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Abstract — This paper presents our group’s ongoing research 

in the area of computer-aided pronunciation training (CAPT) 

for Chinese learners of English. Our goal is to develop 

technologies in automatic speech recognition (ASR) to support 

productive training for learners. We focus on modeling possible 

errors due to negative transfer from L1 (i.e. Chinese) of Chinese 

learners to L2 (English). ASR techniques are used for fine 

phonetic analyses to achieve mispronunciation detection and 

diagnoses. Learners’ inputs that are grossly erroneous are 

handled by an utterance rejection technique. We also present 

initial work in the development of audio and visual speech 

synthesis to provide corrective feedback for learners. This paper 

presents an overview of the technologies, related experimental 

results and ongoing work as well as future plans. 

I.  INTRODUCTION 

In recent years, our group at CUHK has been engaged in the 
development of speech technologies to support computer-
aided pronunciation training (CAPT), especially for Chinese 
learners of English. English is the lingua franca of our world. 
It has been estimated  [1] that by 2010 there will be 2 billion 
English learners worldwide and the proportion in Asia alone 
will exceed the number of native speakers. With such a huge 
demand, there is an acute shortage of qualified teachers. 
Computer-assisted language learning (CALL), including 
CAPT applications, can supplement existing learning 
resources and provide unique benefits to the learner in terms 
of accessibility, reduced anxiety and individualized 
instructions. Our work focuses on the language pair of 
Chinese L1 (primary language) and English L2 (secondary 
language), due to local relevance, as bilingual competence has 
long been a competitive edge that underpins Hong Kong as an 
international Chinese city. 

Pronunciation training involves correct perception and 
production of sounds in the target language. The learning 
process tends to be influenced by the transfer of L1 features in 
L2 productions. Negative transfer leads to pronunciation 
inaccuracies and errors in the second language. These 
inaccuracies tend to fossilize with age and present specific 
challenges to adult L2 learners. Chinese has stark linguistic 
contrasts in comparison with English. We often observe 
negative transfer effects in L2 English productions of L1 

Chinese learners. Pronunciation improvement requires 
persistent practice in productive and perceptual training. In 
order to support productive training (i.e. eliciting speech from 
the learner for analysis), we have been developing automatic 
speech recognition techniques that enable detection and 
diagnoses of targeted pronunciation inaccuracies (i.e. 
mispronunciations) due to negative language transfer effects 
[2-7]. In order to support perceptual training (i.e. developing 
the learners’ skills to accurately discriminate among sounds of 
the target language), we have begun to develop automatic 
response generation that provides multimodal visualization (i.e. 
through text-to-audiovisual speech synthesis) of the speech 
production process. The generated responses are intended as 
helpful instructions that guide error correction and 
improvement.  

The rest of this paper is organized as follows: Section II 
presents a brief description of previous work. Section III 
describes our effort in L2 English speech corpora collection. 
Sections IV to VII describes our linguistically-motivated 
approach for developing automatic speech recognition (ASR) 
technologies that target mispronunciations due to negative 
language transfer, as well as a fusion with the conventional 
pronunciation scoring approach.  Section VIII presents a pre-
filtering technique for grossly erroneous inputs. Sections IX 
and X discusses the use of text-to-audiovisual synthesis for 
corrective feedback generation.  Finally, Section XI discusses 
our ongoing and future research plans. 

II.  PREVIOUS WORK 

The field of CALL is flourishing with uses of speech analysis, 
speech recognition, speech synthesis, language understanding 
and generation, machine translation and dialog modeling 
technologies to assist learning and assessment in the areas of 
pronunciation, vocabulary, grammar, comprehension as well as 
overall fluency. A sample of recent works may be found in [8-
29]. Previous and ongoing work covers a variety of L1 and L2. 
English remains the most popular L2 language due to 
international usage. Research efforts have studied English 
speech as the “interlanguage” of secondary language learners 
who have not acquired native-like proficiency. The 



interlanguages came from native speakers of Chinese 
(Cantonese and Mandarin)  [14] [30] [31], German  [32], Hindi 
and Bengali  [33], Italian  [22] [32], Japanese  [34] and many 
other languages. Examples of previous initiatives include the 
ISLE (Interactive Spoken Language Education) project 
funded by the European Commission to develop 
pronunciation training technologies for Italian and German 
learners of English; a project in the Cambridge-MIT Institute 
on Mandarin Chinese learning by native speakers of US or 
UK English; as well as DARPA’s DARWARS program that 
includes teaching Arabic for military training  [35]. The 
International Speech Communication Association Special 
Interest Group on speech and language technology in 
education (ISCA SIGSLaTE)1 has been established since Fall 
of 2007. 

III.  DESIGN AND COLLECTION OF THE CHINESE LEARNERS OF 
ENGLISH CORPUS 

We have designed and collected the Chinese University 
CHinese Learners Of English Corpus (CU-CHLOE) to 
support our research and development in L2 language 
learning.  

The corpus is collected as prompted speech collected in a 
quiet room. A head-mount close-talking microphone 
(Sennheisser PC155/PC156) is used for recording. We 
developed a Windows-based computer program for the 
recording process. The text prompts are presented 
individually to the speaker (i.e. subject). The speaker is 
allowed to control his/her recording pace by the press-to-start 
and press-to-stop buttons. This approach also saves us from 
post-processing efforts in sentence segmentation. An 
illustration is provided in Figure 1. This recording tool has 
been made available free-of-charge with source code to 
members of the AESOP (Asian English Speech cOrpus 
Project) consortium. 

 
Figure 1. User interface of the recording tool used in the collection of the CU-
CHLOE corpus 

The prompts of CU-CHLOE focus on capturing L2 
learners’ pronunciation variants in the context of a word list, 
sentences as well as paragraphs. The aim is to gather speech 
                                                           
1 http://www.cs.cmu.edu/~max/mainpage_files/index.html 

data for deriving salient mispronunciations made by Chinese 
learners of English. Table 1 summarizes the design of the 
reading materials in this corpus. 

The corpus includes data from 100 (50 male + 50 female) 
Cantonese subjects and 111 (61 male + 50 female) Mandarin 
subjects. The recordings are phonetically transcribed by 
experienced linguists. 

Table 1. Summary of reading materials in different parts of the CU-CHLOE 
corpus. 

The .orth Wind and The Sun (AESOP’s Fable) 

Quantity 1 paragraph with 6 sentences 
Rationale Provides rich phonetic coverage of the English 

phonemes. 
Example “The North Wind and the Sun were disputing 

which was the stronger when a traveler came along 
wrapped in a warm cloak.” … 

Phonemic sounds 
Quantity 20 sentences 
Rationale Include sentences specially designed by 

experienced English teachers to cover common 
English mispronunciations by Chinese students. 

Example “These ships take cars across the river.” 
Confusable words 
Quantity 10 lists 
Rationale Include lists of frequently mispronounced words by 

Chinese students. Summarized by experienced 
English teachers. 

Example “debt     doubt     dubious” 
Minimal pairs 
Quantity 50 lists 
Rationale Include lists of words that are similar in 

pronunciations. 
Example “look      full      pull      foot      book” 

IV.  CAPTURING LANGUAGE TRANSFER EFFECTS THROUGH 
CONTRASTIVE PHONOLOGICAL ANALYSES 

We believe in pronunciation training, the exact pairing of L1 
and L2 is important. Hence we devise an approach for 
mispronunciation prediction, which is based on contrastive 

phonological analysis between L1-L2 pair. Contrastive 
analysis is grounded in the theory of language transfer. The 
Contrastive Analysis Hypothesis  [36] states that sounds similar 
to the learner’s first language will be easy for the learner to 
acquire while different sounds will present difficulty  [15]. We 
conduct a contrastive analysis of Cantonese and English by 
examining the phonetic inventory and phonotactic constraints 
of the languages to determine phones and phone sequences 
present in English but lacking in Cantonese. Those phones 
which are not present in Cantonese are hypothesized to be 
substituted by Cantonese learners with phonetically-similar 
phones that do exist in Cantonese. Furthermore,  [37] explicitly 
recognized the importance of examining actual errors within a 
corpus of data. Figure 2 presents and overview of our 
approach. We perform contrastive phonological analyses in 
order to identify phones that are susceptible to 
mispronunciations by L2 learners. We then perform error 
analyses based on field data (L2 speech recordings) to capture 
common errors on these phones. We then summarize these 
errors by deriving phonological rules for the observed errors. 



These rules are then used for predicting pronunciations 
variants of L2 learners.  
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Figure 2. Overview of the proposed approach for mispronunciation 
prediction, which aims to focus on language transfer effects. 
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Table 2. Consonants in Cantonese, organized according to the manner and 
place of articulation  [38]. 
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Table 3. Consonants in American English   [36]. Consonants that do not exist 
in Cantonese are highlighted. 

As a brief illustration, we present the consonant tables of 
Cantonese Chinese and American English in Table 2 and 3 
respectively. The phonemes colored in Table 3 represent 
those that are present in English but absent from Chinese. We 
observe that there are two English dental fricatives: /θ/ is 
voiceless and is often mispronounced as the voiceless 
Cantonese labiodental /f/; /ð/ is voiced and is often 
mispronounced as the voiceless unaspirated alveolar plosive 
in Cantonese /t/. Examples include: 

• “three” /θ r i/ vs. “free” /f r i/ 
• “there” /ð ɛ r/ vs. “dare” /t ɛ r/  
(where the correct pronunciation for “dare” should be /d ɛ r/) 

To model such mispronunciations, we make use of context-
sensitive phonological rules, of the format: 

ϕ � ψ  / λ _ ρ 

which denotes that phone ϕ may be substituted by the phone ψ 

when it is preceded by the phone λ and followed by the phone 
ρ. Similarly, by including the null symbol є, we can encode the 

phone insertion rule by є � ψ  and phone deletion by ϕ � є. 
Rules that commonly occur regardless of context may be 
applied in a context-free manner, as ϕ � ψ . Hence, to model 
the mispronunciations above, we may use the phonological 
rules: 
• /th/ � [f] (context-free) 
• /dh/ � [d] / # _ /ae/ (where # denotes a word boundary) 

Contrastive comparisons between Cantonese and English 
vowels, or between the phonological spaces between different 
Chinese dialects and English accents, can be conducted in a 
similar manner. Further details about contrastive phonological 
analyses can be found in  [36].  

V.  MISPRONUNCIATION PREDICTION WITH MANUALLY AND 
AUTOMATICALLY DERIVED PHONOLOGICAL RULES  

As mentioned in the previous section, we have made use of 
knowledge from language transfer to predict the possible 
mispronunciations made by L2 English learners. Such 
knowledge is encoded in phonological rules.  

A. Manually written phonological rules 

We first developed a list of 43 context-insensitive rules (i.e. 
ϕ � ψ where the phone ϕ in the canonical pronunciation may 
be pronounced as ψ by the learner). When each of these rules 
is applied as a rewrite rule on the canonical pronunciation, we 
can generate hypothesized pronunciation variants that may 
appear in the learners’ speech. We find two significant 
problems with using context-insensitive rules to extend the 
canonical pronunciation dictionary with possible 
mispronunciations (hereafter referred as extended 
pronunciation dictionary, EPD). The dictionary grows 
exponentially and many pronunciations generated are rare or 
implausible in the learner’s speech. For example, Cantonese 
does not have voiced stops (e.g. /b/, /d/, /g/) or consonant 
clusters (e.g. /s t r/) while English does. Cantonese learners 
may substitute voiceless counterparts (e.g. /p/, /t/, /k/) or delete 
consonants to cope with these difficult sounds. So our list must 
include rules like (1) /d/ � [t], (2) /d/ � є and (3) /k/ � є. 
Admittedly, we can see that rules (2) and (3) do not fully 
represent the knowledge gained from our contrastive analysis 
(i.e. deletion only occurs in consonant clusters). When these 
rules are applied to a word like ‘could’ /k uh d/, we generate 
pronunciation variants such as: /k uh t/, /uh d/, /uh/, etc. Note 
that while /k uh t/ is a plausible mispronunciation of ‘could’, 
the variants /uh d/ and /uh/ generated from (2) and (3) are so 
phonetically-distant from the canonical pronunciation of 
‘could’ that they are considered implausible 
mispronunciations. 

To reduce the number of implausible pronunciations in the 
extended pronunciation dictionary, context-sensitive rules were 
developed from the contrastive analysis. The list of context-



sensitive rules was compiled using the same list of context-
insensitive rules but additionally specifying the phonetic 
environments that constrain its application. A total of 51 
context-sensitive rules were developed using the immediate 
neighboring segments and symbols for various linguistic 
classes: C for consonants, V for vowels, F for fricatives, and # 
for word-boundaries. Basically, context-sensitive rules solve 
the problem of over-generating implausible variants by 
reconsidering the variants /uh d/ and /uh/ generated by 
context-insensitive rules. These variants were generated 
because context-insensitive rules had no representational 
means to specify that deletion of consonants should only 
occur in consonant clusters. Context-sensitive rules solve this 
problem by allowing us to specify a phonetic environment 
that must be satisfied for the rule to apply. Thus, the 
consonant deletion rule from the previous section can be 
rewritten as “/d/ � є / C _” where the left-hand side specifies 
that /d/ must be preceded by a consonant in order for the rule 
to apply. Note that manually written context-sensitive rules 
allow the left or right context to be a wildcard (i.e. with no 
specific constraints). When these context-sensitive versions of 
the previous rules are used to generate variants for a word like 
‘could’, we see that the conditions of the deletion rules are not 
satisfied and thus implausible variants like /uh d/ and /uh/ are 
not generated. Details of the manual process of phonological 
rule authoring may be found in  [3]. 

B. Automatically derived phonological rules 

Manually authoring phonological rules requires expertise in 
both the mother language and also the L2 being learned. This 
means that the feasible language pairs will be limited by the 
availability of such kind of experts. As an initial effort to 
search for an alternative solution to the manual process, we 
have proposed and investigated an automatic, data-driven 
phonological rule derivation approach  [4]. This method makes 
use of phonetically transcribed L2 speech data, together with 
canonical pronunciations. Our approach is based on a few 
assumptions: (i) differences in the phonetic transcriptions and 
the canonical pronunciations are due to negative language 
transfer effects, (ii) other interferences such as misread 
prompts, unknown words, transcription errors, ambiguity due 
to multiple accented pronunciations, etc., do not dominate. 
The proposed approach is summarized as shown in Figure 3. 
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Figure 3. Schematic diagram of an automatic, data-driven derivation method 
for phonological rules in a CAPT system. 

We make use of the Cantonese CU-CHLOE corpus in our 
investigation of automatic rule derivation. First, we aligned the 
canonical pronunciations with the manual transcriptions. From 
the aligned results, we can obtain a set of all phonetic 
substitutions, insertions, and deletions. This makes up the basic 
rule set. We then perform the rule selection process by keeping 
the top-N rules in the basic rule set and evaluate the coverage 
of the top-N rules by computing the F1-score. Figure 4 (a) 
shows the number of occurrences of particular rule and (b) 
depicts the computed F1-scores at different value of rules 
selected. The optimal (in the sense of F1-score) number of 
rules is found to be 216 for the Cantonese CU-CHLOE corpus. 

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000
rule count

F
1

-s
c

o
re

0

100

200

300

400

500

1 501 1001 1501 2001

rank of phonological rules by 

occurrences

n
o

. 
o

f 
o

c
c

u
rr

e
n

c
e

s

(a) (b)

2
1
6

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000
rule count

F
1

-s
c

o
re

0

100

200

300

400

500

1 501 1001 1501 2001

rank of phonological rules by 

occurrences

n
o

. 
o

f 
o

c
c

u
rr

e
n

c
e

s

(a) (b)

2
1
6

 
Figure 4. (a) Ranking of context-sensitive phonological rules (in the basic rule 
set) by occurrence counts. (b) F1-score based on the selected top-N rules 
(optimal N=216). 

These phonological rules, whether manually authored or 
automatically derived, may be applied to the canonical 
pronunciations to obtain possible mispronunciations in L2 
English speech. 

VI.  MISPRONUNCIATION DETECTION AND DIAGNOSES 

The phonological rules can be used for predicting 
pronunciation errors based on language transfer. This section 
presents our approach for mispronunciation detection and 
diagnoses.  

ASR

Extended 

Pronunciations

Fixed grammar 

based on prompts

Native speaker 

Acoustic Models

Phone-level 

Transcriptions

Model 

Transcriptions

Phonetically-

Sensitive 

Alignment 

Detected 

Mispronunciations
ASR

Extended 

Pronunciations

Fixed grammar 

based on prompts

Native speaker 

Acoustic Models

Phone-level 

Transcriptions

Model 

Transcriptions

Phonetically-

Sensitive 

Alignment 

Detected 

Mispronunciations

 
Figure 5. Overview of the ASR-based system to learners’ detect and diagnose 
second language mispronunciations.  

Figure 5 shows the basic idea of using automatic speech 
recognition (ASR) to detect mispronunciations with the use of 
the extended pronunciation dictionary, which includes the 
canonical pronunciation in a dictionary and the predicted 
mispronunciation(s) for the given word(s). For example the 
word “north” has the canonical pronunciation /n ao r th/. 
Application of the rule “/r/ � є / ao _” generates the 
pronunciation /n ao th/ as an extension to the canonical 
pronunciation. The process is repeated for all rules to generate 
the extended pronunciation dictionary, see Figure 5 for an 



illustration. The recognized phone sequences are then aligned 
with the canonical phone sequences. Phones that cannot be 
aligned properly can then be easily identified as deletions, 
insertions and substitutions. Furthermore, this approach can 
provide diagnostic feedback telling the learners what kinds of 
mistakes have been made and suggest the remedial actions. 

A. Representation of Extended Pronunciations  

Initially, we use the extended pronunciation dictionary with 
ASR, as shown in Figure 6  [3]. This approach is intuitively 
simple but algorithmic generation of the dictionary via 
exhaustive search-and-replace is inefficient and leads to more 
redundancy in the recognition network.. We then devise the 
Extended Recognition Network (ERN) (see Figure 7)  [5] as a 
compact representation of the same information. Meanwhile, 
we also make use of the finite state transducer  [39] [40] as a 
vehicle to represent the rules (see Figure 8 for an example of 
r-deletion). This method is computationally more efficient as 
the application of phonological rules is a simple composition 
of finite state transducers and redundant paths can be easily 
removed before using for ASR. 
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Figure 6. An example of the EPD for the word “north” with canonical 
pronunciation /n ao r th/. The prediction pronunciation variants are listed as 
optional paths. 
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Figure 7. With the ERN, the ASR can detect whether the learner pronounced 
accurately (the middle path) or made any predicted pronunciation mistakes. 

With the extended canonical pronunciations represented as 
an ERN, we then perform forced-alignment of the learner’s 
speech by using the ERN as the recognition grammar. As a 
result, the canonical pronunciation will be obtained as the 
ASR output if the learner pronounces accurately. Otherwise, 
the ASR output will indicate exactly what kind of 
pronunciation mistakes have been made, by forced alignment 
between the recognizer’s output and the canonical 
pronunciations. For example, if a pronunciation of /n ao th/ is 
detected, we can produce the diagnostic message for the 
learner, informing that “the retroflexion /r/ is deleted, the 
tongue needs to be curled back”. The ability to generate 
diagnostic feedback is an advantage over the conventional 

approach of pronunciation scoring where only the evaluation 
score is provided for the learner. 

 
Figure 8. An example finite state transducer expressing /r/-deletion rule. 

VII.  ENHANCING MISPRONUNCIATION DETECTION BY FUSION 
WITH PRONUNCIATION SCORING 

The CAPT approach described in the previous section focuses 
on detection of salient mispronunciations related to language 
transfer phenomena. Hereafter, we refer to it as the 
linguistically-motivated approach. Not all the possible 
mispronunciations are predicted by the approach. This may be 
due to: (i) the expansion rule may be absent due to pruning or 
lack of relevant language transfer knowledge; (ii) the quality of 
the acoustic models is poor which hinders recognition 
accuracy; and (iii) the mispronunciations may be caused by 
factors other than language transfer (e.g. misread words, or 
incorrect letter-to-sound conversion). As a result, there are 
cases where the mispronunciations cannot be detected by the 
linguistically-motivated approach. In order to address this 
issue, we investigate a fusion technique to with conventional 
pronunciation scoring to enhance detection performance, as 
will be described in this section. 

Conventional pronunciation scoring is based on the 
posterior probability of a speech unit being produced by the 
speaker, given the acoustic observations and the speech 
recognizer (including model pronunciation, acoustic models, 
etc.) as shown in Equation (1). 

   ( ) ( )
( )∑

∈∀

≈

Pp'

|p', ΛOac

|p, ΛOac
, ΛOp|P v

v
v  (1) 

where ac is the acoustic likelihood score, p is the speech unit in 
focus, P is the set of all units (e.g. phoneme set), O

v
 is the 

acoustic observation, and Λ is the speech recognizer. 
This posterior probability can be used directly as the 

pronunciation score  [41] [42], or further categorized into grades 
 [43] (e.g., normative scale from 1 to 5). Scoring pronunciation 
in this way can leverage existing ASR technologies to offer a 
quantitative (or categorical) assessment for the users. In 
pronunciation training, the system may regard a speech unit to 
be mispronounced if its score falls below a pre-set threshold. 



This method can, in principle, detect all possible 
mispronunciations. 

The philosophy behind our fusion technique is simple and 
intuitive: take the decision that is more reliable in 
mispronunciation detection, with the objective of minimizing 
the total detection error (i.e. total number of false rejections 
and false acceptances)  [4]. Hence the question to investigate 
is – how we may decide which of the two approaches, i.e. the 
linguistically-motivated approach or pronunciation scoring 
approach, is more reliable. To address this issue, we adopt the 
strategy of phone-dependent thresholds for decision making, 
and experimented with the Cantonese CU-CHLOE corpus, 
using half of the data for training and the remaining for 
testing. We first optimize individual thresholds for every 
English phone for pronunciation scoring. The detection 
performance of the linguistically-motivated approach and the 
phone-dependent pronunciation scoring is then evaluated over 
the training data to obtain a list of phones that is better 
handled by the pronunciation scoring approach. This forms 
our “backoff phone list” which is used in our fusion strategy, 
as illustrated in Figure 9. 
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Figure 9. Fusion strategy that combines the linguistically-motivated approach 
with pronunciation scoring. 

Experimental results based on the CU-CHLOE Cantonese 
dataset (the first time we publish such results) is shown in 
Figure 10. We observe that fusion brings significant 
improvement in detection performance over the individual 
approaches. To have a closer look at the detection 
performance, the total number of detection errors (TotErr) is 
depicted in Figure 11. 

0

20

40

60

80

100

0 20 40 60 80 100

FAR

F
R

R

Pronunciation scoring using 

posterior probability with single 

threshold

Fusion of linguistically-

motivated approach and 

pronunciation scoring with 

phone-dependent threshold

Linguistically-motivated 

approach with ERN

Pronunciation scoring with 

phone-dependent threshold

0

20

40

60

80

100

0 20 40 60 80 100

FAR

F
R

R

Pronunciation scoring using 

posterior probability with single 

threshold

Fusion of linguistically-

motivated approach and 

pronunciation scoring with 

phone-dependent threshold

Linguistically-motivated 

approach with ERN

Pronunciation scoring with 

phone-dependent threshold

 
Figure 10. ROC for pronunciation detection performance using single 
threshold for all phones. The diamond is the operating point of the 
linguistically-motivated detection approach, the box is the operating point for 
phone-dependent pronunciation scoring and the circle is the operating point 
after fusion with phone-dependent pronunciation scoring. 

We observe that fusion improves the mispronunciation 
detection performance by about 40% relative to the individual 
approaches. This fused approach may be used in a CAPT 
system in the following way: For phones that can be handled 
reliably by the linguistically-motivated approach, results in 
mispronunciation detection and diagnosis can both be provided 
for the learners. Otherwise, the CAPT can still return an 
appropriate mispronounced decision to the learners. 

Performance of Mispronunciation Detection

17479

10491

17934

0

5000

10000

15000

20000

25000

30000

Test Set

T
o

tE
rr

linguistically-motivated approach with ERN

pronunciation scoring with phone-dependent thresholds

decision fusion

 
Figure 11. Comparison in mispronunciation detection performance among 
different approaches – the linguistically-motivated approach, pronunciation 
scoring with phone-dependent thresholds and the fusion of the two. (Remark: 
total no. of phones in the test set is 101,633). 

VIII.  UTTERANCE REJECTION FOR PRE-FILTERING 

Thus far we have presented an approach that uses ASR 
technologies to achieve fine phonetic analysis for 
mispronunciation detection and diagnoses. These technologies 
are intended for handling input utterances from learners based 
on text prompts in a CAPT system. However, learners’ inputs 
that are grossly erroneous should be more appropriately 
handled by a pre-filtering mechanism. Anecdotal observations 
based on new users show that there are several common factors 
that may cause corruptions to the input utterances. For 
instance, there may be disfluencies (such as false starts, repairs, 
repetitions). Users may stop reading before completing the 
prompt text, due to distractions, side conversations, etc. The 
recording may also be truncated possibly due to the user 
pressing the <stop> button too early. These corrupted 
utterances should be handled differently by the system, as 
compared with an intact utterance whose spoken content 
corresponds well with the text prompt. More specifically, our 
system generates corrective feedback for an intact input 
utterance to inform the user of discovered phonetic errors. 
However, appropriate feedback for non-intact input should 
prompt the user to record again. Hence, there is strong 
motivation to develop a pre-filtering mechanism that separates 
the two types of utterances. 

Confidence measures have been used in earlier work to 
verify that an input utterance has appropriate content for the 
speech application  [44]. For example, a phone-dependent 
confidence measure is used for utterance rejection in  [45]. In 
 [46], the generalized word posterior probability is computed 
for each word and utterance rejection is performed based on a 



combination of word scores. Phone duration has been used as 
feature for computing confidence measures in ASR 
applications for embedded and noisy environments  [47] [48] 
as well as verifying selected utterances in a language learning 
application  [49]. In our work, the forced alignment nature of 
our CAPT approach (explained in the previous section) can 
exaggerate the phone duration variations in corrupted 
utterances. Hence we investigate the use of a statistical phone 
duration model to pre-filter for intact utterances that can 
subsequently undergo detailed phonetic analysis for 
mispronunciation detection and diagnosis. 

It is known that phone durations vary across speakers and 
utterances. Phone durations have often been modeled 
statistically by the Gamma distribution  [47] [50] [51]. We 
verify this based on the corpus statistics of the TIMIT corpus 
for native American English speakers and the CU-CHLOE for 
non-native speakers. The duration distributions of certain 
phones (especially consonants) tend to fit well with the 
exponential distribution – a special case of Gamma. 
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Figure 12. Histogram of the phone duration of native American English 
speaker for (a) the diphthong /ao/ and (b) the consonant /t/. The statistics are 
estimated based on the TIMIT corpus and the fitted Gamma distribution is 
also shown. 

(a) /ao/ (b) /t/

sec

c
o

u
n

t

400

300

200

100

0 0.1 0.2 0.3
duration

0.4

c
o

u
n

t

300

200

0

100

0.20.1
duration

sec0.3

(a) /ao/ (b) /t/

sec

c
o

u
n

t

400

300

200

100

0 0.1 0.2 0.3
duration

0.4

c
o

u
n

t

300

200

0

100

0.20.1
duration

sec0.3

 
Figure 13. Histogram of the phone duration of native American English 
speaker for (a) the diphthong /ao/ and (b) the consonant /t/. The statistics are 
estimated based on the Cantonese CU-CHLOE corpus and the fitted Gamma 
distribution is also shown. 
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Figure 14. This figure illustrates forced alignment between an input utterance 
and the best-matching phone sequence from the extended pronunciation 
dictionary (EPD). Forced alignment produces reasonable phonetic durations 
for an intact utterance. On the other hand, phonetic durations of corrupted 
utterances tend to be overly long or short. 

To design a filtering mechanism for intact utterances that 
are appropriate for subsequent phonetic analysis for 
mispronunciation detection and diagnosis, we assume that the 
phones in an intact utterance should largely carry their 
respective inherent durations. Our filtering approach references 
the durations obtained by the recognizer through forced 
alignment. As an illustration, Figure 14 shows the word 
“north” in a sentence which belongs to one of the system’s text 
prompts. If the learner utters the text prompt with correct 
pronunciation as in (a), the phone durations should resemble 
their inherent values. In (b), the learner mispronounces the 
word and the best alignment selects the pronunciation variant 
that is among those predicted in the EPD. The phone durations 
in the forced alignment should also resemble their inherent 
values. 

In (c), the input utterance (with a phone sequence of /dh eh 
n ao/) does not correspond in any way to the prompted text 
(that includes the word “north” with reference phoneme 
sequence /n ao r th/). Forced alignment makes the best effort 
possible to align the input utterance with one of the 
pronunciations in the EPD. This results in the frames of 
spurious phones (e.g. /dh/ and /eh/ that do not appear in the 
pronunciation of “north”) being absorbed by the SILENCE 
segment or a non-silence phone segment(s) (e.g. /eh/ being 
absorbed into the /n/ segment). The latter causes lengthening of 
the absorbing phone segment. As for missing phones (e.g. /r/ 
and /th/ that occurs in the word “north” but are absent in the 
input utterance) in the EPD pronunciation that do not 
correspond to any acoustic frames, they tend to be assigned 
very short durations by the alignment algorithm. Hence, if 
forced alignment produces phone durations that are overly long 
or short, as compared with their inherent values, it may suggest 
that the input utterance is not intact and should not be 
subjected to further detailed phonetic analysis. As such, we can 
design a filtering approach based on phonetic durations to 
identify intact utterances that are analyzed phonetically for 
further mispronunciation detection and diagnoses. 

In phone duration scoring, we incorporate an anti-model to 
increase the discriminative power of the phone duration model. 
A likelihood ration test is applied as shown in Equation (2): 
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where S is the set of phones in the utterance, ║S║ is the 
number of phones in the utterance, P(dur(p)|p) is the statistical 
duration model of phone p and we chose the Gamma 
distribution. 

The statistical duration model of a phone p is obtained by 
estimating a Gamma model using the phone duration of all 
phone p in the CU-CHLOE corpus. For the anti-model, we 
have experimented with different techniques, including the 
“catch-all” anti-model. We first shuffle the utterances in the 
corpus such that the recordings will not be matching to the 
prompting texts. A forced-alignment is then performed using 
this intentionally shuffled prompts. A Gamma distribution is 
then trained using all aligned phone durations in the shuffled 



corpus. The rationale is to obtain an anti-model for use in the 
likelihood ratio test where each phone duration model is 
trained with non-corresponding phonetic segments in the 
utterance. In our experiments with the different pre-filtering 
strategies, we consider the equal error rate (EER), i.e. the 
operating point where FAR=FRR (FAR: false acceptance 
rate, i.e. accepting a non-intact utterance for an intact one; 
false rejection rate, i.e. rejecting an intact utterance as a non-
intact one). Our experiments show that the “catch-all” model 
gave the best detection performance at an EER of 17.16%  [6]. 

IX.  SYNTHESIZING EXPRESSIVE SPEECH TO CONVEY 
EMPHASIS IN FEEDBACK GENERATION 

This section, as well as the next one, presents our initial work 
in the development of speech synthesis technologies for 
corrective feedback generation in CAPT. We choose to begin 
with synthesizing focus. Words carrying focus in the 
synthesized response aims to draw the attention of the learner, 
highlighting the speech segments where correction is needed. 
For example, if the learner has trouble discriminating between 
the phones /th/ and /f/, as in the sentence, “Fighting thirst is 
the first thing to be done in this country,” we aim to place 
focus on the words “thirst” and “first”.  

Focus is supported primarily by prosodic features, such as 
intensity, pitch changes and phone durations. We analyze the 
difference in these prosodic features between an utterance that 
carry neutral intonation and one that carry expressive 
intonation to convey focus. Our analysis involves the 
classification of phone in focus and neutral words, as follows: 
For a focus word with a syllable carrying primary stress: 

Class 1: Phones in the stressed syllable  
Class 2: Phones before the stressed syllable  
Class 3: Phones after the stressed syllable 

For words without focus: 
Class 4: Phones in the word before the focus word 
Class 5: Phones in the word after the focus word 

 Class 6: All other (remaining) phones 
 

Figure 15 illustrates this method of phone classification. 
“Peterson” and “occasion” are the focus words in the 
sentence.  

   

Figure 15. An example of phone classification based on the location of 
stressed syllables in focus words. 

We also extract the following acoustic features from the 
phones to capture focus: 

� maximum f0 (Max, in Hz),  
� f0 range (R, in Hz),  
� minimum f0 (Min, in Hz),  
� mean f0 (Mean, in Hz),  
� absolute value of f0 slope (S, in Hz/ms),  
� mean of RMS energy (E, in dB), and  
� duration per phone (D, in ms). 

Thereafter, we develop a perturbation model for each phone 
class, based on the ratio of a feature in focus speech and its 
counterpart in neutral speech, as shown in Equation (3): 
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where Fi, neu is the value of one feature for the ith phone in 
neutral speech, Fi ,focus is its counterpart in focus speech and n 
is the number of the phones in the particular phone class. 

This perturbation model is used to modify neutral speech 
recordings to synthesize focus. Results from a listening test 
show that the 13 subjects can identify the focus words with an 
accuracy of over 98%. The perceived degree of focus in the 
identified words achieves a mean score of 4.5 in a five-point 
Likert scale. Details of this work can be found in  [52]. 

X.  SYNTHESIZING VISUAL SPEECH WITH  
ARTICULATOR ANIMATION 

We believe that visualization of articulatory motions will also 
be effective for corrective feedback generation. There has been 
other visual animation work used in CAPT. For instance, Ville 
teaches Swedish with the help of an animated avatar  [53]. The 
University of Iowa also offers a flash animation of articulators 
in a midsagittal view for English phones  [54]. We take the idea 
one step further, with the aim to synthesize visually animated 
speech based on free-text input, which can be synchronized 
with synthesized audio to provide multimodal corrective 
feedback generation.  

We collected the full set of visemes corresponding to 
English phones with reference to  [55]. In our approach, 
multiple visemes can be mapped to multiple phonemes. 
Altogether, we have 42 visemes for 44 English phonemes. For 
a given text input, a text-to-speech synthesizer (FreeTTS  [56], 
a Java interface to Flite  [57]) is used to generate the audio and 
the time boundaries of the phones. Based on the phone identity 
and the corresponding time boundaries, we apply a blending 
approach  [58] [59] to synthesize the animated articulatory 
motions. Our preliminary visual perception test shows that 
when the subjects are asked to perform “articulator-reading” 
for a minimal word pair, they can correctly discriminate 
between the words about 75% of the time. Details are 
presented in  [60]. 

XI.  ONGOING WORK AND FUTURE DIRECTIONS 

There are many areas of research that we are currently 
exploring with the aim to develop speech technologies for 
CAPT. We strive to improve the basic capability of 
mispronunciation detection in ASR.  As mentioned earlier, 
conventional ASR technologies are developed for LVCSR task 
such as dictation.  The objective is to return the correct words 
to the users even if the pronunciations are inaccurate.  
However, for a CAPT task, the requirement is more stringent 
that the ASR is now required to discern (i) how much the 
pronunciations in the utterance deviate from the reference? (ii) 



Does the deviation constitute a mispronunciation? (iii) If so, 
how can we pinpoint the error?  For example, the confusion 
between /th/ and /f/ in the word “thin” by a Chinese learner 
should have led to “thin” being spoken as “fin”, but this may 
be rectified automatically by language modeling constraints in 
conventional ASR.  Our approach described above uses the 
ERN to provide explicitly modeled mispronunciations to 
capture the error.  However, this also places a very high 
requirement on the discriminative ability of the acoustic 
models.  Hence, we are exploring the use of discriminatively 
trained acoustic models, with reference to predicted 
mispronunciations  [60].  These models should bring about 
improvements in mispronunciation detection and diagnoses, 
as well as pronunciation scoring. 

We have also expanded the scope of our investigation from 
segmental phonology to suprasegmental phonology.  English 
and Chinese have stark contrasts in suprasegmental 
phonology.  We focus on prosodic features that are critical for 
communication, namely, stress and intonation.  Our work 
includes design and collection of an L2 suprasegmental 
corpus  [61] (also under the AESOP umbrella), running 
perceptual tests to assess whether Chinese learners can 
perceive the relevant prosodic cues in English  [62], as well as 
the development of technologies to detect and verify 
appropriate intonation in L2 speech.  Additionally, we note 
that Chinese has syllable-timed rhythm while English has 
stress-timed rhythm.  We are developing a technique in a 
prototype known as MusicSpeak, that can make use of 
synthesized musical rhythm to help Chinese learners acquire 
the appropriate rhythmic productions of English  [63].   

It is our hope to be able to incorporate all our technologies 
in our prototype system, in order for it to help teachers and 
students during in-class training, as well as students in self-
directed learning and practicing.  
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