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ABSTRACT Dialogue State Tracking (DST) models often employ intricate neural network architectures,
necessitating substantial training data, and their inference process lacks transparency. This paper proposes
a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this
knowledge to augment BERT’s performance and interpretability in DST tasks. The knowledge extraction
procedure is computationally economical and does not require annotations or additional training data.
The injection of the extracted knowledge can be achieved by the addition of simple neural modules.
We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate
that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation
facilitates a comprehensive understanding of the linguistic features influencing the DST model’s decision-
making process. We benchmark this framework on various DST tasks and observe a notable improvement
in accuracy.

INDEX TERMS Dialogue state tracking, convex polytopic model, knowledge extraction, interpretable AI.

I. INTRODUCTION
Dialogue State Tracking (DST) is a crucial component in
task-oriented dialogue systems. DST aims to extract and
update current dialogue state, which is typically represented
as a set of slot-value pairs that capture the user’s intent
and the key information provided so far in the conversation.
For example, in a flight booking system, given the user
query ‘‘What flights are there on Sunday from Seattle to
Chicago?’’, the corresponding slot-value pairs could include
departure-city: Seattle, arrival-city: Chicago,
and departure-date: Sunday. The dialogue state is
used to generate appropriate system responses to fulfill the
user’s request. As such, accurate DST is essential for natural
language understanding and successful task completion in
conversational AI applications.

While neural network models, particularly those employ-
ing transformer-based architectures like BERT [1], have
been reported to have achieved substantial performance
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enhancements in DST [2], surpassing traditional heuristic-
based approaches, we note that they also present challenges.
These models, due to their intricate architectures, offer
limited visibility and control during training and inference
process. The cascading non-linear transformations from
dialogue data to dialogue state are intricate and obscure. The
latent representation space used in their intermediate layers
may not align with the syntactical or semantic features in
the input [3], leading to insufficient transparency. On the
performance improvement side, the predominant strategies
have been increasingly larger, task-specific datasets or to
apply complex training paradigms to limited data samples [4].

Given these circumstances, this paper explores a novel
approach. We aim to guide the training process with
externally acquired knowledge, obtaining which does not
require explicit annotations, while concurrently minimizing
the need for additional computational resources beyond
training the original model. This methodology seeks to
infuse an interpretable feature set into neural models’ opaque
decision process, allowing analysis of the decision-making
process by calculating the attributions to the features.
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FIGURE 1. Flowchart of our proposed pipeline.

A summary of the process is described in the flowchart in
Figure 1.

This paper introduces a framework that leverages the Con-
vex Polytopic Model (CPM) for semantic feature extraction
in DST, offering computational efficiency and robustness.
CPM has proven its efficacy in topic discovery tasks [5],
efficiently classifying documents into interpretable topics,
even within short-text corpora, aligning with the concise
nature of dialogue processing tasks.

In contrast to neural-model-based representation models,
feature extraction using CPM can efficiently run on CPUs
during both training and inference stages, reducing compu-
tational resource burdens. The patterns discovered by CPM
without supervision, are correlated to various intents and
slots prevalent in task-oriented dialogues [6], [7]. These
discovered patterns, easily interpretable by humans, enrich
the approach’s overall comprehensibility.

This study aims to illustrate the efficacy of CPM in
DST models to improve both accuracy and interpretability
compared to traditional neural-model based DST approaches.
We first describe how to process dialogue datasets using
our CPM-based framework, examining semantic structures
and the relations of CPM features to dialogue states from a
semantics viewpoint, to demonstrate that CPM can extract
semantically relevant features without supervision. Subse-
quently, we show these semantic features are incorporated
into the BERT architecture for DST, and then validate
the improvements in DST by fine-tuning two pre-trained
models–one incorporating CPM features and the other not–on
DST datasets, showing that the inclusion of CPM features
enables the BERT-based model to achieve superior scores
in DST tasks without necessitating additional fine-tuning
strategies or data samples. Finally, we visualize and interpret
the CPM’s impact on the DST model by calculating the
attribution of key tokens to accurate DST prediction. We use
this work as the first step of using CPM on a series of
dialogue processing tasks involving neural models which lack
interpretability, and we examine the effect on a BERT-based
model as a demonstration of the framework, as well as a clear
visualization of interpretable features from CPM influencing
the decision from neural model.

Our contributions can be summarized as follows:
1) We pioneer the application of CPM to DST, employing

it as semantic context in the context-guided BERT
model.

2) We design a CPM-guided BERT structure that sur-
passes baseline performance on DST task.

3) We assess the effect of CPM-extracted features on
the BERT model, underscoring CPM’s role in enhanc-
ing the interpretability of neural-model-based DST
systems.

II. BACKGROUND
Dialogue State Tracking: DST models have evolved from
employing parsing rules, to pinpointing dialogue state
slot-value pairs within dialogues to leveraging neural models,
to encoding dialogues as latent representations [8], [9].
Recent advancements in DST models predominantly utilize
transformer-based encoders [10], [11]. For decoders, the
strategy includes discriminating decoders [12], [13], [14] and
generation-based models [15].

Given the data quantity requirement from transformer
encoders, numerous works have focused on optimizing
decoding/generation strategies, such as pointer network [9],
and grounding responses using external context data like
database query results [16]. Others have aimed at augmenting
and denoising data, synthesizing annotations [17], and
translating dialogue queries to SQL [18].

Our work uniquely centers on the encoder module of the
DST pipeline, often overshadowed in research due to the
intricacy and opacity of PLMs. Even as this paper utilizes a
relatively straightforward baseline model to underscore the
efficacy of our approach, it can seamlessly integrate into
diverse works, fosteringmore robust and performant systems.
Linguistic Knowledge and PLM: Transformer-based Pre-

trained Language Models (PLM) are known for proficiently
modeling inter-token dependencies, primarily covered by
linguistic information domains, through the self-attention
mechanism [19]. Some research works have demonstrated
that transformer layers score well in synthetic dependency
tasks [20], and conjectured that and that this sensitivity to
dependency relationships is pivotal for downstream NLP
tasks [20], [21]. However, this dependency relationship is not
explicitly utilized to guide the pre-training and fine-tuning of
PLMs, nor do PLMs produce any explicit intermediate repre-
sentation of dependencies or other linguistic features. Hence,
studies have explored the injection of contextual information
into the self-attention mechanism, improving tasks like
machine translation [22] and sentiment analysis [23].

These studies, for simplicity, often avoided using external
contextual knowledge, instead, relying on transformations
of latent representations in PLMs as sources of contextual
knowledge. Although these latent representations are context-
aware, they remain susceptible to interpretability issues.
Some solutions, such as using a specialized neural component
to extract contextualized word representations [24], [25],
require additional fine-tuning.

In contrast, our approach employs a computationally
efficient algorithm to capture semantic patterns in the entire
training corpus and generates features that guide attention
to semantically important tokens in the input sequence. This
process and the resulting features can be easily analyzed and
understood.

93762 VOLUME 12, 2024



X. Feng et al.: Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking

III. MODEL
A. TASK: DIALOGUE STATE TRACKING
Dialogue State Tracking (DST) involves receiving the
dialogue history, the current dialogue turn, and dialogue state
history as inputs and yields the updated dialogue state for
the current turn. More precisely, the dialogue state often
adopts the format of domain-slot: value. Here, the slot serves
as a domain-specific tag, attributing the specified value.
Depending on the nature of the slot, the values may fall within
a pre-defined category set, for instance, a binary choice of
‘‘yes’’ or ‘‘no’’ for the slot hotel-internet. It is noteworthy
that in the same dialogue turn, multiple slots across various
domains may undergo updates.

B. BASE MODEL: TripPy
We build our model on the foundational principles laid out
by Heck [14], using their well-regarded dialogue tracking
model, TripPy, as our point of departure and baseline for
modifications. TripPy sources slot values from three pivotal
points: user utterances, system-informed values (current
or preceding turns), and values derived from other slots.
It divides the prediction of dialogue states into two subtasks:
discerning the slots requiring attention in the ongoing turn
and forecasting values for all slots slated for updates.

Given the preceding dialogue state, an update decision
tag–none, dontcare, span, inform, refer–is anticipated for all
non-boolean slots in the schema. For boolean slots, the set
none, dontcare, yes, no is used. The tag none implies no
updates to the correlated slot, while dontcare, yes, no denote
actions updating the slot value per the tag. The span indicates
an update using current user turn values by pinpointing
the start and end positions of the value to be replicated;
informmeans that the update value should be from previously
system-informed memories, and refer implies value-sharing
between slots.

This DST pipeline is implemented utilizing an encoder-
only BERT architecture, with distinct classifiers leveraging
the latent representation from the encoder to predict slot
actions and values. The input is comprised of current
user and system turns and the prior dialogue state, which
are concatenated and encoded via a single BERT model.
The slot action is anticipated by a linear classifier on the
representation of the first token ‘‘[CLS]’’, with a distinct
classifier being trained for each slot defined in the ontology.
The span of slot value in the input is deduced using a pair
of classifiers on all other tokens for each slot, applying
a Softmax to the output score to formulate a probability
distribution for the start and end positions of the desired value
in the input. This mechanism remains constant for informed
memory and dialogue state memory, where the classifier
selects one value from candidate lists.

As a high-performing model, TripPy has gathered con-
siderable acclaim in recent DST literature. However, its
latent representation from the encoder remains intricate
and challenging to decipher. We address this limitation

by integrating a set of interpretable features into BERT’s
attention layer in our model, aligning them with the semantic
properties of input dialogue to influence the DST model’s
training and inference processes. The following sections will
elaborate on the interpretability of these features.

C. KNOWLEDGE EXTRACTION: CPM
This section gives a brief introduction of Convex Polytopic
Model (CPM), a notable algorithm capable of extracting
pivotal concepts within a corpus. These concepts have been
discovered to correlate with slots and values in task-oriented
dialogues. For an in-depth exploration of CPM, readers
are directed to our preceding publications.

CPM initializes with utterances depicted through a bag-
of-words model, with each utterance symbolized by a
word frequency vector. This vector’s dimension, F is
determined by the vocabulary size and is sum-normalized
across columns. Subsequently, Principal Component Analy-
sis (PCA) is employed to condense these vectors into a lower
dimension, R. Thereupon, a convex polytope is formulated by
identifying the minimal volume of the polytope that envelops
allR-dim vectors withR+1 vertices, labelled as v1, . . . , vR+1,
utilizing the algorithm proposed by [26].

This transformation yields two valuable geometric
features:

1) Composition coefficients of vertices with respect to
utterances: any representations of the utterances pi in
R-dim space can be decomposed in the format of the
following:

pi =

K∑
j=1

aijvj (1)

where aij are all non-negative, with a higher value
signifying a stronger association between the vertex
and the utterance. The composition coefficients may
be directly used as a feature related to semantic frame
in the utterance, while the vertex coefficients could be
utilized with the following transformations:

2) Vertex coordinates of the polytope: the coordinates of
vertices in the reducedR-dim subspace can be projected
back to the N -dim space, and in each N -dim vector of
vertex, wordswith the highest weight can be considered
the most correlated words for the vertex. Stacking all
vertex coordinate vectors horizontally renders a vertex
matrix V ∈ RN×(R+1), wherein each row corresponds
to a vocabulary word. Subsequently, every entry in a
row serves as the correlation between the vertex and the
corresponding column and word, enabling each word
to be represented by its row vector VT

i ∈ K , This leads
to the derivation of a word-word correlation matrix M
for each utterance through cosine similarity on word
vectors:

M[i,j] =
VT
i · VT

j∥∥VT
i

∥∥ ∥∥∥VT
j

∥∥∥ (2)
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TABLE 1. Nearest 3 dialogue pairs and top 10 words corresponding to the vertices in the 3-D MVS-type polytope. Key semantic patterns in the dialogue
pairs are italicized, while the corresponding top words are marked in bold.

where M[i,j] denotes the similarity between i-th and
j-th words in the utterance. For example, in the
utterance ‘‘All flights fromDenver to Pittsburgh leaving
after 6pm and before 7pm’’, the tokens within ‘‘after
6pm and before 7pm’’ exhibit substantial correlations
among themselves, contrasting their weaker relations to
the external tokens like ‘‘Pittsburgh’’ and ‘‘leaving’’.

In essence, CPM features encapsulate crucial semantic
patterns, including phrases encompassing slots and values,
which surpass the limitation of linear word order, and
often embodying hierarchical structures. The composition
coefficients can be directly correlated to the semantic frame
in the utterance, while the vertex coefficients can undergo
further transformations.

The interpretability of CPM originates from its foundation
in the bag-of-words subspace, enabling geometric properties
in the reduced subspace to revert to the original bag-of-words
space, interpretable through the relationship among the set of
basis, corresponding to the corpus vocabulary. To illustrate
this interpretability, we process all dialogue turn pairs solely
related to the train domain in the MultiWoZ 2.4 dataset,
utilizing WordPiece tokenizer. Words with less than two
occurrences were substituted with a unique ‘‘[UNK]’’ token,
and a 3-dimensional MVS encompassing all representation
points of dialogue turns in the reduced 3-D subspace is
calculated.

Figure 2 presents the resulting 3D polytope. Notably,
a subset of utterances align closely with the polytope’s
contour, while the majority tend to aggregate loosely around
its center. Hence, generating a minimum volume polytope
is pivotal, ensuring the vertices are as proximate to most
utterances as feasible. Subsequently, the four vertices on the
3D polytope could be analyzed through two methods:

1) Examining the top k words of vertices. This is
determined based on the previously mentioned vertex
coordinates of the polytope, with k = 10.

2) Identifying Nearest Dialogue Pairs to Vertices. This
is gauged by Euclidean distance in the reduced 3-D
subspace. The proximity of similar dialogue pairs,

FIGURE 2. The 3-D MVS-type polytope. Vertices(Red and in bold) are
labelled as V1-V4. The scattered dots denote projected utterance points.

showcasing analogous semantic structures in the orig-
inal bag-of-words subspace, provides insights into
semantic structures linked to the vertices. Three nearest
dialogue pairs for each vertex are considered.

The insights derived from these approaches are summa-
rized in Table 1. Words integral to dialogue turn updates, e.g.
from, deparing, where indicating the slot train-departure, are
prominently featured in the top words for vertices V1-V4,
and the related semantic structures, including . . . departing
from city-name, are present in the nearest dialogue pairs.
We take note that dialogue state updates usually adhere
to fixed syntactic patterns, with values often positioned in
predetermined locations, marked in smaller capital letters
within delexicalized values in Figure 2.

Similarly extracted semantic structures can be found
among the top words for V3, V4, respectively: leaves at
time, and i need a train to city-name.

93764 VOLUME 12, 2024



X. Feng et al.: Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking

TABLE 2. Examples of top words and extracted semantic patterns in 25-D
MVS.

For V1, its nearest dialogue pairs are sentences with
many tokens out of vocabulary of BERT and CPM, marked
as ‘‘[UNK]’’, which are captured by vertex V1. We also
note words related to multiple patterns present in the
topword of V1, including leaves at time, book for number
people. Following our previous work in researching best
practices of using CPM, where we found that increasing
the dimensionality of reduced subspace leads to vertices
capturing structures with more quantity and granularity,
we increase the number of vertices to 26, i.e. finding MVS on
a 25-D polytope, and examine the top words again. We note
that these semantic patterns related to V1 are now separated
into multiple vertices V0 and V11, as shown in table 2.
Additionally, the emergence of new patterns, including
‘‘arrive by time’’ and a collection of greeting words, comes
along with the increment in vertices. As a side note, tokens in
Table 2 are from tokenization of original text by WordPiece
tokenizer, in order to align with the tokenization practice in
later experiments. It is hypothesized that this enhancement
in representation granularity by a greater vertex count will
amplify performance–a claim substantiated in subsequent
experiment sections.

D. MODIFICATION TO TripPy ENCODER
The enhancements made to the BERT encoder within TripPy
align with the principles of Context-Guided BERT. This
methodology postulates that integrating contextual infor-
mation within the computation of latent representation
in self-attention networks (SAN) strengthens dependen-
cies across neural representations, leading to enhanced
performance.

In the previous section, we note that features extracted
by CPM maintain a close association with the semantic
structures within dialogue turns. We thus hypothesize that
merging such features into the attention layer potentially
directs the attention mechanism towards tokens important to
dialogue states.

Traditionally, within BERT’s attention layer hosting H
heads, an input sequence with length n are transformed
to query Qh

∈ Rn×d and key Kh
∈ Rn×d at the h-th

head. d is the dimension of query and key vectors. Standard

self-attention at head h Ah is calculated by

Ah
= softmax(

QhKhT

√
dh

) (3)

where
√
dh is a scaling factor.

We fuse CPM coefficients into self attention layer by
amalgamating the coefficients with query and key vectors:[

Q̂h

K̂h

]
= (1 −

[
λhQ
λhK

]
)
[
Qh

Kh

]
+

[
λhQ
λhK

]
a

[
Uh
Q

Uh
K

]
) (4)

where a = [a1, a2, . . . , aR+1] represents the CPM vertex
coefficients for the input sequence. The scalar weight λhQ, λhK ,
modulating the influence of context on the output and are
dynamically adapted per training instances, are also learnt
and adjusted according to training samples:[

λhQ
λhK

]
= tanh

[
Qh

Kh

] [
Vh
Q

Vh
K

]
+ a

[
Uh
Q

Uh
K

] [
Va
Q

Va
K

]
(5)

Uh
Q,Uh

K ,Vh
Q,Vh

K (h ∈ 1, · · · ,H ), Va
Q,Va

K are linear
weight matrices learnt at fine-tuning stage.

The output of attention layer Âh is then calculated using
the new key and query matrices, followed by overlaying CPM
attention on top:

Âh
= softmax(

Q̂hK̂hT

√
dh

) + 0.5(λhQ + λhK )M̂ (6)

where M̂ = softmax(M ′),M ′ indicates the similarity
between tokens in the same utterance, as defined in
Equation 2 in III-C. We note that the nature of tanh
function ensures that λhQ, λhK ∈ [−1, 1], enabling the CPM
context to augment attention both positively and negatively.
This enhancement, albeit affecting the convexity properties
of attention, has been validated in preceding studies to
enrich the representation space of attention matrices in other
NLP tasks [5]. We conjecture that these enhancements,
demonstrated to be related to hints for dialogue processing,
would have favorable implications in DST, which will be
assessed in the experiment section below.

IV. EXPERIMENTS
A. DATASETS
To evaluate the proposed model, we use MultiWoZ dataset,
which is a dialogue dataset for DST task composed of
dialogues in multiple domains: train, restaurant, hotel,
taxi, andattraction with 30 domain-slot pairs in total.
We use DST performance on this dataset to validate our
previous claim that CPM-enhanced model can perform better
on DST.

Since MultiWoZ version 2.1 [27], which is the most up-
to-date version published by the original MultiWoZ author,
contains many annotation mistakes across training and test
subset. Multiple attempts have been published to fix these
mistakes partially, including MultiWoZ 2.2 [28], 2.3 [29],
2.4 [30], and we report our result across all four versions
to mitigate the effect of annotation error on our result,
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as published DST approaches are reported to score different
across versions [30]. We follow original train-val-test split
published by authors of respective revisions of MultiWoZ,
where validation and test splits each contain 1,000 dialogues
and train splits have 8,438. Dialogues are not re-shuffled
across trials on different MultiWoZ versions.

B. EVALUATION
To evaluate DST performance, joint goal accuracy (JGA),
the percentage of correctly predicted dialogue states at the
last turn of dialogue among all test dialogues, is used.
Given that multiple works have reported instability of result
over repeated trials, all results are averaged over 3 times
with different seed. All results are assessed using two-
sample t-test with p < 0.05 recognized as statistically
significant.

C. IMPLEMENTATION
The dataset is tokenized using WordPiece tokenizer, and the
input sequence is trimmed to 512 tokens. After tokenization,
we apply CPM algorithm using only current turn of user
input and the immediately preceding system utterance,
on training and development splits combined. For the fine-
tuning stage, we mostly follow the original configuration
of TripPy, which uses a pre-trained BERT model (BERT-
base) for uncased text. All classification heads are randomly
initialized and trained alongside the fine-tuning process of
BERT on our selected training dataset. We fine-tune a
different BERT for each version of MultiWoZ considering
annotation discrepancy. The same CPM vertices set is
used across different versions as CPM is label-agnostic
and independent, and original dialogues remain identical
in all four versions. Training loss is calculated as a
combination of cross entropy loss from slot action clas-
sifier Lsslot, span predictor Lsstart,Lsend and selector from
system informed value memory and dialogue state memory
Lssysinform,Lsds:

Ls = 0.8Lsslot + 0.05(Lsstart
+ Lsend) + 0.05(Lssysinform + Lsds) (7)

If in the entire dialogue there is no incidence of slot values
originating from informed value and dialogue state, then the
loss for that dialogue would be:

Ls = 0.8Lsslot + 0.1(Lsstart + Lsend) (8)

We select weights on subtask loss in Equation 7 and 8
empirically. The loss of span predictor is set to 0 when the
related slot is categorized into none or dontcare. Total loss is
the summation of all per slot losses with equal weight, which
is used as the optimization target for AdamW optimizer.
The subspace and representation points in CPM remain fixed
throughout the fine-tuning stage.

The learning rate of BERT α, learning rate of slot classifier
and span predictor β, are tuned during hyperparameter
selection on development split, as well as epoch at which

TABLE 3. Joint goal accuracy (%) of DST on 4 version of MultiWoZ
datasets of the baseline model, and knowledge injected model. Results in
bold are statically significant.

TABLE 4. Average training iteration used of DST on 4 version of MultiWoZ
datasets of the baseline model, and knowledge injected model. All
experiments were run on the same hardware setup over 3 different
random seeds.

early stopping is applied. Other configurations are kept
identical to those in the original TripPy experiment.

V. RESULTS
Our main result is presented in Table 3, where we note
a statistically significant advantage for our CPM-enhanced
BERT on MultiWoZ version 2.3 and 2.4. We regard the
result of previous versions, on which our proposed pipeline
performed similarly against baseline, as partially affected
by annotation error, an observation echoed by the authors
of latter revisions of MultiWoZ when testing different DST
models, in which all of the models suffered performance
drag due to annotation error. [30] While CPM algorithm is
annotation-agnostic, the evaluation result is subject to the
accuracy of annotation on test sets, hence we consider the
results on latter versions of datasets more accurate than earlier
versions.

As a cross-check of result validity and evidence of
computational efficiency, Table 4 further verifies that the
superior result achieved by our CPM-enhanced pipeline uses
less time during training to reach convergence, which proves
that the performance discrepancy between the proposed
pipeline and baseline cannot be owed to more training time.
Additionally, considering that CPM algorithm runs solely on
CPU and takes around 5minutes to process the whole training
and development set of MultiWoZ corpus on an Intel i7 CPU,
the computation cost of CPM algorithm can be considered
as minimal compared to savings in training time on GPU,
highlighting the resource efficiency factor of our proposed
pipeline.

We follow up the main result by a set of ablation
studies conducted on MultiWoZ 2.4, aimed at dissecting
the contributions of CPM coefficient and CPM attention
towards the semantic structuring and resulting performance
enhancement. In these trials, we isolated and evaluated the
impacts of CPM coefficient and CPM attention, reinitializing
and training the model from the ground up for each. The
ablation result in Table 5, echoes our initial hypothesis.
The implementation of only the CPM coefficient marginally
surpasses the baseline, albeit without attaining statistical sig-
nificance, underscoring the synergistic value of incorporating
both feature sets for maximized efficacy.
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FIGURE 3. Normalized change of Integrated Gradient (IG) between an input sequence and slot action prediction, calculated as IG on CPM-assisted TripPy
subtracted by IG on vanilla TripPy. Only a few slots are displayed due to size constraints. Higher value of IG indicates more positive attribution.

FIGURE 4. Normalized change of Integrated Gradient (IG) between an input sequence and span prediction for slot restaurant-pricerange on
CPM-assisted TripPy, compared to vanilla TripPy. Higher value of IG indicates more positive attribution.

TABLE 5. Ablation study result of CPM assisted model, measured by JGA
(%) on MultiWoZ 2.4 dataset. Result in bold is statistically significant.

TABLE 6. Joint goal accuracy (%) of DST on CPM-assisted TripPy with
different dimensionality. Only MultiWoZ 2.4 dataset is used in this
experiment.

VI. DISCUSSION
A. EFFECT OF CONVEX POLYTOPE DIMENSIONALITY
As elaborated in Section III-C, the dimensionality of the
CPM polytope is directly correlated to the intricacy of
resolved semantic patterns within the corpus. Considering
the extensive and varied linguistic expressions inherent
in MultiWoZ 2.4, it is postulated that higher-dimensional
configurations of CPM would be better in optimizing DST
performance by providing a richer, more granular semantic
structure for the neural model to learn from. This theoretical
positioning is substantiated by the data presented in Table 6,

a direct positive correlation between the dimensionality of the
CPM model’s convex polytope and the DST performance.

B. INFLUENCE OF CPM FEATURES ON BERT
Beyond the empirical performance analysis, a qualitative
exploration has been undertaken to ascertain the precise
manner in which CPM influences the inference process
within the modified TripPy model. We theorize that the
incorporation of CPM features would enhance the correlation
between correct dialogue state predictions and the relevant
key tokens within the input sequence.

Integrated Gradients (IG), a method surpassing vanilla
gradient calculations in reproducibility and sensitivity, has
been employed for this analysis [31]. With the model’s
weights held constant, IG visualizes the attributions between
input tokens and correct action predictions on a per-slot
basis. An inference mode analysis illustrated that tokens
with higher IG values held a more significant influence on
correct predictions, depicted as lighter color for a higher value
when drawing Figure 3 and 4. Subsequent normalization
and comparison of IG values between the CPM-assisted
and baseline models reveal the net changes in attributions,
providing insights into CPM’s role in refocusing model
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FIGURE 5. Occurrence of vertex in the list of most important vertices with respect to individual slots, normalized by dividing against total occurrence
of individual slots. Higher occurrence percentage indicates more significance.

attention on contextually crucial tokens, aligning more with
human interpretational logic.

We compute normalized IG of slot action prediction
result against input sequence [CLS] i am looking
for a cheap restaurant in the center of
city. [SEP] in both our CPM-enhanced pipeline and
baseline model, and plot the delta in Figure 3. The result
emphasizes the relatively heightened attribution to the
token ‘‘CHEAP’’ within the sequence, when predicting the
restaurant-pricerange slot using the CPM-assisted model,
compared with baseline. This elevated focus on contextual
elements is consistent with human linguistic understanding,
emphasizing the pivotal role of specific tokens like ‘‘cheap’’
in determining dialogue states for relevant slots. As a cross-
check, Figure 4 about normalized change of IG for span
prediction subtask on our pipeline also shows that aside
from slot action prediction, the token ‘‘CHEAP’’ is also
correctly attributed with more significance for span start in
span prediction subtask compared to baseline, consistent with
our findings in Figure 3.

Besides the analysis of elevated attribution on key input
tokens thanks to CPM, we also directly computed IG between
CPM coefficient and the correct prediction of slot actions.
The preliminary analysis on train domain in Table 1 and 2
has already demonstrated that vertex coefficients in CPM
model are closely related to semantic structures in the col-
lection of utterances, and the overlap of semantic structures
between different vertices goes smaller as the dimensionality
increases. Therefore, vertices coefficients should be assigned
with varying attributions across different slots. To obtain a
more conclusive answer, for each input sequence in the test
set whose prediction of slot actions is not entirely none,
i.e. there is at least one pending update to the dialogue state
after this dialogue turn, the IG between CPM coefficient and
correct not none prediction of slot action is computed, and
for a slot with not none action, 5 vertices with the largest
attribution are designated as important vertices with respect
to the slot. The frequency of a vertex as the important vertex

to a particular slot is summarized across the whole test set,
and illustrated in Figure 5, where it is clear that different
vertices contribute to the correct predictions of different slots.
Exceptions are vertex #23, 24 displayed in the bottom, who
are related to many slots. Their top-words include your, help,
need, all and at, on, time, by, which are common words in the
corpus, andmay not display affinity to particular slot domains
or attributes. By contrast, the occurrence pattern of other
vertices as important vertex is different across different slots.
This further validate our argument that CPM features are
indeed semantic-related, and could be interpreted using the
visualization techniques introduced in section III-C, and the
rationale of enhanced performance in the CPM-assisted DST
model could be explained by the interpretation of extracted
semantic structure by CPM.

VII. CONCLUSION
This paper introduces a framework designed to integrate
linguistic knowledge into BERT models, aiming to elevate
performance in Dialogue State Tracking (DST) within task-
oriented dialogues, without additional training data, anno-
tation, and excessive computational resources. The integra-
tion of linguistic knowledge, extracted without supervision
through the geometric Convex PolytopeModel (CPM), offers
insights that are interpretable both geometrically and through
feature attribution, allowing an in-depth understanding of
the correlation between geometric properties and predictive
outcomes. This inclusion of external knowledge into the
BERT model as input leads to enhancements in performance
compared to the baseline, with minimal additional com-
putation resource expense. highlighting the efficacy of the
proposed framework. Under real life conditions, our pipeline
can accommodate new data samples as CPM algorithm
is lightweight and runs quick, and being label-agnostic
make the feature extraction process robust against noises in
annotation. We leave detailed exploration on training NLP
models under suboptimal labelling quality and/or quantity as
future work.
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While this paper uses a BERT-based model to showcase
the virtue of transparency brought into DST neural model
from CPM, future endeavors will explore the incorporation
of this framework into more sophisticated neural models and
will probe into the relational dynamics of CPM-extracted
features with super-sentence level relationships, e.g. semantic
themes within paragraphs, extending the applicability of this
framework to a range of NLP tasks. The combination of
linguistic understanding and complexmodelling in NLP tasks
presents a direction towards visibility and confidence in the
decision process of increasingly complex NLPmodels, which
lays the foundation of mass trust of adoption.
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