GRAMMAR PARTITIONING AND PARSER COMPOSITION
FOR NATURAL LANGUAGE UNDERSTANDING

Po Chui Luk®, Helen Meng*, Fuliang Weng**

*Human-Computer Communications Laboratory
Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong
**Intel China Research Center

{pcluk, hmmeng}@se.cuhk.edu.hk, fuliang.weng@intel.com

ABSTRACT

This paper presents an approach for natural language
understanding, which integrates multiple sub-grammars and sub-
parsers; in contrast with the traditional single grammar and
parser approach. The use of GLR(k) parsers for natural
language understanding is hampered by the problem of
exponential growth of the parsing table size as the size of
grammar rules increases. Hence, we propose to partition a
grammar into multiple sub-grammars. For each sub-grammar
we generate its own parsing table together with its specialized
GLR sub-parser. The total size of the sub-grammars’ parsing
tables is much smaller than the size of the parsing table of the
unpartitioned grammar. A parser composition algorithm then
combines the sub-parsers’ outputs to produce an overall parse
that is identical to that produced by a single parser. Results
based on natural language queries in the Air Travel Information
System (ATIS) domain shows that this is a viable and efficient
approach applicable to both English and Chinese.

1. INTRODUCTION

Modular parsing architectures are receiving an increasing
amount of attention. Among others, Abney [1] proposed a two-
level chunking parser, which converts an input sentence into the
chunks and then uses an attacher to convert these chunks into a
parse tree. Amtrup [2] introduced an approach that distributes
grammar rule applications in multiple processors within a chart
parser framework. Weng and Stolcke [11] presented a general
schema for partitioning a grammar into sub-grammars and the
combination of parsers for sub-grammar to achieve modular
parsing. Ruland et al [7] developed a multi-parser multi-
strategy architecture for noisy spoken languages.

The Generalized LR (GLR) parser is an efficient parser that
can be used to handle context-free grammars (CFGs), a
backbone for many natural language processing systems.
However, Earley [3] has proved that the number of states of the
LR parsers could grow exponentially with the size of a CFG'.
This hampers the use of the GLR parser for large-scale natural
language systems. To tackle this problem, we propose to adopt
the grammar partitioning approach, where a large grammar is
partitioned into multiple sub-grammars. This reduces the total
number of states of the parser, as well as the computational time
for generating the parsing table. This parsing architecture is
modular, since all the parsing tables of the sub-parsers are
constructed separately. Hence if any sub-grammar needs to be
modified, we only need to regenerate its corresponding parsing
table, instead of the parsing table for the whole grammar. This

'S > 4, (1<i <n), 4, > ad; (1< i %) <n), A, — a;B;|b; (1< i <n)
and B; — a;Bi|b; (1< i, j <n)

eases the process of grammar development, promotes (sub-)
grammar reuse, and consequently enhances the scalability of
natural language understanding systems to more complex
domains, and the portability across application domains. In this
work we use GLR parsers as our basic parsing mechanism.
Each sub-grammar has its own corresponding sub-parser, and
we use a parser composition approach [10] to combine the sub-
parser outputs to produce an overall parser for the input
sentences. This paper explores the advantages of our grammar
partitioning and parser composition framework, in comparison
with the conventional un-partitioned grammar and single parser
approach.

2. GRAMMAR PARTITIONING

We use the definitions in Weng and Stolcke [11] for grammar
partitioning, a generalization of Korenjak’s [5]. For simplicity,
we partition the grammar based on the non-terminals of a CFG.
The concept of virtual terminal is introduced, and denoted with
prefix v¢. The virtual terminal is essentially a non-terminal, but
acts as if it were a terminal. Suppose we need to partition
grammar G in Figure 1. We select non-terminal NP for
partitioning. The production rules with NP in their left-hand
side (LHS) are distinguished from the original entire grammar.
Then all NP in the right-hand side (RHS) of the original
grammar rules are replaced by the virtual terminal symbol v¢/NP.
These two sets of grammar rules are converted into the reduced
form.” As a result, the grammar is partitioned into two sub-
grammars as shown in Figure 1. The interaction among
different sub-grammars is through non-terminal sets — INPUT and
ouTpUT. For a sub-grammar, its INPUT is a set of virtual
terminals that were previously parsed by other sub-grammars.
The OUTPUT of a sub-grammar is a (set of) non-terminal(s) that
were parsed based on this sub-grammar and used by other sub-
grammars as their INPUT symbols. In other words, we may view
a partitioned subset of production rules of a grammar as a
function, it takes virtual terminals in INPUT as its input, and
returns a (set of) non-terminal(s) in OUTPUT as its output. A
directed calling graph for the sub-grammar is then defined as (7,
E). V is a sub-grammar set that contains all partitioned sub-
grammars, and FE={(4, B)}, where 4 and B are the sub-
grammars in V, with the overlap of the oUTPUT of B and the
INPUT of 4 being nonempty. The calling graph of sub-grammar
Gg and Gyp is shown in Figure 2. The INPUT of Gg is viNP and
OUTPUT of Gyp is NP. Therefore, the directed edge from Gy to
Gyp is added to the calling graph.

2 . .
A reduced grammar with production rules has no unused
terminals or non-terminals.

GS:
INPUT = {VtNP}
G: OUTPUT = {S}
1. S>NP VP 1. S>vtNP VP
T 2. VP—v vtNP
{2.NP—n ;
{3.NPo>detn ||
{4.NP>NP PP | N Gp:
INPUT = ¢
5. PP—prep NP OUTPUT = {NP}
6. VP—>v NP 1. NP—n
2. NP—detn
3. NP->NP PP
4. PP—prep NP

Figure 1: The entire grammar G is partitioned into sub-
grammars Gyp and Gg.

In this particular investigation, partitioned sub-grammar is
assigned with a level index (ID). A sub-grammar is assigned to
level i if its INPUT are virtual terminals at the level < i, where i >
0. The master sub-parser is assigned with the highest level

index.
Gg Level 1

l

G Level 0

Figure 2: The calling of sub-grammars Gs and Gyp.

3. PARSER COMPOSITION
In this paper, two parser composition algorithms — parser
composition by cascading and parser composition with
predictive pruning are investigated empirically, with GLR
parsers as their sub-parsers.

A lattice with multiple granularities (LMG), a directed
acyclic graph (DAGQG), is introduced to serve as a common
interface among sub-parsers. For an LMG, its nodes are either
virtual terminals or terminals and are linked by its transitions.
Figure 3 shows an example. If a sub-parser takes an LMG as its
input and parses it successfully, it creates a corresponding
virtual terminal, and places it on the LMG. For example, v£S
together with a parse tree is shown in Figure 3. Hence the LMG
provides a good book-keeping for parser composition.

Since sub-parser needs to handle an LMG as input, we
modify our GLR parsing algorithm in a way similar to that
proposed by Tomita [9], such that the parser can handle an input
lattice (in addition to an input string). The lattice is parsed on
topological order and may end within a sentence.

S
\
VP
tNR vtNP
/]V
<s>'< né v —/detyn\ﬁ; VINP VENP
\Vts NIP NIP
| VN
n % det n

Figure 3: Example of an LMG and its parse tree with v£S as the
output virtual terminal.

3.1. Parser Composition by Cascading
Parser composition by cascading is a bottom-up parsing
algorithm. The mechanism takes an input sentence and converts

it into an LMG. The parsers at the lowest level are activated to
parse the LMG, and leave their corresponding virtual terminals
on the LMG if they parse it successfully. If no sub-parsers of a
given level can produce any new virtual terminals at any
position in the LMG, the cascading process moves to the next
level. This parsing process continues until the highest level sub-
parsers get activated. Since the process starts from the lowest
level to the highest level, level by level, we call it cascading.

3.2. Parser Composition with Predictive Pruning
In the cascading composition, sub-parsers get invoked at every
position in the input LMG. Some of the created virtual
terminals do not contribute to the final parse forest. To avoid
excessive invocation, an alternative composition algorithm is
implemented — parser composition with predictive pruning.
When a caller sub-parser reads a node (virtual terminal or
terminal) in the LMG, the sub-parser that gets activated must
have the node as its left corner and must be able to return a
virtual terminal predicted by the caller sub-parser. Notice that
the left corner can be either a terminal or a virtual terminal. For
our implementation, each virtual terminal’s left corner is pre-
computed before parsing. Any sub-parsers in the caller’s INPUT
set that do not satisfy these predictive conditions are pruned.
The parsing starts with the master GLR sub-parser at the
leftmost lattice node, and ends when it reaches the final node of
the LMG. Since the activated sub-parsers must satisfy the caller
sub-parser’s predictive constraint and the ones that do not satisfy
the constraint are pruned, it is called predictive pruning.

4. EXPERIMENTS
4.1. Experimental Corpus
For our experiments, we used the ATIS-3 Class A queries, a
subset of the ATIS corpus (Air Travel Information System) [6].
In addition, we translated the English ATIS queries into
Cantonese Chinese, as a parallel corpus to verify our results.
Examples are shown in Table 1.

The training set has 1564 queries; the 1993 test set has 448
queries; and the 1994 test set has 444 queries. Each query has a
corresponding SQL query for database access.

English: Show me the most expensive one way flight
from detroit to westchester county
A {5 B H0 ER R R A R 2R P R T R Ok
fi B BE BLRR B
Show me the flights arriving on baltimore on
Jjune fourteenth
G ER R R AR N A PE R R E] g e
i BE %
Table 1: Examples of English queries in the ATIS3 corpus. We
translated these into Cantonese Chinese to form a parallel corpus
as illustrated.

Chinese:

English:

Chinese:

4.2. ATIS Grammar Development

Our ATIS grammar is a set of context-free rules. The grammar
contains both semantic and syntactic structures. The low level
grammar rules are mainly semantic concepts typical of ATIS
corpus, such as CITY-NAME, CLASS-TYPE, MONTH-NUMBER, efc.
They are obtained by a semi-automatic grammar induction
algorithm [8]. These higher level grammar rules describe
phrases, such as a time phrase, flight preposition phrase, etc.
The SENTENCE-level grammar rules, however, are generated
using a data-driven approach described below, because the semi-
automatic algorithm does not produce reliable candidates due to
sparse training data.

Parser composition by cascading produces a lattice for
every training sentence. We derive top-level (SENTENCE-level)
grammar rules by picking up the “best” path through the lattice
using the shortest-path algorithm [4]. Such rules maximize the
coverage of our training set. Thus we formed grammars for the
English and Chinese corpora, with un-partitioned and
partitioned grammar sizes listed in Table 2. Examples of
English ATIS-3 rules include:

S — ASK FLIGHT NP| ... (SENTENCE-level rules)
ASK — show mellist|tell me|give me]...
FLIGHT NP — FLIGHT FLIGHT PP

FLIGHT — flight|flights|flight number]...
FLIGHT PP — DEPARTURE|ARRIVAL)...
DEPARTURE — leaving CITY NAME]...
CITY_NAME — phoneix|new york|seattle]...

4.3. Partitioning the ATIS Grammar

Following our grammar partitioning scheme described in the
previous section, we manually partitioned our rules sets into
sub-grammars by creating virtual terminals such as VtSTATE-
NAME, VtCITY-NAME, VtAIRPORT-NAME, etc. Most of these virtual
terminals are based on semantic concepts, so that they can be
easily grouped together.

Grammar Statistics No Partitioning
English Chinese

rules 1650 1538

terminals 602 515

non-terminals 97 85

virtual terminals N/A N/A

parsing table states 72,869 29,734

Grammar Statistics Partitioned Grammar
English Chinese

rules 1818 1637

terminals 602 515

non-terminals 97 85

virtual terminals 65 63

parsing table states 3,350 3,894

Table 2: Grammar statistics based on the original
un-partitioned grammar and a partitioned grammar.

Table 2 provides a comparison between the statistics of the
unpartitioned and partitioned grammars. We observe that the
partitioned grammar has a larger number of rules. This is
because some rules have been duplicated across multiple sub-
grammars. The duplicated non-terminals do not constitute the
output of any sub-grammars. For example, production rule
DIGIT — one may appear in sub-grammar of COST, TIME, etc.

The LR(1) parsing table generator is used to construct the
LR(1) tables from all grammars, partitioned or un-partitioned.
The total number of states (rows) in the parsing table for
partitioned grammars is the sum of the number of states in all
sub-parsers. From Table 2, the unpartitioned English grammar
has 72,869 states and the unpartitioned Chinese grammar has
29,734 states in their parsing tables. In comparison, the
partitioned English grammar has 3,350 states and the partitioned
Chinese grammar has 3,894 states in total. Grammar
partitioning greatly reduces parsing table sizes. This decreases
the computation required to generate the parsing tables, space
and memory to store the tables, and time to access the tables
during parsing. This result shows that grammar partitioning is
more desirable for large scale natural language processing.

4.4 Composing ATIS Sub-parsers

After grammar partitioning, we need to compose all the sub-
parsers in order to obtain an overall parse for the input. We use
the two parser composition algorithms to combine sub-parsers —
cascading composition and predictive composition.

Our parsing framework with multiple sub-grammars is
compared with a single GLR parser with single grammar.
Results on grammar coverage and natural language
understanding are shown in Tables 3 and 4:

e Grammar coverage:

Statistics for English and Chinese ATIS are shown in Table 3.
Full parse means there is a parse tree covering the whole input
query. Partial parse means there is at least one parse chunk
covering part of query. No parse means there is no parse at all
for the query.

The first row of Table 3 shows that the full parse coverage
are the same for the different parsing strategies in English and
Chinese queries. This reflects the consistency of our parsing
framework. Since our SENTENCE-level grammar rules are derived
from the shortest paths in the training lattices, they can reach
high full parse coverage in the training sets. However, these
rules tend to be rather specific in structure, and may contribute
to the relatively low full parse coverage in the test sets.

The single GLR parser approach cannot create any partial
parse. However, composed sub-parsers place virtual terminals
on the LMG if they successfully generate sub-parses. Hence
partial parses can be obtained from parser composition. When
parser composition by cascading is used, a partial parse can end
at any position of the input query. When the predictive
composition is used, sub-parsers are activated only if they
satisfy the predictive constraints. Therefore, cascading obtains
the highest percentage of partially parsed queries and the single
GLR obtains no partially parsed queries.

e Natural Language Understanding Performance

For evaluating the accuracy performance, the output parses
are converted to semantic frames. This is straightforward for the
single GLR approach, since it produces a single parse forest/tree.
With grammar partitioning, the output of the parsers is an LMG.
There are multiple paths from the sentence START to sentence
END. We apply the shortest-path algorithm in [4] to find the
“best path” in the LMG for the input sentence. Our semantic
interpreter walks through the parse trees that attached to the
virtual terminals in the best path, and extracts semantic
information to form a semantic frame. The contents of the
frame are compared against with “reference” semantic frame,
derived from the list of attributes in the corresponding SQL
query from the ATIS corpus.

Results for natural language understanding are shown in
Table 4. Full match refers to queries with exact matches
between the generated semantic frame and the reference
semantic frame. Partial match refers to cases where the fraction
of matching concepts in the semantic frame is between zero and
one, where insertion, deletion and substitution errors are all
penalized. No match refers to the situation when the concept
error rate equals or exceeds 100% for the sentence.’

From Table 4, we found that the single GLR approach has
the highest concept error rate, since it produces no partial parses,
when the input query is ungrammatical. Conversely, both
composition algorithms for partitioned grammars produce
partial parses on LMG and attain a higher natural language

“ Insertion errors may cause the concept error rate to exceed
100%.

understanding performance. In addition, cascading performs
better than predictive, because cascading attempts to parse

International Workshop on Parsing Technologies, Prague,
pages 12-13, Sep 1995.

chunks of the input at all lattice nodes, while predictive pruning 3. Earley, J., An Efficient Context-free Parsing Algorithm,
invokes virtual terminals only if they abide to the left corner PhD thesis, Carnegie Mellon University, 1968.
predictive constraints. 4. Hillier, F. S. and Lieberman, G. J, Introduction to
Operations Research, McGraw-Hill, Inc., 6 edition, 1995.
5. CONCLUSIONS 5. Korenjak, A., “A Practical Method for Constructing LR(k)”,
In this paper, we have presented a modular parsing framework — CACM 12, 11, 1969.
grammar partitioning and parser composition, based on the 6. Price, P., “Evaluation of Spoken Language Systems: The
ATIS corpora, which can be applied to both English and ATIS Domain”, The 3" European Conference on Speech
Chinese. We presented experimental results that show that Communication and Technology, 1993.
grammar partitioning can drastically reduce parsing table size by =~ 7. Ruland, T., Rupp, C., Spilker, J., Weber, H., and Worm,
an order of magnitude, when compared with a single CFG K., “Making the Most of Multiplicity: A Multi-Parser
derived from the ATIS training sets. Both the single GLR parser Multi-Strategy Architecture for the Robust Processing of
and the parser composition approaches gave the same full parse Spoken languages”, In Proceedings of ICSLP, 1998.
coverage on the test sets, but parser composition produces more 8. Siu, K. C. and Meng, H., “Semi-Automatic Acquisition of
partia] parses than sing]e GLR parser. Therefore’ parser Domain-Speciﬁc Semantic Structures”, In Proceedings of
composition can obtain a higher understanding accuracy. We Eurospeech, 1999.
will be implementing probabilistic parsing to rank multiple 9. Tomita, M., “An Efficient Word Lattice Parsing Algorithm
parse outputs as our next step. for Continuous Speech Recognition”, In Proceedings of the
International Conference on Acoustics, Speech and Signal
REFERENCES Processing (ICASSP), pages 1569-1572, Apr 1986.
1. Abney, S. “Parsing by Chunks”, In Principle-Based 10. Weng, F., Meng, H. and Luk, P.C., “Parsing a Lattice with
Parsing: Computation and Psycholinguistics, R. C. Berwick Multiple Grammars”, In Proceedings of the 6"
et al. (eds), Kluwer Academic Publishers, 1991. International Workshop on Parsing Technologies, 2000.
2. Amtrup, J., “Parallel Parsing: Different Distribution 1. Weng, F. and Stolcke, A., “Partitioning grammar and
Schemata for Charts”, In Proceedings of the 4™ Composing Parsers”, In Proceedings of the 4" International
Workshop on Parsing Technologies, Sep 1995.
Based on the Training set Test set 93 Test set 94
English ATIS-3 Unpart. Partitioned Unpart. Partitioned Unpart. Partitioned
Corpus GLR CAS PP GLR CAS PP GLR CAS PP
Full parse (%) 99.4 99.4 99.4 60.9 60.9 60.9 62.4 62.4 62.4
Partial parse (%) 0 0.6 0.5 0 39.1 342 0 37.6 35.1
No parse (%) 0.6 0 0.1 39.1 0 4.9 37.6 0 2.5
Based on the Training set Test set 93 Test set 94
Chinese ATIS-3 Unpart. Partitioned Unpart. Partitioned Unpart. Partitioned
Corpus GLR CAS PP GLR CAS PP GLR CAS PP
Full parse (%) 98.7 98.7 98.7 44.6 44.6 44.6 574 574 574
Partial parse (%) 0 1.3 1.0 0 554 51.3 0 42.6 374
No parse (%) 1.3 0 0.3 554 0 4.0 42.6 0 52

Table 3: Grammar coverage for the English and Chinese (shaded) ATIS-3 corpora. CAS abbreviates parser composition by
cascading; PP is parser composition with predictive pruning, and GLR is the use of a single GLR parser (no partitioning).

Based on the English ATIS-3 Training set Test set 93 Test set 94
Corpus Unpart. Partitioned Unpart. Partitioned Unpart. Partitioned
GLR CAS PP GLR CAS PP GLR CAS PP
Error rate in semantic concepts (%) 8.0 7.5 7.8 41.2 9.9 33.8 40.4 11.7 29.1
Full match (% of sentence) 82.4 82.7 82.4 56.3 87.7 60.5 54.5 77.0 59.2
Partial match (% of sentence) 15.0 15.3 15.2 4.0 8.0 9.8 7.7 18.9 20.3
No match (% if sentence) 2.6 2.0 2.4 39.7 4.2 29.7 37.8 4.1 20.5
Based on the Chinese ATIS-3 Training set Test set 93 Test set 94
Corpus Unpart. Partitioned Unpart. Partitioned Unpart. Partitioned
GLR CAS PP GLR CAS PP GLR CAS PP
Error rate in semantic concepts (%) 10.3 7.9 8.6 58.6 11.0 25.6 44.9 12.7 28.4
Full match (% of sentence) 77.6 80.8 80.2 37.5 78.6 61.6 49.8 72.7 58.6
Partial match (% of sentence) 18.5 16.9 17.1 6.0 16.7 23.2 7.4 223 24.1
No match (% if sentence) 3.9 22 2.7 56.5 4.7 15.2 42.8 5.0 17.3

Table 4: Performance in language understanding of English and Chinese (shaded) ATIS-3 corpora. CAS abbreviates parser
composition by cascading; PP is parser composition with predictive pruning, and GLR is the use of a single GLR parser (no

partitioning).

