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Abstract

Speech visualization is extended to use animated talking heads for computer assisted pronunciation training. In this paper, we design
a data-driven 3D talking head system for articulatory animations with synthesized articulator dynamics at the phoneme level. A database
of AG500 EMA-recordings of three-dimensional articulatory movements is proposed to explore the distinctions of producing the sounds.
Visual synthesis methods are then investigated, including a phoneme-based articulatory model with a modified blending method. A com-
monly used HMM-based synthesis is also performed with a Maximum Likelihood Parameter Generation algorithm for smoothing. The
3D articulators are then controlled by synthesized articulatory movements, to illustrate both internal and external motions. Experimental
results have shown the performances of visual synthesis methods by root mean square errors. A perception test is then presented to eval-
uate the 3D animations, where a word identification accuracy is 91.6% among 286 tests, and an average realism score is 3.5 (1 = bad to
5 = excellent).
� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Technologies enabling speech visualization with a syn-
thesized talking head have been developed for applications
from speech animation to language acquisition for
hearing-impaired children (Massaro et al., 2004; Rathi-
navelu et al., 2007). Earlier studies presented animated
lip movements to improve the intelligibility of synthetic
speech. Recent investigations have used physiology-based
head models with more realistic visual synthesis to
enhance speech perception (Tarabalka et al., 2007; Wik
and Engwall, 2008; Serrurier and Badin, 2008). Most of
the existing efforts in this direction focus on the following
aspects: head modeling to design 2D or 3D articulator
models (Serrurier and Badin, 2008; Badin et al., 2008),
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data acquisition to control the synchronized movements
of articulators (Fagel et al., 2004; Deng and Neumann,
2008; Badin et al., 2010), and visual synthesis which uses
the limited data to synthesize any articulatory motions
in speech production (Wang et al., 2009; Ma et al., 2004).

Virtual head models in recent studies have used 2D/3D
models of face, lips, tongue and jaw, even velum and naso-
pharyngeal wall (Serrurier and Badin, 2008). Both facial and
intra-oral articulators are modeled on the basis of physio-
logical data, like MRI, CT or X-ray images. Related works
in (Fagel et al., 2004; Grauwinkel et al., 2007; Wik and Eng-
wall, 2008) have enabled the visualization of internal articu-
lator dynamics on synthesized audiovisual speech. To
control the motion of these articulatory models, various
types of data recorded from the real speakers is used. Data
acquisition equipments include three-dimensional facial
motion capture (Ma et al., 2004; Engwall and mri, 2003)
and Electro-Magnetic Articulography (EMA) (Engwall
and mri, 2003; Fagel et al., 2004; Tarabalka et al., 2007).
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In these studies, a motion capture device was used to record
the complex movements of lips, jaw and tongue at certain
discrete data points, which were mapped to a 3D face model.
The EMA was commonly used for audio-visual data record-
ing since the coils can be attached to the intraoral articula-
tors to get the positions of tongue, teeth, jaw, etc.. The
video-fluoroscopic images (Murray et al., 1993; Wang
et al., 2009; Chen et al., 2010) also provide the data of
recording movements of tongue body, lips, teeth, palate
and oral cavity in real-time. Because speakers would be
exposed to excessive amounts of X-ray radiation during
long-term recording, limited data was collected and used
for speech visualization.

Most research efforts (Ma et al., 2004; Fagel et al., 2004;
Grauwinkel et al., 2007; Tarabalka et al., 2007) defined a
viseme or vowel/consonant group as the basic unit for
audio-visual synthesis. To animate the movements of a vise-
me, a set of displacement vectors or parameters were deter-
mined for the corresponding vertices of anticipatory and
target viseme positions in a 3D synthetic head models. The
visualization of articulatory movements were acquired by
linear or non-linear combinations of these displacement vec-
tors. The articulatory dominance functions in (Cohen and
Massaro, 1993) has been widely used, where the contour
was controlled by time offset, duration and magnitude. It
is a general form for visual synthesis and our preliminary
study (Wang et al., 2009) had explored how to produce
the control parameters of the dominance function for any
phonetic context. The study in (Guenther et al., 1995) had
presented a Directions Into Velocities of Articulators model
for speech production, where an orosensory-to-articulatory
mapping was proposed but the computation of this map-
ping is complex. The statistical model (Blackburn and
Young, 2000) was also used to predict articulator move-
ments with a set of X-ray trajectories for training. The study
in (Dang et al., 2005) developed a carrier model where the
articulation was represented by a vocalic movement and a
consonantal movement. The linear form of articulation
was evaluated by the distribution of tongue tip during the
central vowel of VCVCV sequence. For the evaluation,
the synthetic articulator movements were compared to the
natural motions, the subjects evaluated the intelligibility of
the synthesis (Fagel et al., 2004). The work in (Tarabalka
et al., 2007; Wik and Engwall, 2008) evaluated the subjects
abilities to use the visual information to perform recognition
of consonants or sentences with degraded audio. In these
works, the subjects gave identification scores for the stimuli
under different conditions, including audio information
only, audio-visual information combined with tongue and
audio-visual information combined with both tongue and
face.

Recent developments of speech visualization involve a
range of explorations and technologies on speech produc-
tion, synthesis and perception. The task can be extended
to use animated talking heads for computer assisted
language learning, as in previous works (Wik and Hjal-
marsson, 2009; Wang et al., 2009; Chen et al., 2010). This
research investigates the phoneme-level articulatory move-
ments, using visual synthesis methods and a transparent
3D talking head to present both external and internal artic-
ulatory animations for pronunciation training. With the
multimodal information, language learners would more
easily understand and mimic the phonetic sounds that are
not present in his/her mother language. For this purpose,
we used EMA AG500 to collect three-dimensional visual
data, and designed a corpus to explore articulatory distinc-
tions at the phoneme level. A phoneme-based concatena-
tion with smoothing is then presented for visual
synthesis, where a blending method is investigated for a
good fit. For comparison, an HMM-based visual synthesis
is also conducted using a Maximum Likelihood Parameter
Generation (MLPG) to smooth the articulatory trajectory.
Given the speech input, articulatory movements are syn-
thesized to control the 3D articulator models, where a
dynamic displacement-based deformation is applied. In
the experiments, we compared two visual synthesis meth-
ods to EMA-recorded curves, and then implemented a set
of 3D animations to depict the differences among pho-
nemes. We also presented an audio-visual test in which
the subjects evaluated the 3D animations using an identifi-
cation accuracy and a realism score.

The rest of this paper is organized as follows: Section 2
introduces the recording of 3D articulatory motions and
EMA data processing, to explore articulatory distinctions
of phonemes. In Section 3, two different methods are pro-
posed to synthesize articulatory motions for continuous
speech. Section 4 gives a description on developing a
data-driven 3D talking head system for articulatory anima-
tion. Section 5 presents experimental details and results.
The conclusions and discussions are in the final section.

2. Recording the 3D articulatory motions and data

processing

2.1. Corpus design and data collection

Studies on phonetics (Lado, 1957) have indicated that
the phonemes that are absent from the learner’s native lan-
guage are difficult for learners to pronounce correctly. The
phonetics flash animation project in Iowa University
(Iowa, xxxx) has illustrated the articulation of the sounds
of English/Spanish/German for students of phonetics and
foreign language. In this work, we focus on the acquisition
of English (i.e. the target secondary language) by learners
whose native language is Chinese, so as to develop a 3D
talking head to instruct the learners to produce the sounds.

To make discriminations among those sounds that are
not present in the Chinese language and easily mis-pronun-
ced by learners, the prompts for the audio-visual data col-
lection are designed to contain two sessions. Session I
covers all individual English phonemes in terms of IPA,
each of which is followed by an example word as in the
Appendix. It consists of a total of 45 phonemes and 45
example words including 3 polysyllabic words (more than
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one vowel). Session II consists of 50 groups of minimal
pairs (a total of 200 words including 21 polysyllabic
words), in order to compare the differences in articulations
between two similar phonemes. The average number of
occurrences of each phoneme in the prompts is 27, and
all phonemes appear more than three times.

To collect the audio-visual data, a native speaker is
invited to read the prompts, while articulatory movements
are recorded using the EMA AG500 at 200 frames per sec-
ond. Each recording lasts about 15 seconds, and the move-
ments are synchronized with the speech waveform. To
record both external the internal articulatory movements,
seven coils are placed on the speaker’s face and three coils
on her tongue. In particular, three coils are put on the nose
and ears H 1;2;3 for calibration of the head movements
(Hoole et al., 2003; Hoole et al., 2010), as shown in
Fig. 1 (left side). The coils are put on the right lip corner
L1, the upper lip L2 and the lower lip L3. The coils on the
tongue are tongue tip, T 1, tongue body T 2 and tongue dor-
sum T 3. Another coil is attached on the lower incisors for
the jaw J 1. The right side of Fig. 1 shows the 3D head mod-
els with the corresponding points. Moreover, two cameras
are recording the speaker simultaneously from the frontal
and profile views for supplementary observation. During
recording, the software provided by the manufacture is
used to monitor the movements of all coils. The speaker
is asked to repeat the prompts when any coil has unusual
movements. The head motion normalization is post-pro-
cessed with the tools provided by the manufacture (Hoole
et al., 2003; Hoole et al., 2010), any EMA frame with out-
lier is discarded.

2.2. Feature state determination

With the use of individual phonemes of Session I, we
recover the 3D positions of lips and tongue to illustrate
the slight differences among phonemes. The articulator
motions are tracked through the successive frames, and
the silence frames and speech frames are automatically
labeled in a recording by an automatic speech recognition
system. The static state is selected from the silence frames
to define the starting point of articulatory movement.
Fig. 1. The EMA coils on the speaker face and th
During data collection, the speaker is asked to keep her lips
and tongue still before speaking. The video can help us to
observe whether the speaker has lip smacking or swallow-
ing, and then select the silence region without lip motions.
However, her tongue is not always at the same position in
the silence region. We then use an analysis window (20ms)
to segment the silence frames without overlapping. By cal-
culating the mean and variance of the tongue position in a
segment, we assume that the tongue in a segment with the
smallest variance is relatively stable. Thus the average ton-
gue position of this segment is then defined as the static
state. For each EMA recording in Session I, the static
states of lips and tongue are given below,

LiðposstatÞ; i 2 1; 2; 3; 4; T jðposstatÞ; j 2 1; 2; 3;

where posstat refers to three dimensional position ðx; y; zÞ of
coil Li or T j. In Fig. 2, the silence segments in a recording
are plotted where the solid line of tongue is the selected sta-
tic state, and the dash lines are the other average positions
of tongue. The selected static states have a small variance,
compared to the tongue positions while speaking. Since
there is no coil put on the left lip corner L4, its three-dimen-
sional position is estimated by assuming that the line be-
tween H 2 and H 3 is parallel to the line between L1 and
L4, and the distance between L1 and L2 is the same as that
between L4 and L2.

The feature state is defined as the peak position of an
individual phoneme, which should refer to the characteris-
tics of producing this sound. For instance, the peak posi-
tion of the phoneme /�/ should be selected with the
maximally opened mouth, while the tongue is also at its
lowest point. Fig. 3 depicts the lips and tongue positions
of individual vowels /e/ versus /�/. It shows the profile view
of lips and tongue at the feature state, in contrast to that of
the static state.

Fig. 4 indicates the Z-axis movements of the upper and
lower lips along with the time scale, where the feature state
is chosen at tpk

. By checking the articulatory movements of
all individual phonemes, we confirmed that the EMA
recordings can illustrate the distinctions between the con-
fusable phonemes, like /e/ and /�/. Given the large number
of frames in the EMA-recordings, the feature state of each
e corresponding points on a 3D head model.



Fig. 2. The variance of the tongue positions while keeping the reference coils static.

Fig. 3. The static state (dash lines) and feature state (solid lines) of the vowels /e/ and /�/.
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phoneme should be selected automatically. By searching
through all EMA frames of a phoneme, the state that has
maximal Euclidean distance from the static state is selected
as the feature state. Since each EMA recording has its static
state, we calculate the feature state for every individual
phoneme in this recording as below,

tpk
¼ arg max

tp

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

½Liðpos; tpÞ � LiðposstatÞ�
2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

½T jðpos; tpÞ � T jðposstatÞ�
2

s o
; ð1Þ

where tps
6 tp 6 tpe

refers to the phoneme p starts at tps
and

ends at tpe
, and the feature state of this phoneme is deter-

mined at tpk
.

For diphthongs, stops and liquids, one feature state may
not represent articulatory characteristics. According to Eq.
(1), the feature state of /b/ is selected at tpk1
, which has the

maximal open mouth as shown in Fig. 5. However, another
important feature to produce this sound should be at tpk2

,
where the lips brought together to obstruct the oral cavity.
So, we manually chose the successive frames to determine
the feature state, and then compute the local maximum
using Eq. (1) within this interval. The selected feature states
for all individual phonemes are illustrated and checked, in
order to represent the distinctions of this phoneme.

3. Audio-visual synthesis based on the phoneme-level

articulatory movements

3.1. Phoneme-based articulatory models with smoothing

To synthesize three-dimensional articulatory motions
for natural speech, a straightforward way is to concatenate



Fig. 4. The feature state of /e/ or /�/ is selected at tpk
.

Fig. 5. The feature states of /b/ are selected at tpk1
and tpk2

.
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the movements of individual phonemes to form continuous
motions, based on the durations of phonemes in continu-
ous speech. These durations are obtained by performing
forced-alignment of each waveform against its phonemic
transcription, using an automatic speech recognition sys-
tem. Since the duration of an individual phoneme usually
differs from that in continuous speech, time warping is
required. However, the articulatory movements of individ-
ual phonemes cannot be connected directly, since the dis-
placement vectors of phonemes in continuous speech
have different scales.

As proposed in (Cohen and Massaro, 1993), an expo-
nential function was used to approximate the motion of
an individual phoneme, and a blending function was
required to smooth the articulatory motions of preceding
and succeeding phonemes. A general form of dominance
function DpðtÞ for the phoneme p is given as below,
DpðsÞ ¼
ap � e�hd jsjc ; if s 6 0; s ¼ tpk

� t

ap � e�hg jsjc ; if s > 0:

(
ð2Þ

For any axis of any feature point (coil) at the lip or ton-
gue, tpk

refers to the occurrence of feature state of the pth
phoneme. In this study, the coefficients are calculated based
on the displacement of determined articulatory feature
states. Thus, the exponential growth hg and decay constant
hd in Eq. (2) is defined as below,

ap � e�hd jtpk�tpe j
c ¼ �

ap � e�hg jtpk�tps j
c ¼ �

(
ð3Þ

where � is a local minimum (in the experiments, � ¼ 0:22) to
define the overlap between two exponential functions, and
tps

and tpe
are the starting/ending time of the pth phoneme.

Moreover, ap determines the magnitude of the pth pho-
neme in continuous speech (Wang et al., 2009),

ap ¼
maxp jRp j�jRp j

maxp jRp j ; if jRpj– maxpjRpj
1:0; if jRpj ¼ maxpjRpj

(
ð4Þ

where Rp is the displacement of the feature state of the pth
phoneme compared to the static state. In the above defini-
tion, the phoneme with maximal displacement will play a
significant role in a sequence, such as a vowel in a CVC
structure word. However, for a phoneme sequence with
more vowels (for instance, VCV and VCVC words), the
dominance of the second vowel is greatly reduced if using
Eq. (4). So a more general form of ap is given as below,

ap ¼
jRpj

maxpjRpj
: ð5Þ

Given the dominance function, the deformation curve
for smoothing was expressed as in (Cohen and Massaro,
1993; Wang et al., 2009),
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F wðtÞ ¼
PN

p¼1Rp � Dpðt � tpÞPN
p¼1Dpðt � tpÞ

ð6Þ

In most studies, the dominance function with c ¼ 1 is
used, and the normalization term in the blending function
is designed to guarantee each phoneme can reach the target
feature value at tpk

.
For continuous speech, it is observed that the principle

articulator of most consonants in the articulation fails to
reach its target position due to the lack of sufficient time.
We then investigate a dominance function with c ¼ 2 (as
shown in Fig. 6) and a modified blending function, aiming
to obtain a good fit. The work of (King, 2001) had sug-
gested that the dominance function with c ¼ 2 is convex
on each side of apex, which can prevent the synthesized
curves from a discontinuity in the 1st order derivative. Dis-
continuities may result in unrealistic and visible artifacts in
the animation. Since the dominance function with c ¼ 2
performs as a combination of two Gaussians, the blending
function presented in this study is a sum of weighted
Gaussians,

bF wðtÞ ¼
PN
p¼1

Rp � Dpðt � tpÞ: ð7Þ

The above definition does not guarantee each phoneme
in continuous speech can reach its target value, only the
dominant phoneme of articulation which has both suffi-
cient time and largest displacement will reach the target.
The synthesized curves using different articulatory models
are compared to the recorded movements to examine the
performance.

3.2. The HMM-based articulatory synthesis

The statistical model based speech synthesis has been
used successfully, which pushed the development of
HMM-based articulatory inversion. Works of (Youssef
et al., 2009; Tamura et al., 1999; Zhang et al., 2008) pro-
vided the implementations to prove that the jointly trained
acoustic and articulatory models can give low RMS errors
compared to the real data, with enough data for training.
Fig. 6. The dominance functions of an individual phoneme.
The HMM based synthesis includes three main stages:
feature extraction stage, training stage and synthesizing
stage. In the feature extraction stage, the features for the
articulatory models are displacement vectors correspond-
ing to each coils at the lips, tongue and jaw. The coefficients
and its delta and delta-delta coefficients can be used to
parameterize articulatory movements. So the structure of
the observation vector of the tth frame will be organized
in forms like:

ot ¼ ½c0t;Dc0t;D
2c0t�

0 ð8Þ

where ct is the n dimensional static feature, Dct and D2ct are
the dynamic features. Dct and D2ct are defined as in (Ling
et al., 2008),

Dct ¼ 0:5 � ðctþ1 � ct�1Þ ð9Þ

D2ct ¼ ctþ1 � 2 � ct þ ct�1 ð10Þ

In the model training stage, the monophone models are
trained with the left-to-right topology, each of which has
three emitting states. The conventional Expectation-Maxi-
mization (EM) algorithm is used with the Maximum Like-
lihood criterion. Clustering (Youssef et al., 2009) is not
used, because we need to illustrate the distinctions between
the confusable phonemes. The synthesis can be achieved by
simply concatenating the states together if state duration is
provided. The state sequence can be provided by an auto-
matic speech recognizer (ASR). Since the output is a distri-
bution, the position at each frame of time is stochastic.

MLPG, the parameter generation algorithm based on
the Maximum Likelihood criterion (Tokuda et al., 1995),
can give out an optimized smoothed articulatory trajec-
tory. In the MLPG algorithm, the predicted static feature
vector c can be derived as the following forms,

W0R�1W
� �

c ¼W0R�1l ð11Þ

where l and R are the mean vector and covariance matrix
associated with the specific mixture of the state at time t, W
is the weight matrix. Thus we can obtain an updated trajec-
tory c.

4. The 3D articulatory animation system

This section introduces a data driven three-dimensional
talking head system, in which the EMA-recorded data is
used to synthesize articulatory movements, and then con-
trol the 3D articulator dynamics. The whole system con-
sists of three modules: the static 3D head models,
animation of the 3D head models and continuous speech
control. For any speech input, the system would present
the phoneme-level distinctions of articulatory motions.

The static three-dimensional head models are estab-
lished based on the templates from MRI images. Articula-
tors including the lips, jaw, teeth, palate, alveolar ridge,
tongue, velum and pharynx have been recreated. Overall
the whole three-dimensional head model is made of
28,656 triangles (Chen et al., 2010). The coordinates of
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the static head model are defined in relation to the refer-
enced MRI images. The origin is the nose tip, the X-axis
is parallel with eyeline, Z-axis is at the cross-sectional view
and perpendicular to X-axis, while Y-axis is perpendicular
to XOZ plane. The EMA data is registered to the static
head model via affine transformation. Accordingly feature
points in the 3D head model are identified manually as in
Fig. 1.

Phoneme-level articulator dynamics are the basis of the
3D articulatory animation system. According to the anat-
omy, the motions of articulators are divided into muscular
soft tissue deformations of lips and tongue; rotational up-
down movements of chin; and relatively fixed parts (Chen
et al., 2010). The lips and tongue are both muscular hydro-
stats in that they are composed entirely of soft tissue and
move under local deformation. Given that feature points
(L1;2;3;4 and T 1;2;3) move under displacements of each pho-
neme in the inventory, constrained deformations are
applied to the adjacent points of facial skin or tongue.
Up-down rotation of the jaw affects the animation process
of jaw, lower teeth, the linked chin skin, and tongue body.
The degree of the rotation is computed with the displace-
ment of the feature point on the lower incisors (J 1). The
skull and upper teeth remain still while speaking, given that
the head does not move.

Unlike other audio-visual synthesis, the 3D articulatory
animation system in this paper is worked for pronunciation
training with the given speech input. In this case, an auto-
matic speech recognition system is used to segment the
speech input into a sequence of phonemes with a time
boundary. To apply the phoneme-based articulatory
model, the duration of each individual phoneme is linearly
mapped to its segmentation in the phoneme sequence. The
co-articulator blending algorithm is then used to generate
the movement contours. The HMM-based method is also
based on the segmentation by ASR to synthesize the
curves. Accordingly, the synthesized curve is sampled at
25 frames per second, and the displacement vectors are
used for the deformations of each feature point on 3D
articulators.

5. Experiments

In order to demonstrate the ability of phoneme-based
and HMM-based models to synthesize articulatory
motions, we compare it with the recorded EMA data. With
the experiments, we aim at showing the performances of
3D articulatory animations at the phoneme level, and an
audio-visual test is performed on the animations of 11 min-
imal pairs (22 words) selected from Session I.

5.1. Experiments on phoneme-based articulatory models with

smoothing

For this method, the EMA-recorded articulatory posi-
tions of 45 individual phonemes were segmented and
processed. The static state and feature states were automat-
ically determined according to the strategy in Subsection
2.2. An automatic speech recognition system was used for
phone-level segmentation, where the HMM parameters
were trained with TIMIT corpus. The Perceptual Linear
Predictive (PLP) features with its delta and acceleration
were extracted and trained the cross-word triphone HMMs
under ML criterion. Each speech HMM has the left-to-
right topology with three emitting states and each state
has 12 Gaussians. The test set is 45 example words of Ses-
sion I including 42 single syllabic words and 3 poly-syllabic
words (butter, about, azure).

We first illustrate the use of different exponential func-
tions in the blending function. When setting c ¼ 1 or
c ¼ 2, the dominance functions and the corresponding
blending functions are drawn in comparison with the
EMA-recording of continuous speech. Fig. 7 shows the syn-
thetic movements of the Z-axis of the lower lip for the word
“bat”, in comparison to the EMA-recorded curve EwðtÞ. In
the above figure, b1;2 and t1;2 refer to two feature states
selected for stops, and sp refers to the speech pause at the
beginning and ending of a word.

The Root Mean Square (RMS) errors were used as the
objective measure to evaluate the performance of synthetic
articulatory motions. As in Table 1, the average RMS
errors are listed for different forms of the blending func-
tions. In particular, F wðtÞ refers to the definition in Eq.
(6) with c ¼ 1 and normalization term, while the form with-
out normalization term has also been tested. bF wðtÞ is given
by Eq. (7) using c ¼ 2 and without normalization term, for
comparison, the form with normalization term is also
tested. It is found that the curve of the blending functionbF wðtÞ is closer to the EMA-recorded movement than that
of F wðtÞ and obtains a lower RMS error. In the following
experiments, bF wðtÞ without normalization term is used to
smooth the concatenation of the phonemes in the sequence
of continuous speech.

Table 2 shows the average RMS errors of synthesized
movements by the use of different forms of ap, where a1

refers to the definition in Eq. (4) and a2 is that of Eq. (5).
Usually, the blending function using a1 has a good approx-
imation to the EMA-recorded curve for single syllabic
words. However, the synthetic curve using a2 performs bet-
ter than the former for poly-syllabic words, like CVCV/
VCVC/VCV words. Since these complex structure words
have two more vowels, the definition of a1 will degrade
the dominance of another vowel. Therefore, we apply a1

for the words with only one vowel, while a2 for the words
with more than one vowel, and the overall RMS errors ofbF wðtÞ is 3.46 mm.

5.2. Experiments on HMM-based synthesis

To train the HMM-based articulatory model, the EMA
data of Session II was used. The same test set in Subsection
5.1 was also applied. A total of 200 words were used for
training the articulatory HMMs, and there is no overlap
between the training and testing data. The time information



Fig. 7. Comparison of the synthetic movements of lower lip versus the EMA-recorded curve for the word “bat”.

Table 1
The average RMS errors for different forms of the blending functions.

Test set F wðtÞ (mm) bF wðtÞ (mm)

With
norm.

Without
norm.

With
norm.

Without
norm.

Single syll.
words

3.55 3.54 3.65 3.50

Poly-syll.
words

2.98 3.25 3.04 3.22

Overall 3.51 3.52 3.61 3.48

Table 2
The average RMS errors for different forms of ap in the blending
functions.

Test set F wðtÞ (mm) bF wðtÞ (mm)

a1 a2 a1 a2

Single syll. words 3.55 3.53 3.50 3.51
Poly-syll. words 2.98 2.94 3.22 2.98
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can be extracted given the speech input. The phone level
boundaries were automatically determined by the ASR as
mentioned in the above section. To synchronize with the
waveforms, the EMA data must be down sampled. The
articulatory feature vectors comprise of the displacements
on the X-axis (back to front direction) and Z-axis (bottom
to up direction) of six main coils on the lip(L2; L3), tongue
(T 1; T 2; T 3) and lower incisor (J 1). Moreover, the displace-
ment on the Y-axis (right to left direction) of the right edge
of the lip (L1) is also used. These displacements together
with their deltas and delta-deltas between frames form a
39 dimensional feature vectors.

The monophone HMMs were then trained with the left-
to-right topology, where each state has a single Gaussian
mixture. When synthesizing, connecting the related phone
level articulatory HMMs and estimating the optimal trajec-
tory were performed according to the state sequence gener-
ated by forced-alignment. After concatenation, MLPG
algorithm was applied to smooth the trajectory.

Furthermore, we compared phoneme-based articulatory
models with smoothing and HMM-based synthesis.
Fig. 8 shows the EMA true displacement trajectories of
the lower lip and tongue tip, in comparison with the syn-
thesized curves from two different synthesis methods. In
particular, Fig. 9 shows the synthesized movements for
standard CVC word, in contrast to three poly-syllabic
words. It was observed that phoneme-based articulatory
models F̂ wðtÞ can outperform the HMM-based synthesisbH wðtÞ, which has lower RMS errors compared to the
EMA true displacement trajectories EwðtÞ.

It can be seen from Fig. 10 that the phoneme-based
motion model with smoothing deals well with low RMS
errors. The average RMS for phoneme-based method is
3.46 mm, while it is 4.67 mm for HMM-based synthesis.
One concern is that the estimation of the articulatory
HMMs may not be exact due to the limited training data,
and the acoustic models and articulator models were not
trained together. This may result in the worse performance
of HMM-based method in the experiments.
5.3. Experiments on the articulatory animation system

For Chinese learners of English, some phonemes are
commonly mispronounced as in Table 3, a set of minimal



Fig. 8. Comparison of two synthetic movements versus the EMA-recorded curve for a minimal pair.

Fig. 9. Comparison of two synthetic movements versus the EMA-recorded curve for a set of complex words.
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pairs were selected to present the synthetic talking head. In
a total of 22 words, the phonemes not presented in Chinese
language were included, like /e/ and /�/, while the confus-
able phonemes were also shown, such as labio-dental fric-
ative /v/ and bilabial glide /w/, apico-dental fricative /h/

and apico-alveolar fricative /s/. With the 3D talking head
system presented in Section 4, the animations of these artic-
ulations are implemented. In Fig. 11, the deformations on
both external and internal articulators are displayed at the
feature states. Clearly, the 3D head can reveal the distinc-
tions of the articulator motions at the phoneme level.

Consequently, we performed an audio-visual perception
test to access the correctness of the animations of the 3D
talking head. The participants were three native speakers



Fig. 10. The RMS errors for all example words on specific coils and coordinates.

Table 3
The identification rates and realism scores of 3D articulatory animations for minimal pairs.

Confusable phonemes Minimal pairs

Word Identi. rate (%) Realism score Word Identi. rate (%) Realism score

/�/ vs./e/ bat 84.6 3.5 bet 84.6 3.6
/au/ vs. /O:/ house 92.3 4.0 horse 92.3 3.8
/v/ vs. /w/ vine 76.9 3.0 wine 76.9 2.9
/h/ vs. /s/ thing 92.3 3.4 sing 92.3 3.1
/ð/ vs. /f/ they 100 3.4 fay 100 3.8
/n/ vs. /m/ night 100 3.3 might 100 3.4
/l/ vs. /r/ lay 84.6 3.2 ray 84.6 3.0
/ai/ vs. /Oi/ buy 100 3.4 boy 100 3.1
/t
R

/ vs. /dZ/ choke 92.3 3.2 joke 92.3 3.2
/s/ vs. /

R
/ sea 84.6 3.2 she 84.6 3.1

/iE/ vs. /eE/ beer 100 3.2 bear 100 3.3

Fig. 11. The 3D talking head presents for individual phonemes with facial and profile (transparent) views.
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and ten English teachers in one university. In the test, the
audio streams of one minimal pair were played firstly,
and then the animations were shown in which two words
of one minimal pair appeared in a random order, as shown
in Fig. 12. The subjects were asked to identify which ani-
mation corresponded to the word. The identification
accuracy refers to the ratio of the number of correctly
recognized animations and the total number of animations.
All the stimuli were presented in two conditions, the
visualization with front face (F), the visualization with
transparent face and tongue (FT). The subjects also scored
the degree of realism of the animation, when the correct
label of the animation was shown to them. The score
ranges from 1 to 5, 1 for bad, 2 for poor, 3 is fair, 4 for
good and 5 for excellence.

The identification rate and realism score of animation of
each word are averaged and listed in Table 3, the overall
identification accuracy is 91.6% among 286 tests. Most of
the subjects could clearly point out the differences of the
3D articulator dynamics between the confusable
phonemes. Although the average realism score is over 3.5,
the 3D animations of “vine” and “wine”, “sea” and “she”



Fig. 12. The 3D articulatory animations in the perception test.

Table 4
The individual phonemes and the example words in Session I.

Phoneme/word Phoneme/word Phoneme/word Phoneme/word Phoneme/word

/I:/ beet /I/ bit /eI/ bait /e/ bet /�/ bat

/E:/ bird /Er/ butter /E/ about /V/ but /u:/ boot

/u/ book /Eu/ boat /O:r/ horse /O/ bott /ai/ bite

/au/ house /Oi/ boy /a:/ bar /eE/ bear /iE/ beer

/ju:/ you /p/ pea /b/ bee /t/ tea /d/ day

/k/ key /g/ gay /m/ might /n/ night /N/ sing

/l/ lay /h/ thing /ð/ they /s/ sea /z/ zone

/
R

/ she /Z/ azure /f/ fay /v/ vine /h/ hay

/t
R

/ choke /dZ/ joke /w/ wine /j/ yacht /r/ ray
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are not good enough to identify correctly. All subjects gave
comments that the FT condition had importance to identify
the words. The HMM-based synthesized curves are also
applied to the animation, the perception tests show no sig-
nificant difference between the two synthesis methods.
6. Conclusions

We have investigated the use of EMA-recorded visual
information to capture phoneme-level articulatory distinc-
tions. 3D articulatory movements of phonemes, words
and sentences were recorded and processed, then the feature
states of individual phonemes were determined to illustrate
differences among phonemes. Thus, we developed the pho-
neme-based articulatory motion model with smoothing, in
which different forms of dominance function and blending
functions were presented and compared. This visual synthe-
sis is then feasible with a very small amount of EMA data,
which can reduce the cost of implementing a data-driven
3D animation system.

For comparison, the HMM-based method was also
performed, since it has been commonly used for visual
synthesis. Experimental results have shown that the pho-
neme-based motion model with smoothing obtained a
better performance compared with the HMM-based synthe-
sis on phone/word level. And most of synthetic articulatory
movements achieved lower RMS errors to the EMA-
recorded curves. Due to the limited EMA data for training,
the acoustic models and articulator models are not trained
together, which may degrade the accuracy of the HMM-
based synthesis. So a further investigation should be con-
ducted by designing a large corpus and collecting EMA data
from different speakers.
A data-driven 3D articulatory animation system was
designed in a way that the physiological head models were
controlled by synthetic movements, given the speech input.
Rather than making animations at the viseme level to
improve the intelligibility of audio-visual synthesis, this
work illustrated more slight differences among phonemes,
so as to instruct language learners to articulate. In the per-
ception test, the subjects evaluated the 3D animations with
a high identification rate. It is worth investigating anima-
tions of longer utterances rather than minimal pairs of
words, in order to study the effect of co-articulation on
the deformation of the articulators.
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