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ABSTRACT

Synthesizing fluent code-switched (CS) speech with consistent voice
using only monolingual corpora is still a challenging task, since lan-
guage alternation seldom occurs during training and the speaker
identity is directly correlated with language. In this paper, we
present a bilingual phonetic posteriorgram (PPG) based CS speech
synthesizer using only monolingual corpora. The bilingual PPG is
used to bridge across speakers and languages, which is formed by
stacking two monolingual PPGs extracted from two monolingual
speaker-independent speech recognition systems. It is assumed
that bilingual PPG can represent the articulation of speech sounds
speaker-independently and captures accurate phonetic information
of both languages in the same feature space. The proposed model
first extracts bilingual PPGs from training data. Then an encoder-
decoder based model is used to learn the relationship between input
text and bilingual PPGs, and the bilingual PPGs are mapped to
acoustic features using bidirectional long-short term memory based
model conditioned on speaker embedding to control speaker iden-
tity. Experiments validate the effectiveness of the proposed model in
terms of speech intelligibility, audio fidelity and speaker consistency
of the generated code-switched speech.

Index Terms— code-switching, speech synthesis, phonetic pos-
teriorgrams

1. INTRODUCTION

Code-switching (CS), the alternation of languages within an utter-
ance, is a common phenomenon in multilingual societies across the
world [1]. State-of-the-art text-to-speech (TTS) synthesis models
can generate monolingual speech with high intelligibility and natu-
ralness [2–5]. However, they are not fully capable of handling code-
switched text, which results in omitted or incorrect pronunciations
in the synthesized outputs.

It is straightforward to use bilingual recordings from a bilin-
gual speaker for building a code-switched speech synthesizer [6–9].
However, in practice, it is expensive to obtain such bilingual data in
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large quantities. With easy access to large-scale existing monolin-
gual corpora, we intend to investigate the combined use of monolin-
gual recordings from different speakers to generate code-switched
speech. In this setting, speaker characteristics and language char-
acteristics are directly correlated, i.e., each speaker speaks in only
one language. This makes it difficult to transfer voices when there
is language switching, which can easily lead to synthesize outputs
with inconsistent voices within an utterance. Another challenge is
the mismatch between training and testing. The model is trained
with monolingual corpora of the code-switched language pairs, and
never accesses language alternations during training. Such a model
will often fail to generate intelligible speech with smooth transitions
at language boundaries during testing.

One possible solution to tackle the aforementioned issues in CS
TTS is to find proper speaker-independent phonetic features which
are able to represent the code-switched languages in a compact
feature space. Phonetic PosteriorGrams (PPGs) computed from a
speaker-independent automatic speech recognition (SI-ASR) model
are deemed speaker-independent and language-independent, which
have the potential to serve as such a representation. The PPG is a
time-versus-class matrix representing the posterior probabilities of
each phonetic class for a specific frame of one utterance [10, 11].
It is considered to be speaker-independent since the SI-ASR model
is designed to be invariant with different speakers. Benefiting from
its speaker-independent property, PPGs have been successfully used
in voice conversion (VC) tasks [12–14]. [8, 15–17] indicates that
state-level and frame-level speech segments can be shared in dif-
ferent languages. Hence PPGs, which are frame-level features, can
be regarded as language-independent. This property of PPGs has
made it possible to be used in the cross-lingual VC task [18]. How-
ever, languages are phonetically different in nature, meaning that
PPGs of one language cannot effectively characterize the phonetic
contents of another language. A recent cross-lingual VC system
uses bilingual PPGs as the linguistic representations to accurately
capture the phonetic information of both languages [19]. The bilin-
gual PPGs are formed by stacking two monolingual PPGs extracted
from two monolingual SI-ASR systems. Bilingual PPGs can offer a
representation superior to monolingual PPGs for representing differ-
ent languages in a speaker-independent and language-independent
space.

In this paper, we explore the efficacy of using bilingual PPGs



for code-switched TTS using a combination of Mandarin and En-
glish monolingual speech corpora uttered by two female speakers.
Specifically, the attention-based encoder-decoder model Tacotron2
[4] is adapted to convert input text sequences to bilingual (Mandarin
and English) PPGs. The bilingual PPGs are then mapped to acous-
tic features frame-wise using a bidirectional long-short term mem-
ory (BLSTM) based model, conditioned on speaker embedding to
control the speaker identity. Bilingual PPGs are inherently speaker
and language disentangled, making it easy to control speaker consis-
tency for code-switched speech. Besides, the textual content of an
utterance is closely related to its bilingual PPGs, making it much
easier to learn the mapping from text to bilingual PPGs than the
mapping from text to acoustic features, using an encoder-decoder
model. This is helpful for accelerating model training and reducing
sequence-to-sequence alignment errors during code-switched speech
generation. Experiments validate the effectiveness of the proposed
model in terms of speech intelligibility, audio fidelity and speaker
consistency of the generated code-switched speech.

2. RELATED WORK

Early attempts mostly adopt HMM-based and unit-selection-based
TTS models, including voice adaptation from an average voice [20],
voice conversion to create a polyglot corpus from monolingual cor-
pora [21], and unit mapping methods, e.g. phoneme mapping [22],
frame mapping [23], senone mapping [17], etc. We borrow the
idea from these works in equalizing the speaker differences. Recent
approaches take advantage of the encoder-decoder architecture for
code-switched and cross-lingual TTS without training on bilingual
or multilingual data. The decoders in these methods are conditioned
on a speaker embedding to control speech voice with mel spectro-
grams as output, while the encoders employ different mechanisms to
handle different language inputs. [24] uses Unicode byte represen-
tation for all languages. Separate encoder and shared encoder with
language embedding are investigated in [25] to encode individual
languages with characters as input. [26, 27] use phoneme sequences
as input, while [26] starts from an average voice model built from
multi-speaker monolingual data and [27] incorporates latent vari-
ables into the attention mechanism to generate language agnostic ar-
ticulatory features to improve generalization during inference. Since
mel spectrograms inherently capture both spoken language charac-
teristics and speaker identity, these encoder-decoder models with
mel spectrograms as output implicitly disentangle language char-
acteristics and speaker characteristics. To explicitly encourage the
model to learn disentangled representation of the text and speaker
identity, an adversial loss is used in [28]. Our work is similar to the
adversial loss based model in terms of explicit speaker and language
disentanglement.

3. BASELINE APPROACH

The baseline approach follows a Tacotron2-based cross-lingual
voice cloning model [28], where a speaker-adversial loss is incorpo-
rated to disentangle closely correlated textual content and speaker
identity. Phoneme sequences are used as input, since [28] has shown
that phoneme-based model performs better in rare words and out of
vocabulary (OOV) situations than byte and character counterparts.

As shown in Fig. 1, a text encoder takes phoneme sequences as
input. The text encodings are sent to an adversarially-trained speaker
classifier for discouraging the text encodings from capturing speaker
information. The speaker classifier is optimized with the objective:

Fig. 1. The baseline CS TTS model

Lspeaker (ψS ; ti) =
∑N

i log p (si|ti), where ψS are the parameters
of the speaker classifier, si is the speaker label corresponding to text
encoding ti and N is the number of training samples. Prior to the
speaker classifier, we add a gradient reversal layer, which scales the
gradient by −λ. The text encodings are also accessed by the de-
coder through a location-sensitive attention [29], which takes atten-
tion history into account when computing the attention probabilities
for aggregation. The residual encodings, which are encoded from
mel spectrograms by a variational autoencoder (VAE)-like residual
encoder [30], are used to help stabilize attention. The aggregated
text encodings, residual encodings, language embedding and speaker
embedding are concatenated at each decoder time step. The decoder
takes these as input to generate mel spectrograms autoregressively,
and also predicts an end-of-sentence flag at each time step. The spec-
trograms and stop flags are trained with mean squared error (MSE)
loss Lmel and binary cross entropy (BCE) loss Lstop respectively.
The baseline model is jointly trained using the loss LTTMEL:

LTTMEL = α1Lmel+α2Lstop+α3Lvae−KL+α4Lspeaker, (1)

where Lvae−KL is the Kullback-Leibler divergence loss in VAE
training and the αs are weights of the four losses.

4. CODE-SWITCHED TTS WITH BILINGUAL PPG

We introduce bilingual PPGs for code-switched TTS, leveraging its
speaker-independent and language-independent properties. As illus-
trated in Fig. 2, the proposed approach includes three parts: bilingual
PPG extraction with two monolingual SI-ASR models, an attention-
based encoder-decoder model mapping text to bilingual PPGs, and a
BLSTM-based model mapping bilingual PPGs to mel spectrograms.

4.1. Bilingual PPG Extraction

Fig. 2(a) presents the procedure of bilingual PPG extraction. Two
DNN-HMM based SI-ASR models (English and Mandarin) are pre-
trained by an English ASR corpus and a Mandarin ASR corpus re-
spectively. Monolingual PPGs are first extracted with the English
and Mandarin SI-ASR models separately. Then the two monolingual
PPGs are stacked to form a bilingual PPG, which represents speaker-
independent articulation of speech sounds from both languages in a
compact space.

4.2. Text-to-Bilingual PPG

We modify the encoder-decoder model Tacotron2 to generate
bilingual PPGs from input phoneme sequences. As shown in
Fig. 2(b), the decoder predicts a bilingual PPG, a log F0 (LF0),
a voice/unvoiced (VUV) flag and an end-of-sentence flag from the
encoded phoneme sequence one frame at a time. The attention-based
decoder is composed of a pre-net layer, a location-sensitive atten-
tion layer, two LSTM decoder layers and output layers, following
[4]. The prediction of bilingual PPG from the previous time step is



Fig. 2. The proposed bilingual PPG based CS TTS model. (a) The process of computing bilingual PPGs from the speech signal. (b) Encoder-
decoder based model mapping text inputs to bilingual PPGs. (c) BLSTM-based model mapping bilingual PPGs to mel spectrograms.

passed to the pre-net as input of current time step. The pre-net output
and attention context are concatenated as decoder input, which is
sent to the LSTM decoder layers. Then, the concatenation of LSTM
output and attention contexts is projected through two separate lin-
ear transformations to predict the target bilingual PPGs and LF0
respectively. Meanwhile, the concatenation is also projected into
two scalars by the sigmoid activation to predict an end-of-sentence
flag and a VUV flag respectively. LF0 and VUV are also predicted
here to compensate for the prosody information lacking in bilingual
PPGs. MSE loss is adopted for bilingual PPG (Lbppg) and LF0
(Llf0) predictions, while BCE loss is used for VUV flag (Lvuv)
and stop flag (Lstop) predictions. A VAE-like residual encoder is
also adopted for stabilizing attention, which encodes the latent fac-
tors from bilingual PPGs. The residual encoder closely follows the
network architecture in [30]. The text-to-bilingual PPG model is
trained using the loss LTTBPPG:

LTTBPPG = α1Lbppg+α2Llf0+α3Lvuv+α4Lstop+α5Lvae−KL,
(2)

where Lvae−KL is the Kullback-Leibler divergence loss in VAE
training and the αs are weights of the five losses.

4.3. Bilingual PPGs to Mel spectrograms

A BLSTM based transformation model is used to map bilingual
PPGs to mel spectrograms, as shown in Fig. 2(c). A speaker em-
bedding is concatenated with bilingual PPG, LF0 and VUV at each
frame to control the speech voice, before being sent to the transfor-
mation model. LF0 and VUV compensate for the prosody informa-
tion lacking in bilingual PPGs. Following [13], the transformation
model comprises of two fully connected (FC) layers with ReLU ac-
tivation and dropout, followed by four BLSTM layers. The speaker
embedding is jointly trained with the transformation model. During
synthesis, the predicted bilingual PPG, LF0 and VUV from the text
to bilingual PPG model are concatenated with the designated speaker
embedding to control the speaker identity of the generated speech.

5. EXPERIMENTS

5.1. Experimental setup

We use an American English speech corpus [31] and a Mandarin
speech corpus [32] uttered by two female speakers to build our sys-
tems. All audios are sampled at 16 kHz with leading and trailing
silence trimmed. 9000 utterances from each corpus are randomly
selected as training data, and both corpora have about 10 hours of

speech. Another 300 utterances from each corpus and 300 code-
switched utterances crawled from the Internet are used as test data.
Each CS utterance has one or two code-switched points. English
words and Chinese characters are transcribed as phonemes as input
with stress and tonal information respectively. We extract F0 and
VUV flag with frame shift of 10ms. Then F0 is linearly interpo-
lated and transformed to logarithmic scale before being normalized
to have zero mean and unit variance over each corpus. The 80-band
mel spectrograms are extracted with 25ms window shifted by 10ms.

We implement the baseline model following [28]: the weights
in Equation (1) are set to 1.0, 1.0, 1.0 and 0.02 respectively, and the
gradient scale factor is set to 0.5. The only modifications are the
dimensions of speaker embedding and language embedding, which
are set to 16 and 2 respectively, since we only have two speakers
and two languages. We use the open-source WaveRNN network1

as neural vocoder to invert mel spectrograms to waveforms. Two
separately trained WaveRNNs with ground-truth mel spectrograms
for each speaker are used for both the baseline and proposed models.

The English and Mandarin ASR models are trained on TIMIT
[33] and AI-SHELL1 [34] corpus respectively. Both SI-ASR mod-
els are implemented with the Kaldi toolkit [35]. 13-dimensional
MFCCs computed with 25ms window shifted by 10ms are used for
both SI-ASR models, while Mandarin SI-ASR also takes 3 dimen-
sional pitch features as input following [34]. The English SI-ASR
model has 4 hidden layers with 1024 hidden units, while the Man-
darin SI-ASR model consists of 6 hidden layers with 850 hidden
units. Senones are treated as the phonetic class of PPGs. The num-
ber of senone classes for English and Mandarin ASR is 128 and 217
respectively, which are both obtained by clustering at the SI-ASR
training stage. The bilingual PPGs, formed by concatenating En-
glish PPGs and Mandarin PPGs, thus have 345 dimensions. The
text-to-bilingual PPG model closely follows the network architecture
of Tacotron2 [4], while the residual encoder has the same structure
as baseline model except that we use bilingual PPG as input. All the
weights in Equation (2) are empirically set to 1.0. For the transfor-
mation model, two FC layers with dropout 0.5 containing 512 hidden
units and four BLSTM layers with 256 units per direction are used.
This outputs are mapped to mel spectrograms by another FC layer.
The text-to-bilingual PPG model and transformation model are sep-
arately trained.

5.2. Evaluation and analysis

To evaluate the code-switched speech synthesis performance of the
baseline and proposed systems, we use each system to synthesize

1“https://github.com/fatchord/WaveRNN”
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Fig. 3. MOS results on speech intelligibility for baseline (Base) and
proposed (Prop) systems with code-switched, Chinese, and English
input in Mandarin speaker’s SC or English speaker’s SE voice.
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Fig. 4. MOS results on audio fidelity for baseline (Base) and pro-
posed (Prop) systems with code-switched, Chinese, and English in-
put in Mandarin speaker’s SC or English speaker’s SE voice.
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Fig. 5. Preference test results on speaker consistency for baseline
(Base) and proposed (Prop) systems with code-switched input in
Mandarin speaker’s SC or English speaker’s SE voice. NP denotes
no preference.

audio samples with English, Chinese and code-switched text in both
English speaker SE’s and Mandarin speaker SC ’s voices for percep-
tual listening tests. Two mean opinion score (MOS) tests and one AB
preference test are conducted for speech intelligibility, audio fidelity
and speaker consistency respectively. 20 utterances for each setting
are randomly chosen from the test set2. 17 native Mandarin speakers
who are proficient in English participate in the listening tests.

Speech intelligibility. In the MOS test, the subjects listen to
each pair of four utterances synthesized by the two systems with
both speakers’ voices. They are asked to give a 5-point scale score
(5:excellent, 4:good, 3:fair, 2:poor, 1:bad) of speech intelligibility.
The MOS result of speech intelligibility, presented in Fig. 3, shows
that our proposed model with bilingual PPG is capable of synthe-
sizing speech with stable intelligibility despite of changes in text
input and speaker identity. This validates that bilingual PPGs benefit
cross-lingual and code-switched speech synthesis as an intermedi-
ate feature, capturing phonetic information of both languages in a
speaker-normalized space. Although the baseline model can gen-
erate very intelligible speech with Chinese input in SC ’s voice and
English input in SE’s voice, the speech intelligibility degrades se-

2Some samples are available in “https://csttsdemo.github.io/bppgCSTTS/”

riously in cross-lingual and code-switched settings. Listeners com-
ment that some samples sound like babbling. This indicates that the
speaker characteristics and spoken language characteristics disentan-
glement are not well tackled in the baseline system. The language
embedding does not capture sufficient language-dependent informa-
tion for cross-lingual speech synthesis.

Audio fidelity. Another MOS test is conducted similar to the
one described above, except that listeners are asked to evaluate the
audio fidelity of presented speech samples. The MOS result of audio
fidelity is shown in Fig. 4. Although both systems can achieve decent
audio fidelity, the baseline outperforms the proposed system in terms
of audio fidelity in all settings. A possible reason is that the bilingual
PPGs extracted in our experiments are not accurate enough. The
numbers of senones in the English and Mandarin SI-ASR models are
constrained to be small, degrading recognition performance (21.8%
phone error rate for English ASR and 16.5% character error rate
for Mandarin ASR). Our preliminary experiments show that when
using PPGs with higher dimensions, the generated speech is even
worse. There is a trade-off between the ASR performance and PPG
dimensions, which will be further investigated in our future work.

Speaker consistency. Since we are most concerned with voice
consistency within code-switched utterances, an AB preference test
is conducted. Speech samples in AB preference test are generated
by the baseline and proposed systems with code-switched input in
both speakers’ voices. Paired speech samples (A and B) with the
same textual content from different settings with different speaker
identities are presented to listeners. The listeners are required to
provide a speaker consistency choice among 3 options: 1) sample A
has greater speaker consistency within an utterance; 2) no preference
(NP); 3) sample B has greater speaker consistency. Fig. 5 shows
that there is no significant difference between the baseline and the
proposed models in speaker identity preservation of code-switched
speech synthesis. Neither the baseline nor the proposed model has
much difference between preserving SE’s and SC ’s voices, which
reflects the effectiveness of speaker embedding in both systems.

6. CONCLUSION

In this paper, we propose a bilingual PPG based approach for code-
switched TTS using only monolingual corpora. Bilingual PPGs,
obtained by concatenating monolingual PPGs from English SI-ASR
and Mandarin SI-ASR, are regarded as a bridge across speakers
and language boundaries. Therefore, an attention-based encoder-
decoder model is trained to map input text to bilingual PPGs, and
the bilingual PPGs are mapped to mel spectrograms frame-wise by
a BLSTM based model conditioned on speaker embedding. Ex-
periments confirm the effectiveness of the proposed approach in
synthesizing code-switched speech with decent speech intelligibil-
ity, audio fidelity and speaker consistency. Further improving the
audio fidelity will be our future work.
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