we present the resulting offset curves, using blue
and red background colors to indicate healthy and AD decision
regions, respectively. Similar to the embedding visualization,
when removing or substituting stopwords (solid lines), the av-
erage offset values gradually approach 0 from negative values
but do not cross the decision boundary. Suggesting that the edit
of stopwords leads to embeddings shift towards the AD deci-
sion region, but not enough to change the classification out-
come. In contrast, editing non-stopwords easily leads to set
values reaching 0, indicating a likely change in the classifica-
tion result. This difference implies distinct roles of stopwords
and non-stopwords in the representations, with non-stopwords
carrying more semantic content that influences the AD detec-
tion task.

4.3. Analysis of task-related keywords
In comparison to stopwords, this part investigates keywords re-
lated to elements in the Cookie Thief picture used for AD di-
agnosis. Table 5 breakdown keyword and non-keyword errors
of ASR-robust cases. We highlight that the WER for keywords
is only 14.3%, which is much lower than the overall WER of
33.9%. The high accuracy in keywords is understandable, as
task-related keywords are frequently mentioned words in the
training set, with only 602 distinct keywords in total. Compared
to stopwords, most keywords have more syllables, making them
easier to recognize. Furthermore, keyword errors account for
just 9% of all ASR errors. This aligns with the observations
using the alignment maps in Section 4.1.
Words ablation experiments We conducted word ablation ex-
periments using the same settings as in the stopword investi-
gation, replacing stopwords with keywords. The visualizations
of BERT embeddings are exampled in Figure 5. It is not sur-
prising that the results of editing keywords and stopwords are
opposite. Removing or substituting keywords in transcriptions
causes BERT embeddings to shift across the SVM decision
boundary, whereas similar manipulations of non-keywords do
not produce this effect. Figure 4 (b) depicted the hyperplane
offset experiment. There is also a clear divergence when editing
keywords and non-keywords. Opposite to stopwords, removing
or substituting keywords shows more significant changes in em-
bedding offset. This divergence indicates keywords may play
a distinctly meaningful role compared to other words. Some
of the 88% non-keywords may also be non-stopwords, which
could explain the insignificant non-stopwords in Table 4. No-

2Including inflections of words in Table 3

Table 5: Word error rates (WER) and counts (ratio %) of key-
words and non-keywords in manual transcription (Counts) and
ASR errors (Errors Counts). “tokens” represents the count of
words and “types” represents the count of distinct words.

WER
Counts Errors Counts

tokens types tokens types

Keywords 14.3% 909(20%) 60(11%) 130(9%) 46(12%)

Non-keywords 35.6% 3562(80%) 482(89%) 1270(91%) 322(88%)

tably, editing keywords didn’t result in embedding shifts as ef-
fectively as expected, i.e., the averaged offset started to be pos-
itive only when 70% of the keywords were removed. We inter-
pret this as an indication that there exists information above the
word level that can be helpful to AD classification. E.g., sen-
tence length and the interplay between words within the tran-
scriptions.

(a) Removing Keywords (b) Removing Non-keywords

(c) Substituting Keywords (d) Substituting Non-keywords

Figure 5: BERT embedding variations as keywords are incre-
mentally removed/substituted from manual transcriptions (par-
ticipant s172). Light to dark blue: fewer to more keywords re-
moved/substituted. ’x’: ASR transcript. White/gray: health/AD
decision regions.

5. Conclusions
We performed a series of analyses to investigate the effect of
ASR transcription errors in BERT-based Alzheimer’s Disease
(AD) detection. Specifically, we explored why transcriptions
with notable word error rates could yield detection accuracy
equivalent to that of manual transcriptions. We have shown that
not all ASR errors are equally detrimental to downstream AD
detection. Certain word types, particularly stopwords, consti-
tute a large proportion of errors while carrying limited informa-
tion for AD discrimination than others. The task-related key-
words were demonstrated to be significant to AD classification
while occupying only 9% of all word errors. These findings
provide insights into understanding the influence of ASR errors
on downstream AD detection and facilitate the development of
robust AD detection systems. While this work focused on ASR
at the word level, future work could explore their influence on
other linguistic structures such as syntactic dependencies and
discourse coherence.
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