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Abstract—This paper proposes a novel semi-supervised TTS
framework, QS-TTS, to improve TTS quality with lower su-
pervised data requirements via Vector-Quantized Self-Supervised
Speech Representation Learning (VQ-S3RL) utilizing more un-
labeled speech audio. This framework comprises two VQ-S3R
learners: first, the principal learner aims to provide a generative
Multi-Stage Multi-Codebook (MSMC) VQ-S3R via the MSMC-
VQ-GAN combined with the contrastive S3RL, while decoding it
back to the high-quality audio; then, the associate learner further
abstracts the MSMC representation into a highly-compact VQ
representation through a VQ-VAE. These two generative VQ-
S3R learners provide profitable speech representations and pre-
trained models for TTS, significantly improving synthesis quality
with the lower requirement for supervised data. QS-TTS is
evaluated comprehensively under various scenarios via subjec-
tive and objective tests in experiments. The results powerfully
demonstrate the superior performance of QS-TTS, winning
the highest MOS over supervised or semi-supervised baseline
TTS approaches, especially in low-resource scenarios. Moreover,
comparing various speech representations and transfer learning
methods in TTS further validates the notable improvement of
the proposed VQ-S3RL to TTS, showing the best audio quality
and intelligibility metrics. The trend of slower decay in the
synthesis quality of QS-TTS with decreasing supervised data
further highlights its lower requirements for supervised data,
indicating its great potential in low-resource scenarios.

I. INTRODUCTION

Text-to-Speech (TTS) synthesis is a technology aiming to
convert text to speech signals with correct pronunciation,
natural prosody, and high audio fidelity. It has been widely
used in various intelligent products, e.g. Human-Computer
Interaction (HCI) [1, 2], Speech-to-Speech Translation (S2ST)
[3, 4], and Artificial Intelligence Generated Content (AIGC)
[5]. Meanwhile, with the popularization and penetration of AI
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technology into various fields, the capability of a TTS system
for personalization and customization has also been paid more
attention, to better serve all people around the world. However,
the high cost of creating a TTS dataset with sufficient high-
quality speech audio and accurate transcripts hinders the devel-
opment of TTS in this aspect. Hence, reducing the supervised
data requirements of TTS is becoming more urgent for low-
resource scenarios, which is also the goal of our work.
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Fig. 1. A mainstream TTS framework: the acoustic feature or speech
representation is extracted from the waveform via the analysis module as
the output of the prediction module, and decoded to the waveform by the
synthesis module.

Fortunately, a TTS system does not rely entirely on su-
pervised data. It is feasible to utilize more unlabeled speech
data that is easier to collect to compensate for insufficient
supervised data in TTS training. For example, in a mainstream
modular TTS framework, as shown in Fig. 1, we can employ
unlabeled speech data to

• Enhance the analysis module to provide practical data-
derived speech representations with sufficient phonetic
information and easier to predict from the text.

• Enhance the synthesis and prediction modules by pre-
training them on relevant tasks.

In this way, we may reduce supervised data requirements by



2

building a semi-supervised TTS system using more unlabeled
speech data. The key is seeking an appropriate approach or
task utilizing unlabeled speech audio well to provide the
expected features and pre-trained models to TTS.

In this regard, Self-Supervised Speech Learning (S3RL)
has shown excellent capability in providing profitable speech
representations and pre-trained models for various supervised
speech tasks. Especially in speech synthesis [6, 7], various
vector-quantization-based [8] S3RL approaches have already
demonstrated their eminent performance, providing compact,
discrete speech representations to reduce modeling complexity
while keeping high-quality speech reconstruction. However,
there is still a lack of a systematic framework covering these
approaches to improve low-resource TTS comprehensively. To
address this issue, in this paper, we propose QS-TTS, a novel
semi-supervised TTS framework based on Vector-Quantized
Self-Supervised Speech Representation Learning (VQ-S3RL).

This framework conducts VQ-S3RL on unlabeled speech
data for two goals:

• Providing profitable speech representations for TTS.
• Providing effective pre-trained models to enhance the

acoustic model and the vocoder.

It comprises two learners. First, we train a principal VQ-
S3R learner, which combines the contrastive S3RL model,
HuBERT [9], and the proposed generative S3RL model,
Multi-Stage Multi-Codebook (MSMC) VQ-GAN in cascade.
It converts the waveform into the MSMCR, a compact gen-
erative S3R comprising multiple sequences at different time
resolutions and quantized by multiple codebooks, which is
then decoded to high-quality speech audio via adversarial
speech generation. Then, we train an associate VQ-S3R
learner to abstract the MSMCR into a highly compact VQ
representation through a VQ-VAE-based model with multi-
sequence encoding and decoding. These two generative VQ-
S3R learners are applied in TTS training using supervised data,
including playing the role of the analysis module providing the
MSMCR, and providing pre-trained models for the prediction
and synthesis module training.

In experiments, in addition to MOS tests to evaluate QS-
TTS subjectively, we also measure the performance of QS-
TTS objectively on audio quality using Frechét Distances (FD)
in various embedding spaces and the intelligibility using the
Character Error Rate (CER) and Phoneme Error Rate (CER).
We first evaluate the overall performance of QS-TTS by com-
paring it with mainstream TTS approaches, e.g. FastSpeech,
VITS, and their semi-supervised versions, in standard-resource
and various low-resource scenarios. Then, we investigate the
effect of the proposed VQ-S3RL on TTS by comparing it with
different speech representations and transfer learning methods.
Finally, we evaluate the performance of QS-TTS with different
sizes of supervised data to further validate its effectiveness in
reducing supervised data requirements.

Our contributions are summarized as follows: 1) we propose
QS-TTS, a novel semi-supervised TTS approach, significantly
outperforming supervised / semi-supervised baseline systems
in low-resource scenarios; 2) we apply VQ-S3RL with only
unlabeled data to provide profitable speech representations and

effective pre-trained model for low-resource TTS, more effec-
tively reducing the supervised data requirements over other
semi-supervised approaches. 3) we conduct comprehensive
subjective and objective evaluations to demonstrate the effec-
tiveness of QS-TTS across different low-resource scenarios,
validating its lower requirements for supervised data. In the
rest of this paper, Section II introduces the background of
this work. Section III illustrates the framework of QS-TTS
in detail. Experiments are described in Sections IV and V.
Finally, Section VI gives the conclusion to this paper.1

II. BACKGROUND

A. Semi-Supervised Text-to-Speech Synthesis

The semi-supervised TTS aims to utilize both supervised
and unsupervised data in training to improve TTS quality.
It is usually achieved by transfer learning, i.e. pre-training
TTS modules with only audio or text, and fine-tuning it using
supervised data. For example, in Tacotron-based TTS [10, 11],
the auto-regressive decoder can be pre-trained with unlabeled
audio [12, 13], then applied in supervised training to achieve
better prediction quality. In [14], the phoneme encoder is
also pre-trained using only text in a BERT-like [15] way. We
can also tag unlabeled speech audio using limited supervised
data. For example, speech chain [16], i.e. back-translation
[17], can train Automatic Speech Recognition (ASR) and TTS
iteratively using only a few paired data and much-unpaired
data. In [18, 19], a weak ASR system is trained with a few
minutes of supervised data, then decodes all unlabeled audio
to generate transcripts to create a low-accuracy supervised
dataset. TTS is directly pre-trained by this dataset, and then
fine-tuned with the target supervised data. Besides, we can also
create pseudo-labels via unsupervised acoustic unit discovery
[20, 21] to form a pseudo-supervised dataset for TTS pre-
training. Eventually, employing more unlabeled data in train-
ing can enhance the TTS system with lower requirements for
supervised data.

However, with the development of representation learning,
data-derived speech representations show better performance
than conventional, signal-processing-based acoustic features
in TTS, which can be better predicted from the text while
keeping sufficient speech information for high-quality audio
reconstruction. It effectively reduces the requirement for su-
pervised data, indicating a new direction for semi-supervised
TTS.

B. Self-Supervised Speech Representation Learning

S3RL [22] aims to learn useful representations from un-
labeled speech data to serve downstream supervised speech
tasks. It is usually divided into two categories: contrastive
and generative [23]. Contrastive S3RL models, e.g. Wav2Vec
[24–26], HuBERT [9], WavLM [27], are usually encoder-
based models trained with contrastive loss functions [28].
This kind of model is more robust to noisy data in training,
hence can be applied with massive low-quality speech data to

1Audio samples are available at https://hhguo.github.io/DemoQSTTS/. The
code is available at https://github.com/hhguo/MSMC-TTS
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Fig. 2. The framework of QS-TTS. In vector-quantized self-supervised speech representation learning (VQ-S3RL), the principal VQ-S3R learner first converts
the speech signal s into zc via a pre-trained contrastive S3RL model (HuBERT), and then feed it to the Multi-Stage Multi-Codebook (MSMC) VQ-GAN and
ECAPA-TDNN-based speaker encoder to obtain the MSMCR zp and the speaker embedding zs, finally reconstruct the waveform ŝ via the speech decoder.
The associate VQ-S3R learner compresses zp into the VQ sequence za via a VQ-VAE model. In TTS training, the vocoder and acoustic model are trained
based on the pre-trained speech decoder and multi-stage decoder to map the text to the MSMCR ẑp, and then synthesize the waveform ŝ.

learn a general speech representation [29] to enhance various
downstream speech classification [30–34] and synthesis [35,
36] tasks. Generative S3RL aims to reconstruct speech in
training while applying restrictions to the latent space, which is
more compatible with TTS intuitively due to their overlapped
goal of speech generation. Hence, it is widely applied in
TTS tasks, such as the Auto-regressive model, VAE [37],
and VQ-VAE [8]. It cannot only provide an effective speech
representation [38], but provide a good pre-trained model for
TTS training [12]. However, this kind of approach is more
sensitive to noisy data due to the reconstruction objective [23],
hence having a higher requirement for audio quality, lacking
good generalization for low-quality audio.

C. Vector-Quantized Representation Learning

As a generative self-supervised learning method, vector-
quantized representation learning aims to compress the target
via vector quantization into a compact, discrete representation,
while keeping high-quality reconstruction, e.g. VQ-VAE [8]
and its enhanced version, VQ-GAN [39] and VQ-Diffusion
[40]. It has been widely applied in speech generation, e.g.
speech coding [41–43], Voice Conversion (VC) [44], and TTS
[7, 45–47]. To extract a better VQ speech representation with a
balance between compactness and completeness, MSMC-TTS
[7] proposes a Multi-Stage Multi-Codebook Representation
(MSMCR), comprising multiple sequences with different time
resolutions and quantized by multiple codebooks. It can be
better predicted from the text via multi-stage modeling, sig-
nificantly improving TTS performance with lower supervised
data requirements, further showing the great potential of VQ
representations in semi-supervised TTS.

III. QS-TTS

QS-TTS is a semi-supervised TTS framework based on
vector-quantized self-supervised speech representation learn-
ing (VQ-S3RL). As shown in Fig. 2, it trains two VQ-S3R

learners on unlabeled speech data to provide more profitable
speech representations and effective pre-trained models to
enhance supervised TTS training, thereby improving synthesis
quality while reducing the supervised data requirement. In this
section, we will illustrate each module in detail.

A. The Principal VQ-S3R Learner

We first propose a principal VQ-S3R learner combining
contrastive and generative S3RL models to extract an effective
speech representation, which is easier to predict from the
text and well-reconstructed into high-quality audio. It first
employs a contrastive S3RL model, HuBERT [9], trained
with massive speech audio to extract an effective general
speech representation zc from the speech signal s. Then,
it conducts the generative VQ-S3RL based on MSMC-VQ-
GAN using only high-quality speech data to convert zc into
the generative VQ-S3R, MSMCR, while decoding it with the
speaker embedding zg to high-quality audio ŝ.

In this section, we will introduce the model architecture and
training method of MSMC-VQ-GAN.

1) Model architecture: The model architecture of MSMC-
VQ-GAN is mainly composed of an MSMC-VQ encoder and a
speech decoder. Fig. 3 shows an example of a two-stage four-
codebook VQ-GAN model. In the MSMC-VQ encoder, the
input zc is first processed by a Transformer encoder composed
of a linear layer and a feedforward Transformer block, then
quantized in two stages. In the higher stage, i.e. stage 2, the
input sequence is down-sampled 4 times along the time axis
via the down-sample module, which has an average pooling
layer and a feedforward Transformer block. Then, the higher-
stage sequence z̃

(2)
p is quantized by a four-head codebook c

(2)
p

via Multi-Head Vector Quantization (MHVQ) [7], i.e. product
quantization [48], which chunks the codebook into multiple
sub-codebooks to quantize the input vector chunked in the
same way, respectively. The quantized output z

(2)
p is further

processed by an up-sample block comprising two MLP layers
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Fig. 3. The model architecture of a two-stage four-codebook VQ-GAN generator. “MQ”, “
⊕

”, “
⊗

” denote multi-head vector quantization, addition, and
concatenation operations. The red arrows emphasize the process of converting the MSMCR into the waveform at inference.

with a LeakyReLU activation function in between, repetition
operation for up-sampling, and four residual convolutional
layers, to help the following quantization, and predict the
lower-stage (stage-1) quantized sequence ẑ

(1)
p . In the lower

stage, we obtain the quantized sequence z
(1)
p with the guidance

of the high-stage information, and add it with the high-stage
residual output as the encoder output, which is then fed to the
speech decoder to generate the waveform.

The speech decoder is composed of a frame decoder and a
waveform generator. To better support multi-speaker waveform
generation, we extract an utterance-level embedding from the
Mel spectrogram of the input audio via the global encoder
based on ECAPA-TDNN [49] as the speaker representation zs.
We add the input sequence with zs, and then employ the frame
decoder with a feedforward Transformer block to process it,
finally generating the speech waveform ŝ via the waveform
generator based on the Hifi-GAN model. Meanwhile, like
MSMC-VQ-VAE, we still predict the Mel spectrogram from
the output of the frame decoder using a Mel linear layer.

2) Loss function: The training objective of MSMC-VQ-
GAN is composed of multiple loss terms. First, due to the non-
differentiable VQ operations, we back-propagate the gradient
to the two-stage MSMC-VQ encoder via the following loss:

Lvq = ||z̃(1)p − sg(z(1)p )||22 + ||z̃(2)p − sg(z(2)p )||22 (1)

where S denotes the number of stages, and sg(∗) is the
stop-gradient operation, i.e. no gradient is back-propagated
from the variable. We adopt the exponential moving average-
based method [50] to update codebooks in training. For
effective multi-stage representation learning, we also enhance
the relationship between adjacent stages with the following
loss term:

Lms = ||ẑ(1)p − sg(z(1)p )||22 (2)

It can help the higher stage learn an effective representation
stably [7, 51].

To reconstruct high-quality speech audio, we apply GAN
training to the model with a UnivNet discriminator [52],
composed of multiple sub-discriminators for multi-resolution
spectrogram discriminating and multi-period waveform dis-
criminating, to capture more discriminative information in

frequency and time domains. The loss function for the dis-
criminator is written as:

Ld =
1

K

K∑
k=1

[(Dk(s)− 1)2 +Dk (̂s)
2] (3)

where K denotes the number of sub-discriminators. And the
adversarial loss for the MSMC-VQ-GAN is written as:

Ladv =
1

K

K∑
k=1

[(Dk (̂s)− 1)2] (4)

To enhance GAN training quality, the Mel-spectrogram loss
and feature matching loss, widely used in GAN-based neural
vocoder training, are also employed in MSMC-VQ-GAN
training [53]. Mel-spectrogram loss is the L1 distance between
two waveforms in the Mel-scale frequency domain, which can
improve the perceptual quality of the generated audio. It is
written as follows:

Lmel = ||ϕ(s)− ϕ(̂s)||1 (5)

where ϕ denotes the operating converting the waveform into
the log-scale Mel spectrogram. Feature matching loss can
further improve GAN training quality by reducing differ-
ences between the ground-truth waveform and the generated
waveform in the hidden feature space of the discriminator as
follows:

Lfm =
1

K

K∑
k=1

1

Nk

Nk∑
i=1

||(D(i)
k (s))−D

(i)
k (̂s)||1 (6)

where Nk denotes the number of hidden layers of k-th sub-
discriminator, and D

(i)
k (∗) denotes the output feature of i-th

layer of k-th sub-discriminator.
Finally, to avoid the negative impact of the unstable per-

formance of GAN to VQ-S3RL in the early-stage training,
we still apply the frame-level reconstruction loss, which is an
L2 distance between the predicted Mel spectrogram and the
ground-truth one:

Lframe = ||x− x̂||22 (7)
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where x and x̂ denote the ground-truth and predicted Mel
spectrograms. Finally, the loss function for MSMC-VQ-GAN
is written as follows:

Lg = Ladv + λfm ∗ Lfm + λmel ∗ Lmel

+ λvq ∗ Lvq + λms ∗ Lms + λframe ∗ Lframe

(8)

where λfm, λmel, λvq, λms, λframe are weight coefficients.

B. The Associate VQ-S3R Learner

To better predict the MSMCR from the text, we propose an
associate VQ-S3R learner to provide an effective pre-trained
model for training the acoustic model. It imitates the process
of converting the text, a highly-compact discrete sequence,
into the MSMCR, by employing a VQ-VAE-based model to
abstract the MSMCR into a more compact VQ sequence and
reconstruct it back.

VQ
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Fig. 4. The model structure of VQ-VAE for the two-stage four-codebook
representation, where the second-stage sequence has a down-sample rate of 4
along the time axis.

1) Model architecture: Fig. 4 shows the VQ-VAE model
for the two-stage representation, where the stage-2 sequence
z
(2)
p has a down-sample rate of 4. It is composed of a VQ

encoder and a multi-stage decoder. In the VQ encoder, all
sequences are first up-sampled to the same length as the stage-
1 sequence z

(1)
p , e.g. repeating all vectors in z

(2)
p for 4 times.

Then, aligned sequences are concatenated to be processed
by a feedforward Transformer block, and quantized by one
codebook to obtain a highly-compact VQ sequence za. To
force it to capture more phonetics-related information, we still
apply the ECAPA-TDNN-based global encoder to extract an
utterance-level speaker embedding, which is jointly trained
with the VQ-VAE. This embedding is then up-sampled to
the frame level by repetition and added with the quantized
sequence za for decoding.

The multi-stage decoder aims to reconstruct the MSMCR
from za. It predicts sequences from high to low stages in a
cascaded way. For this two-stage representation, the decoder
first down-samples the encoder output 4 times, then feeds it
to the decoder block comprising a feedforward Transformer

block followed by a linear layer. The output of the linear layer
refers to the predicted stage-2 sequence ẑ

(2)
p in training, and is

quantized by the codebook c
(2)
p from the MSMC-VQ-GAN as

the output. Similarly, in stage 1, ẑ(1)p is predicted by giving the
encoder output and the stage-2 outputs. Notably, in training,
we replace ẑ

(2)
p with the ground-truth quantized sequence z

(2)
p

as the input.
2) Loss function: The model is trained with the loss func-

tion La written as follows:

Lvq = ||z̃a − sg(za)||22
Lrec = ||ẑ(1)p − z(1)p ||22 + ||ẑ(2)p − z(2)p ||22
La = Lvq + λrec ∗ Lrec

(9)

where Lvq is still the VQ loss for the VQ encoder training,
Lrec is the reconstruction loss between the ground-truth and
reconstructed MSMCR with 2 stages, and λrec is a weight
coefficient. In training, we still use the exponential moving
average-based method to update the codebook ca.

C. TTS Synthesis

In TTS synthesis, we aim to convert the text to its corre-
sponding MSMCR via the acoustic model, and then generate
the waveform from the MSMCR via the vocoder. The acoustic
model has the same architecture as MSMC-TTS [7], based
on the FastSpeech [54]. It encodes the text sequence using a
Transformer encoder, then up-samples it via repetition accord-
ing to the predicted duration, finally generating the MSMCR
ẑq via a multi-stage decoder. In training, it inherits parameters
of the pre-trained multi-stage decoder in the associate VQ-
S3R learner, and then is trained with the supervised data. The
training loss function is written as follows:

Ldur = ||d̂− d||22
Lam = Lrec + λdur ∗ Ldur

(10)

where Ldur denotes the duration loss between the ground-truth
duration d and the predicted duration d̂, and λdur is a weight
coefficient.

In vocoder, to convert the predicted ẑp composed of multiple
sequences to the waveform, we first feed it to the MSMC-
VQ encoder in the pre-trained MSMC-VQ-GAN to obtain the
encoder output sequence, as indicated by the red arrows shown
in Fig. 3. Then, we synthesize the waveform via the speech
decoder fine-tuned with the audio in the supervised dataset to
adapt the target speaker better. In fine-tuning, we only update
the parameters of the speech decoder using the same training
configurations of MSMC-VQ-GAN.

IV. EXPERIMENTAL PROTOCOL

A. Dataset

In VQ-S3RL, we employ AIShell-3, a Mandarin multi-
speaker high-quality speech dataset, as the training set. This
dataset contains roughly 85 hours of emotion-neutral record-
ings spoken by 218 native Chinese Mandarin speakers, show-
ing a rich coverage of phonetic and speaker information. In
TTS training, we employ multiple supervised TTS datasets
to evaluate TTS systems under various scenarios. The first
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dataset is CSMSC2, a single-speaker Mandarin TTS corpus
with 10-hour high-quality supervised data, which is widely
applied in training the standard single-speaker Mandarin TTS
system. We also conduct low-resource scenarios by extracting
subsets from CSMSC. Besides, a test set with 200 utterances
is also extracted from this dataset but has no overlap with
all training sets. Then, we construct a more challenging low-
resource scenario using only 10 minutes of child speech data
spoken by a five-year-old girl in Mandarin3. It has a test set
with 24 utterances out of the training set. Finally, we use an
internal Cantonese dataset with 15 minutes of supervised data
to evaluate the performance of TTS systems in low-resource
languages. The Cantonese test set comprises 134 utterances
out of the training set.

B. Feature

First, in audio processing, all single-channel audio used in
our work is down-sampled to the sample rate of 16kHz. Then,
we extract Mel spectrograms for all datasets in the following
way: first, pre-emphasize the audio with the coefficient of 0.97,
and then convert it to the 1025-dim magnitude spectrograms
by STFT with a window length of 50ms, a frameshift of
12.5ms, and an FFT size of 2048, finally compress the
spectrogram into the 80-dim log-scale Mel spectrogram. We
employ a HuBERT4 [9], the contrastive S3RL model, pre-
trained on WenetSpeech [55], a Mandarin dataset with around
10,000 hours of speech audio, to extract the general speech
representation. The HuBERT feature is a sequence of 1024-
dim vectors with a frameshift of 20ms. To align it to the Mel
spectrogram, we up-sample it via nearest neighbor interpola-
tion to a frameshift of 12.5ms.

In text processing, we convert the text to phonemes as the
input of the acoustic model. For CSMSC and child datasets,
we directly employ the phonemes and their corresponding
duration labeled in the dataset for training. For the Cantonese
dataset, we use an open-source G2P tool [56] to obtain
phonemes, and train a Montreal Forced Aligner5 (MFA) model
to obtain the phoneme-level duration for training.

C. Model Configuration

In VQ-S3RL, we apply the MSMC-VQ-GAN with 2 stages,
where the second stage has a down-sample rate of 4 along
the time axis. And in each stage, a 4-head codebook is used
for vector quantization, where each head is composed of 64
codewords with a dimension of 64. In the MSMC-VQ encoder,
we apply the 4-layer 256-dim feedforward Transformer block
with 2-head self-attention to the Transformer encoder and the
down-sample block. The MLP block has two 256-dim linear
layers with a Tanh activation function. The residual CNN
block comprises 4 1-D residual convolutional layers with a

2CSMSC is available at https://www.data-baker.com/data/index/source.
3The child TTS dataset is available at https://magichub.com/datasets/

mandarin-chinese-speech-corpus-for-tts-children-speech.
4The pre-trained HuBERT model is available at https://huggingface.co/

TencentGameMate/chinese-hubert-large.
5The tool is available at https://github.com/MontrealCorpusTools/

Montreal-Forced-Aligner.

kernel size of 5. In the speech decoder, the frame decoder
is also implemented with the 4-layer 256-dim feedforward
Transformer block. The waveform generator is a Hifi-GAN-
V1 [53] generator, which upsamples the input sequence 200
times to the 16kHz waveform via 4 CNN-based upsampling
blocks with the upsample rates of [5, 5, 4, 2] and the kernel
sizes of [11, 11, 8, 4].

In GAN training based on the UnivNet discriminator
(UnivNet-c32) [52], we extract three magnitude spectrograms
from the waveform using three STFT parameter sets, FFT size
[256, 512, 1024], frameshift [40, 80, 160], and frame length
[120, 320, 640], for multi-resolution spectrogram discriminat-
ing. And we also reshape the 1-D waveform into five 2-
D sequences with the period of [2, 3, 5, 7, 11] for multi-
period waveform discriminating6. In this work, MSMC-VQ-
GAN is trained on AIShell-3 for 400k iterations using the
AdamW optimizer (β1 = 0.8, β2 = 0.99) with a batch size
of 16 utterances. Similar to random window discriminating
[57], we also randomly select a segment with a length of
0.75 seconds from each utterance for adversarial training
of the waveform generator to improve training efficiency.
The learning rate of 2 × 10−4 exponentially decays with
the rate 2−

1
200,000 after 200k warm-up iterations. The weight

coefficients λfm, λmel, λvq, λms, λframe are set to 2, 45, 10,
1, 450, respectively. To stabilize the training process, we also
apply warm-up training here, i.e. no GAN training in the first
50k iterations.

The associate VQ-S3R learner compresses the MSMCR
with one codebook with 64 256-dim codewords. The VQ
encoder is a Transformer encoder with the same configuration
as MSMC-VQ-GAN. And the global encoder is an ECAPA-
TDNN [49] model with 128 channels for hidden layers. This
model is trained on AIShell-3 for 200k iterations using Adam
[58] optimizer (β1 = 0.9, β2 = 0.98) with the batch size of
64 utterances, and the learning rate of 2× 10−4 exponentially
decayed with the rate 2−

1
20,000 after 20k warm-up iterations.

Finally, in TTS training, we use the supervised TTS dataset
to fine-tune the speech decoder of MSMC-VQ-GAN with the
same training configuration, and train the acoustic model with
λdur = 0.1 based on the pre-trained multi-stage decoder in the
associate VQ-S3R learner. For a standard supervised dataset
with sufficient audio, i.e. 10-hour CSMSC, we fine-tune the
vocoder for 400k iterations and the acoustic model for 200k
iterations. Otherwise, for all low-resource datasets, we only
fine-tune the vocoder for 100k iterations, and the acoustic
model for 50k iterations to avoid over-fitting.

D. Baselines

In our experiments, we implement multiple fully-supervised
and semi-supervised TTS approaches following the training
configuration of QS-TTS.

1) FastSpeech: It is a mainstream non-autoregressive neural
TTS system based on the Mel spectrogram. It comprises an
acoustic model based on Transformer blocks and a Hifi-GAN

6The implementations of Hifi-GAN generator and UnivNet discrimina-
tor are available at https://github.com/jik876/hifi-gan and https://github.com/
mindslab-ai/univnet.
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vocoder, having the same model hyperparameters as QS-TTS.
We upgrade it to two semi-supervised versions: FastSpeech-
S and FastSpeech-SS. In FastSpeech-S, the Mel-spectrogram-
based Hifi-GAN vocoder is pre-trained on AI-Shell3, and then
fine-tuned with the supervised dataset. In FastSpeech-SS, the
Mel spectrogram is replaced with HuBERT features, and the
HuBERT-based Hifi-GAN vocoder is also pre-trained on AI-
Shell3.

2) VITS [59]: It is the SOTA end-to-end TTS system
based on VAE representations. It applies a VAE-GAN model
based on Hifi-GAN to learn a generative speech representation,
which can be predicted from the text by a Glow-based module
[60]. We implement it based on the official model config-
uration7, and apply it with the waveform generator and the
discriminator with the same configuration as that of QS-TTS
for a fair comparison. We also implement its semi-supervised
version, VITS-SS [21], in our experiments. It first applies k-
means clustering with 512 centroids on HuBERT features of
AIShell-3 to create pseudo-labels for all unlabeled audio, then
pre-trains VITS on this created paired dataset, and finally fine-
tunes VITS using the supervised dataset.

3) MSMC-TTS: It can be seen as the fully-supervised
version of QS-TTS, which learns the MSMCR from the
Mel spectrogram via the MSMC-VQ-GAN model, and is
trained with only the supervised dataset. Besides, We also
implement another semi-supervised version of MSMC-TTS,
MSMC-TTS-SS, which pre-trains the Mel-spectrogram-based
MSMC-VQ-GAN on AIShell-3, and only fine-tunes the speech
decoder in TTS training.

4) Back Translation: We also implement this semi-
supervised training approach to pre-train the acoustic model.
It first employs the supervised TTS dataset to train an ASR
system, and then transcribe unlabeled speech audio of AIShell-
3 to create a low-precision but large-scale paired dataset. The
acoustic model is pre-trained on this dataset, and finally fine-
tuned with the supervised TTS dataset. This approach highly
relies on the quality of ASR to ensure precise transcription, so
we train a CTC-ASR based on the pre-trained Mandarin Hu-
BERT model to convert the audio into phonemes and their cor-
responding durations extracted from CTC alignments. Besides,
we also implement the k-means-based approach proposed in
VITS-SS to avoid training ASR models. It directly quantize
HuBERT features of AIShell-3 into 512 codewords by k-
means to obtain pseudo-labels and corresponding durations,
which are then applied to pre-train the acoustic model.

E. Evaluation

In this work, we conduct objective and subjective tests to
evaluate the proposed TTS approach comprehensively.

1) Objective Metrics: Except for Mel Cepstral Distortion
(MCD) [61], computing the perceptual difference between
two fully-aligned audio files, we also propose evaluating
the synthesis quality using Frechèt distances [62] in various
embedding spaces. Frechèt distance can measure the distance

7The official implementation of VITS is available at https://github.com/
jaywalnut310/vits

between two sets of samples by calculating the difference
between them in distributions as follows:

F(Ns,Nt) = ||µs − µt||2 + tr(Σs +Σt − 2
√
ΣsΣt) (11)

where Ns and Nt denote the normal distribution of the
synthesized audio set, and the target ground-truth audio set
in the embedding space. And we can use different audio
classification models to extract embeddings and calculate their
mean vectors (µs, µt) and covariance matrices (Σs,Σt). This
work employs three embedding spaces: acoustics, speaker,
and phonetics. The Frechèt distance in acoustic space, i.e.
Frechèt Audio Distance (FAD) [63], has been well applied
in evaluating the synthesis quality of neural vocoder, which
extracts the embedding for each 4-second audio from an au-
dio classification model. Similarly, we extract utterance-level
speaker embeddings using an ECAPA-TDNN-based speaker
verification model, and extract utterance-level phonetic em-
beddings using a Transformer-based ASR model by averaging
its encoder output sequence into one vector. These three
distances are denoted as FD-AC, FD-SV, and FD-ASR in
our following work8. Notably, the Frechèt distance in speaker
space is multiplied by 10 to align with other distances.

We also evaluate intelligibility, the most crucial factor in
evaluating a TTS system, by calculating the Character Error
Rate (CER) and Phoneme Error Rate (PER) by transcribing the
synthesized audio using ASR tools9. And we use G2P tools10

to convert the transcribed and ground-truth text into phonemes
to calculate PER, which focuses more on the pronunciation
accuracy of phonemes.

2) Subjective Metrics: We conduct MOS (mean opinion
score) tests to subjectively evaluate TTS systems on synthesis
quality. In each MOS test, 10 native speakers are hired to
rate each audio sample in 20 test cases, where each test case
contains multiple audio samples synthesized by different TTS
approaches but from the same text. The rating ranges from 1
to 5 with an increment of 0.5, where the higher score indicates
better quality. Finally, we statistic the scores of each method
to obtain the MOS with a 95% confidence interval.

V. RESULTS

A. TTS comparison: Semi-Supervised v.s. Supervised

First, we investigate the impact of unlabeled speech data on
TTS by comparing the proposed semi-supervised TTS system
with supervised TTS systems: FastSpeech, VITS, and MSMC-
TTS.

Table I shows the MOS test result of standard single-speaker
TTS systems on the 10-hour CSMSC. FastSpeech, the modular
TTS system based on the Mel Spectrogram, shows the worst

8The pre-trained audio classification, speaker verification, and ASR
models are available at https://github.com/harritaylor/torchvggish, https:
//huggingface.co/speechbrain/spkrec-ecapa-voxceleb, and https://github.com/
openai/whisper/tree/main (multi-lingual base version).

9The ASR tools for Mandarin and Cantonese are available at https:
//github.com/wenet-e2e/wenet/tree/main/runtime/binding/python and https://
huggingface.co/Scrya/whisper-large-v2-cantonese.

10The G2P tools for Mandarin and Cantonese are available at
https://github.com/mozillazg/python-pinyin and https://github.com/mozillazg/
python-pinyin.
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Fig. 5. The magnitude spectrograms of audio samples synthesized from the same input text by MSMC-TTS (left) and QS-TTS (right) trained with 15-minute
CSMSC. Red boxes highlight areas with significant differences.

synthesis quality among all TTS approaches, obtaining the
lowest MOS of 3.55 and the highest FD-AC and FD-SV
of 0.79 and 1.19. But it has a satisfying performance in
pronunciation accuracy, showing the lowest PER of 0.70%.
VITS, the end-to-end approach based on VAE, significantly
improves audio quality by a much lower FD-AC and FD-SV,
and shows a higher MOS of 3.74. However, intelligibility also
seriously degrades with the increase in CER and PER. Instead,
MSMC-TTS performs well in both intelligibility and synthesis
quality, obtaining much-decreased metrics over FastSpeech,
and a higher MOS of 3.99, which indicates the effectiveness
of this approach based on VQ speech representations. QS-TTS
inherits this approach, and is enhanced via the proposed VQ-
S3RL using more unlabeled speech data. It further enhances
TTS but with limited improvement since sufficient supervised
data is given in training.

TABLE I
MOS TEST: STANDARD SINGLE-SPEAKER MANDARIN TTS

Systems FDs ERs (%) MOS
(± 95%CI)AC SV ASR CER PER

Recording - - - 4.70 0.67 4.33±0.10
FastSpeech 0.79 1.19 1.52 6.28 0.70 3.55±0.09

VITS 0.22 0.96 1.85 7.96 1.15 3.74±0.09
MSMC-TTS 0.34 0.84 1.51 6.11 0.80 3.99±0.09

QS-TTS 0.19 0.81 1.47 6.05 0.80 4.00±0.09

TABLE II
MOS TEST: LOW-RESOURCE SINGLE-SPEAKER MANDARIN TTS

Systems FDs ERs (%) MOS
(± 95%CI)AC SV ASR CER PER

Recording - - - 4.70 0.67 4.51±0.10
FastSpeech 4.17 1.79 4.10 12.28 3.23 2.58±0.11

VITS 0.92 1.52 3.19 19.56 6.31 2.86±0.11
MSMC-TTS 0.54 1.40 4.44 16.80 4.99 3.15±0.11

QS-TTS 0.25 1.00 2.20 8.98 1.46 3.75±0.10

Then, we conduct this comparison in a more challenging
TTS task, a low-resource scenario with only 15 minutes of
supervised data. We randomly select 257 utterances from the
full training set of CSMSC to form a 15-minute training set.
As shown in Table II, all supervised approaches degrade se-
riously in audio quality and intelligibility under this scenario,
achieving very low subjective scores. VITS and MSMC-TTS
still achieve higher audio quality than FastSpeech, showing

lower FD-AC and FD-SV. However, due to insufficient data
to learn effective speech representations, their performance on
intelligibility has more severe degradation, where the end-to-
end approach, VITS, shows the highest CER and PER. QS-
TTS addresses this problem by conducting VQ-S3RL on more
unlabeled speech data, significantly improving audio quality
and intelligibility. It shows significantly improved audio qual-
ity by an FD-AC of 0.25 and an FD-SV of 1.00, even lower
than FastSpeech trained with 10 hours of supervised data. The
intelligibility is also enhanced with the CER of 8.98 and PER
of 1.46. Finally, its MOS of 3.75 further validates that QS-TTS
surpasses all supervised methods greatly in this low-resource
scenario. It demonstrates that unlabeled speech data plays a
more critical role in low-resource TTS.

As shown in Fig. 5, we also visualize the magnitude
spectrograms of samples synthesized by the MSMC-TTS and
QS-TTS to investigate their differences further. The high-
quality audio usually presents clear and smooth harmonics in
the middle- and low-frequency parts to produce accurate pro-
nunciation perceptually. However, MSMC-TTS trained with
only 15 minutes of supervised data cannot synthesize the
expected harmonics stably. It often presents a jittered pitch,
and fuzzy middle-frequency harmonics, as shown in the red
boxes, which leads to a degradation of audio quality and intel-
ligibility. In QS-TTS, these issues are alleviated significantly.
The synthesized audio shows clearer smoother harmonics in
low- and middle-frequency parts, and has a higher variance in
the high-frequency part, finally leading to a higher MOS in
the subjective test.

B. TTS Comparison: Semi-Supervised Approaches
In the experiment, we aim to demonstrate the effective-

ness of the proposed semi-supervised approach for TTS, by
comparing it with semi-supervised TTS systems, FastSpeech-
SS and VITS-SS. First, we compare different semi-supervised
TTS systems under an intra-lingual cross-style low-resource
scenario using the 10-minute child speech dataset. It shares
the same languages as AIShell-3, but has a unique timbre
of a five-year-old girl unseen in AIShell-3. As shown in
Table III, in this more challenging task with fewer super-
vised data, all approaches show higher Frechèt distances and
error rates. First, the SOTA-supervised approach, MSMC-
TTS, shows the worst intelligibility with the high CER and



9

PER of 27.53% and 13.02%, and also performs poorly on
audio quality with the highest FD-AC of 1.76. The semi-
supervised version of FastSpeech, FastSpeech-SS, is signifi-
cantly enhanced over its fully-supervised version, achieving
comparable performance to MSMC-TTS. And VITS-SS en-
hanced by semi-supervised training outperforms MSMC-TTS
significantly, achieving much lower Frechèt distances and error
rates. Finally, although QS-TTS has a higher FD-AC than
VITS-SS, it obtains the best performance on all other metrics,
especially with a CER of 14.61% of a PER of 5.35% which are
twice as low as those of MSMC-TTS. It indicates the universal
effectiveness of QS-TTS in extreme scenarios.

Then, we further validate its effectiveness in a cross-lingual
scenario, which builds a TTS system for a low-resource
language, Cantonese, using a 15-minute supervised dataset,
where the language is also unseen in the unlabeled speech
dataset. As shown in Table IV, this dataset has a relatively
lower audio fidelity and lower expressiveness on prosody,
hence achieving the MOS of 3.86 only. FastSpeech-SS shows
a significant improvement over MSMC-TTS in this task,
obtaining a higher MOS of 3.58, and lower metrics in audio
quality and intelligibility. But VITS-SS fails to keep a stable
performance, showing seriously degraded intelligibility with
much higher CER and PER of 42.35% and 19.92%. The
pseudo-labels extracted from the Mandarin dataset using k-
means cannot adapt to Cantonese well, providing a seriously
biased pre-trained model. It leads to the lowest MOS of 3.34,
showing the limitation of this semi-supervised approach in
cross-lingual scenarios. However, QS-TTS still performs best,
with the highest MOS of 3.66. It still has the lowest CER and
PER, and keeps high audio quality with comparable or lower
Frechèt distances than other approaches.

In conclusion, through these challenging low-resource ex-
periments, baseline systems show either lower performance
or worse generalization, but QS-TTS is validated as a more
effective and stable approach in improving both audio quality
and intelligibility of TTS over other supervised and semi-
supervised approaches.

TABLE III
MOS TEST: DIFFERENT SEMI-SUPERVISED TTS APPROACHES ON THE

10-MINUTE CHILD TTS DATASET

Systems FDs ERs (%) MOS
(± 95%CI)AC SV ASR CER PER

Recording - - - 5.06 2.03 4.17±0.10
MSMC-TTS 1.76 3.37 7.49 27.53 13.02 2.93±0.13

FastSpeech-SS 1.72 3.31 7.73 25.28 15.48 2.80±0.12
VITS-SS 1.07 2.90 6.84 20.79 10.85 3.20±0.13
QS-TTS 1.48 2.81 6.32 14.61 5.35 3.23±0.14

C. The Principal VQ-S3R Learner

We conduct experiments for two VQ-S3R learners respec-
tively to investigate the impact of the proposed VQ-S3RL
on TTS. The principal learner combines HuBERT-based con-
trastive S3RL and MSMC-VQ-GAN-based generative S3RL to
benefit TTS maximally. To validate the effectiveness of these
two components, we implement QS-TTS-P, i.e. QS-TTS with
only the principal learner, and compare it with the following

TABLE IV
MOS TEST: DIFFERENT SEMI-SUPERVISED TTS APPROACHES ON THE

15-MINUTE CANTONESE TTS DATASET

Systems FDs ERs (%) MOS
(± 95%CI)AC SV ASR CER PER

Recording - - - 8.53 - 3.86±0.11
MSMC-TTS 1.57 2.16 5.89 25.47 11.61 3.37±0.11

FastSpeech-SS 0.49 1.63 4.03 20.00 6.76 3.58±0.10
VITS-SS 0.57 1.67 5.20 42.35 19.92 3.34±0.11
QS-TTS 0.51 1.53 3.86 18.76 6.26 3.66±0.10

semi-supervised TTS systems: FastSpeech-S, FastSpeech-SS,
and MSMC-TTS-SS. All of these systems use AIShell-3 for
pre-training and the 15-minute supervised data of CSMSC for
TTS training.

As shown in Table V, first, The Mel-spectrogram-based
FastSpeech-S, which does not use HuBERT and MSMC-VQ,
performs best in analysis-synthesis, since the Mel spectro-
gram contains sufficient acoustic information for complete
speech reconstruction. However, this feature with abundant
information is hard to predict by the acoustic model without
sufficient supervised data for training, leading to the worst TTS
performance on audio quality. In MSMC-TTS-SS, MSMC-
VQ compressed the Mel spectrogram into a more compact
representation with less information. This lossy compression
degrades the analysis-synthesis quality, but makes the feature
easier to predict from the model trained with less supervised
training data. It leads to a smaller gap between the ground-
truth and predicted features, making TTS synthesis closer to
analysis-synthesis in audio quality. However, the information
loss also degrades intelligibility, causing a trade-off between
audio quality and intelligibility in TTS synthesis. Hence, it
is not advisable to overly compress features to enhance TTS
unless we can keep sufficient phonetic information in com-
pression. In FastSpeech-SS, the HuBERT, a contrastive speech
representation learned from massive speech audio, discards
more acoustic information, showing a lower audio quality
in analysis-synthesis, but keeps richer phonetic information,
which has a lower PER of 0.58% than that of the Mel
spectrogram, validates its completeness in representing speech.
This feature also significantly improves TTS in both audio
quality and intelligibility. Finally, QS-TTS-P applies MSMC-
VQ with HuBERT to learn the compact representation with
rich phonetic information, and achieves the best performance
in TTS, strongly verifying the effectiveness of the principal
VQ-S3R learner in TTS.

D. The Associate VQ-S3R Learner

The associate VQ-S3R learner aims to provide a practical
pre-trained model to enhance the acoustic model to predict
the MSMCR better. To validate its effectiveness on TTS, as
shown in Table. VI, we compare it with another pre-training
approach, back translation, under low-resource scenarios using
15 minutes of supervised data in Mandarin or Cantonese.

First, the baseline approach, ASR-based back-translation,
does not achieve consistent performance in these two sce-
narios. In Mandarin TTS, the ASR enhanced by Mandarin-
HuBERT and trained with the Mandarin TTS dataset can tran-
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TABLE V
THE PERFORMANCE OF SEMI-SUPERVISED APPROACHES BASED ON DIFFERENT SPEECH REPRESENTATIONS IN ANALYSIS-SYNTHESIS AND TTS

SYNTHESIS USING THE 15-MINUTE MANDARIN TTS DATASET.

TTS System
Speech Representations Analysis-Synthesis TTS Synthesis

HuBERT MSMC-VQ MCD (dB) FDs ERs (%) FDs ERs (%)
AC SR ASR CER PER AC SR ASR CER PER

FastSpeech-S × × 2.23 0.12 0.17 0.15 4.61 0.66 2.29 1.51 3.52 10.54 2.47
MSMC-TTS-SS × ✓ 3.43 0.23 0.66 0.52 5.61 0.99 0.74 1.95 3.07 11.98 2.83
FastSpeech-SS ✓ × 3.09 0.12 0.45 0.30 4.79 0.58 0.43 1.10 2.73 10.87 2.19

QS-TTS-P ✓ ✓ 3.32 0.15 0.59 0.41 5.11 0.79 0.34 1.03 2.34 9.31 1.72

TABLE VI
THE TTS PERFORMANCE OF ACOUSTIC MODELS BASED ON DIFFERENT PRE-TRAINING METHODS IN MANDARIN AND CANTONESE TTS WITH

15-MINUTE SUPERVISED TRAINING DATA. “-” DENOTES THAT NO PRE-TRAINING IS APPLIED TO THE ACOUSTIC MODEL.

Methods
Mandarin Cantonese

FDs ERs (%) FDs ERs (%)
AC SR ASR CER PER AC SR ASR CER PER

- 0.34 1.03 2.34 9.31 1.72 0.58 1.62 4.07 20.39 7.23
Back Translation (ASR) 0.25 0.99 2.11 7.58 1.09 0.62 1.58 4.00 21.63 7.89

Back Translation (k-means) 0.25 1.03 2.37 10.77 2.30 0.52 1.55 4.10 23.97 9.11
Proposed 0.25 1.00 2.20 8.98 1.46 0.51 1.53 3.86 18.76 6.26

scribe the Mandarin unlabeled speech dataset well, providing
a good pre-training paired dataset with sufficient transcription
precision to support model pre-training, achieving the best
TTS quality among all methods. However, in Cantonese TTS,
the ASR trained with the Cantonese TTS dataset cannot tran-
scribe Mandarin speech audio well into Cantonese phonemes,
leading to the low-quality paired dataset. The pre-trained
acoustic model on this dataset contaminates the following fine-
tuning with Cantonese supervised data instead, showing higher
CER and PER. It indicates the limitation of the ASR-based
back-translation under the cross-lingual application. Although
the k-means-based back-translation avoids ASR training, and
shows consistent performance in both scenarios, it only im-
proves the audio quality while degrading intelligibility. Unlike
these back-translation-based approaches, the associate VQ-
S3R learner can enhance TTS in audio quality and intelli-
gibility under intra-lingual and cross-lingual scenarios, hence
validated as an effective and general pre-training approach.

Fig. 6. The impact of different codebook sizes to associate VQ-S3R learner
in Mandarin and Cantonese low-resource TTS

We also investigate the impact of the codebook size of
the associate VQ-S3R learner on TTS. We train VQ-VAE
models with different codebook sizes, and then apply them
for acoustic model training in Mandarin and Cantonese. Fig.
6 shows the results based on 4, 64, and 1024 codewords

with a large gap to highlight the difference between them.
The results in these two scenarios show opposite conclusions,
that the Mandarin TTS system sharing the same language as
the pre-training set prefers a smaller codebook size, while
the Cantonese TTS system in a different language from the
pre-training set prefers a larger codebook size. The highly-
compact VQ sequence can abstract phonetic information in
the Mandarin training set well, but also lacks generalization
to represent cross-lingual speech. Hence, the larger codebook
size benefits Cantonese TTS instead. In practice, we suggest
training multiple learners with different codebook sizes, and
selecting the suitable learner in TTS training regarding the
difference in language between the pre-training set and the
supervised dataset.

E. Requirements for Supervised Data

Finally, we investigate the supervised data requirements of
QS-TTS by comparing MSMC-TTS and QS-TTS trained with
different sizes of CSMSC, and drawing the line charts of FD-
ASR and CER, as shown in Fig. 7. First, the fully-supervised
MSMC-TTS and semi-supervised QS-TTS achieve similar and
good TTS performance with sufficient supervised data. Under
the situation with 10-hour supervised data, the gap between
these two systems is just 0.04 on FD-ASR and 0.06% on
CER. However, as data size decreases, the synthesis quality
of MSMC-TTS degrades significantly, showing the rapidly
increased FD-ASR and CER. In the low-resource scenario with
only 15 minutes of supervised data, it achieves the FD-ASR of
4.44 and CER of 16.80%, which are 193% and 175% higher
than those in the system trained with 10-hour supervised
data. Instead, QS-TTS shows a much-lower audio quality and
intelligibility decay as supervised data size decreases. The QS-
TTS trained with 15-minute supervised data achieves the FD-
ASR of 2.2 and CER of 8.98%, which are only 50% and 48%
higher than QS-TTS trained with 10-hour supervised data. And
the gap between these two approaches is also widened to 2.22
on FD-ASR and 7.82% on CER, which is nearly a hundred
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Fig. 7. The FD-ASRs and PERs of MSMC-TTS and QS-TTS trained with
different data sizes of CSMSC.

times larger. Hence, under the low-resource scenario, MSMC-
TTS has produced serious pronunciation issues, but QS-TTS
can still keep good performance. This result strongly validates
that the proposed semi-supervised TTS framework, QS-TTS,
has a lower requirement for supervised data, and indicates its
great potential in low-resource scenarios.

VI. CONCLUSION

This paper proposes QS-TTS, a novel semi-supervised TTS
framework based on VQ-S3RL to effectively utilize more
unlabeled speech audio to improve TTS quality while reduc-
ing its requirements for supervised data. The VQ-S3RL is
conducted through two learners: The principal learner com-
bines Multi-Stage Multi-Codebook (MSMC) VQ-GAN with
contrastive S3RL to learn high-quality generative MSMC VQ-
S3R, while decoding it to the high-quality audio; the asso-
ciate learner further compresses the MSMCR into a highly-
compact VQ representation via a VQ-VAE-based model. Then,
TTS is implemented based on the MSMCR, and applied
with VQ-S3R learners via transfer learning to achieve higher
synthesis quality with lower supervised data requirements.
This proposed framework can synthesize high-quality speech
with lower supervised data requirements, significantly out-
performing mainstream supervised and semi-supervised TTS
approaches, especially in low-resource scenarios. Besides, the
proposed VQ-S3RL also shows its effectiveness in providing
better speech representations and pre-trained models for TTS
by comparing with TTS systems with different speech repre-
sentations and transfer learning methods. Finally, the slowly
decayed performance of QS-TTS as supervised data decreases
further validates its lower requirement for supervised data, and
indicates its great potential in low-resource scenarios.
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