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Abstract—Despite the rapid progress of automatic speech recog-
nition (ASR) technologies in the past few decades, recognition of
disordered speech remains a highly challenging task to date. Disor-
dered speech presents a wide spectrum of challenges to current data
intensive deep neural networks (DNNs) based ASR technologies
that predominantly target normal speech. This paper presents
recent research efforts at the Chinese University of Hong Kong
(CUHK) to improve the performance of disordered speech recogni-
tion systems on the largest publicly available UASpeech dysarthric
speech corpus. A set of novel modelling techniques including neural
architectural search, data augmentation using spectra-temporal
perturbation, model based speaker adaptation and cross-domain
generation of visual features within an audio-visual speech recog-
nition (AVSR) system framework were employed to address the
above challenges. The combination of these techniques produced
the lowest published word error rate (WER) of 25.21% on the
UASpeech test set 16 dysarthric speakers, and an overall WER
reduction of 5.4% absolute (17.6% relative) over the CUHK 2018
dysarthric speech recognition system featuring a 6-way DNN sys-
tem combination and cross adaptation of out-of-domain normal
speech data trained systems. Bayesian model adaptation further
allows rapid adaptation to individual dysarthric speakers to be
performed using as little as 3.06 seconds of speech. The efficacy
of these techniques were further demonstrated on a CUDYS Can-
tonese dysarthric speech recognition task.

Index Terms—Disordered speech recognition, speaker
adaptation, data augmentation, multimodal speech recognition.

I. INTRODUCTION

D ESPITE the rapid progress of automatic speech recogni-
tion (ASR) technologies in the past few decades, recog-

nition of disordered speech remains a highly challenging task
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TABLE I
DESCRIPTION OF PUBLICLY AVAILABLE DYSARTHRIC SPEECH CORPORA

to date. Speech disorders such as dysarthria affect millions of
people around the world and introduce a negative impact on
their quality of life. Speech disorders are caused by a range
of neuro-motor conditions including cerebral palsy [1], amy-
otrophic lateral sclerosis [2], Parkinson disease [3], stroke or
traumatic brain injuries [4]. Common forms of speech disorders
such as dysarthria manifest themselves in neuro-motor problems
leading to weakness or paralysis of muscles that are used in
articulation [5]. This reduces the intelligibility of the resulting
speech for human listeners. As the underlying condition deteri-
orates, people suffering from speech disorders will not only lose
their ability to express themselves but also to live independently.
Such people often experience co-occurring physical disabilities
and other medical conditions at the mean time. Their difficulty
in using keyboard, mouse and touch screen based user interfaces
makes speech controlled assistive technologies more natural
alternatives [6], [7], even though speech quality is degraded.
To this end, in recent years there has been increasing research
interest in developing ASR technologies that are suitable for
disordered speech [8]–[12].

Disordered speech presents a wide spectrum of challenges to
current deep neural networks (DNNs) based speech recognition
technologies that predominantly target normal speech. First, a
large mismatch between disordered and normal speech is often
observed. Such difference systematically manifests itself in ar-
ticulatory imprecision, increased dysfluencies, slower speaking
rates and reduced volume and clarity. Furthermore, people suf-
fering from speech impairments tend to use shorter utterances
based on isolated words and simple commands, due to the fatigue
they encounter when speaking, when communicating with their
careers. This limits the long range temporal contexts that current
DNN based ASR systems designed for normal speech [13]–[15]
can exploit.

A set of publicly available disordered speech corpora are
shown in Table I. The Nemours [18] corpus contains less than
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3 hours of speech from 11 speakers. The similar sized Dutch
EST database [17] contains approximately 6 hours of speech.
The English TORGO [20] and Cantonese CUDYS [16] corpora
are moderately larger. The former contains 15 hours of speech
while the latter contains around 10 hours of speech. By far, the
largest available and widely used dysarthric speech database,
the English UASpeech [19] corpus, contains 102.7 hours of
speech1 recorded from 29 speakers based on single word ut-
terances of digits, computer commands, radio alphabet letters,
common and uncommon words, among which 16 are dysarthric
speakers while the remaining 13 are healthy control speakers.
Compared with more widely available normal speech corpora,
such as Switchboard conversational telephone speech [21] or
Librispeech [22] containing hundreds of to thousands of audio
data, all the existing disordered speech corpora are much smaller
in size.

Second, the underlying neuro-motor conditions, often com-
pounded with co-occurring physical disabilities, lead to the
difficulty in collecting large quantities of disordered speech
required for ASR system development. For data intensive deep
learning technologies widely used in current speech recognition
systems, large quantities of well-matched, in-domain speech
data are essential. Finally, the large variation among speakers
with diverse impairment characteristics, severity levels and in
different stages of speech disorder progression creates large vari-
ation in disordered speech data. This presents a further challenge
to the robustness of disordered speech recognition systems. For
the above reasons, state-of-the-art ASR systems designed for
normal speech often produce very high recognition error rate
above 50% when being applied to impaired speech [23], [24].

In order to address these issues, the main part of this paper
presents the recent research efforts made at the Chinese Uni-
versity of Hong Kong to significantly improve the performance
of current disordered speech recognition systems on the largest
available and widely used 102.7-hour UASpeech corpus. A set
of purposefully designed modelling techniques were derived to
address the aforementioned challenges. Both the description of
individual approaches and how they can be integrated together
to obtain the best recognition performance are presented.

First, motivated by the large mismatch between normal and
disordered speech, a systematic investigation of neural network
architecture designs targeting dysarthric speech recognition is
conducted. These include state-of-the-art ASR system archi-
tectures based on either a hybrid DNN-HMM framework, for
example, sequence discriminatively trained time delay neural
networks (TDNNs) with phonetic states output targets [25]–[28],
or end-to-end approaches represented by connectionist tempo-
ral classification (CTC) [29], attention based encoder-decoder
models using listen, attend and spell (LAS) [30] and the recent
Pychain end-to-end TDNN [31] systems directly modelling
grapheme (letter) sequence outputs. A manually designed DNN
architecture tailored for the disordered speech data of UASpeech
is then proposed. Automatic neural architecture search (NAS)
techniques [32]–[37] are further used to refine its structural
configurations.

1Audio recordings collected from multiple microphone channels were used.

Second, in order to address the data sparsity problem in
disordered speech recognition system development, and inspired
by the success of data augmentation techniques widely reported
in normal speech recognition tasks [15], [38], [39], data aug-
mentation techniques designed to model the spectral-temporal
level deviation of disordered speech from normal speech are
used. A combined use of speaker independent perturbation of
disordered speech and impaired speaker dependent perturbation
using normal speech expands the training data quantity by a
factor of 4 [40].

Third, in order to model the large variability among disor-
dered speakers in both the original and augmented data, model
based DNN adaptation methods represented by, for example,
learning hidden unit contributions (LHUC) [41] based speaker
adaptive training (SAT) were further applied. Bayesian speaker
adaptation approaches were also employed to facilitate rapid,
instantaneous adaptation to individual speakers’ voice charac-
teristics, using as little as 3.06 seconds of speech per speaker, at
the onset of their enrollment to systems.

Lastly, inspired by the bi-modal nature of human speech
perception and the success of audio-visual speech recog-
nition (AVSR) technologies when being applied to normal
speech [42]–[44], visual information is further incorporated to
improve disordered speech recognition performance. In order
to address the data sparsity that arises from the difficulty to
record large amounts of high quality audio-visual (AV) data,
a cross-domain visual feature generation approach [45] was
developed. High quality AV parallel data based on normal speech
recording of the lip reading sentence (LRS2) dataset [46] was
used to build neural AV inversion systems. These were then used
to generate visual features for the UASpeech audio data that do
not have video recordings available. Cross-domain AV inversion
system adaptation was also performed to minimize the mismatch
between the LRS2 and UASpeech audio data.

By incorporating all the above techniques, the best recognition
system produced an overall word error rate (WER) of 25.21%
on the 22.6-hour UASpeech test set containing 16 dysarthric
speakers. To the best of our knowledge, this is the lowest WER
published so far on the same task reported in the literature [8]–
[10], [40], [45], [47]. An overall WER reduction of 5.39%
absolute (17.61% relative) was obtained over the CUHK 2018
system featuring a 6-way DNN system combination [10] which
defined state-of-the-art performance at the time. A further set of
experiments and performance analysis were then conducted on
the Cantonese CUDYS [16] corpus which is based on a short
sentence recognition task.

The main contributions of this paper are summarized below:
1) To the best of our knowledge, this is the first work to system-

atically investigate deep neural network architecture design for
disordered speech recognition. In contrast, previous research in
this area largely focused on using one single type of expert DNN
architecture targeting normal speech [23], [48]. Detailed com-
parison and performance analysis between traditional hybrid
DNN-HMM and more recent end-to-end approaches were not
conducted in the prior works. In addition, novel auto-configured
neural architecture search approaches are proposed in this paper
for disordered speech recognition.
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2) This paper presents the first work that investigates different
data augmentation techniques for disordered speech recognition.
Both normal and disordered speech were exploited in the aug-
mentation process and evaluated over a wide range of expert
hybrid or end-to-end, manually or automatically designed DNN
system architectures. In contrast, previous research focused on
using temporal perturbation performed only on normal speech
data during augmentation [47], [49].

3) This paper presents the first work on rapid speaker adapta-
tion for disordered speech recognition. The proposed Bayesian
DNN adaptation approaches can capture the diverse character-
istics among dysarthric speakers using as little as 3.06 seconds
of speech. In contrast, previous research focused on batch mode
adaptation required significant amounts of speaker level data,
for example, over one hour on the UASpeech task [50].

4) This paper presents the first attempt of using cross-domain
visual feature generation for audio-visual disordered speech
recognition within a state-of-the-art AVSR system. This is con-
trast to previous AVSR research on disordered speech where the
AV data sparsity was largely unaddressed [11], [51].

The rest of this paper is organized as follows. The details
of system development on the UASpeech task are presented
from Sec. II to V. Among these, a range of hybrid and end-
to-end classic ASR system DNN architectures, together with
manually designed DNN and neural architecture search (NAS)
auto-configured DNN systems as well as their performance
across varying speech disorder severity levels are first shown
in Sec. II. Disordered speech data augmentation techniques
are then presented in Sec. III. Performance of model based
dysarthric speaker adaptation methods are shown in Sec. IV.
Audio-visual disordered speech recognition systems and their
performance are presented in Sec. V. Further performance analy-
sis against recent published state-of-the-art systems constructed
on the same UASpeech task is conducted in the same section
(Sec. V). A comparable and smaller set of experiments and
performance analysis were then conducted on the Cantonese
CUDYS corpus to further confirm the trends previously found
on the English UASpeech data. The last section draws the
conclusions and discusses possible future works. For all results
presented in this paper, matched pairs sentence-segment word
error (MAPSSWE) based statistical significance test was per-
formed at a significance level α = 0.05.

II. ASR SYSTEM ARCHITECTURE

In this section, a large set of expert designed hybrid and end-
to-end system architectures, together with manually designed
DNN and neural architecture search (NAS) auto-configured
DNN systems considered in this paper, are extensively evaluated
in the experiments of this section on the UASpeech task.

The UASpeech corpus is the largest publicly available dis-
ordered speech corpus that is designed as an isolated word
recognition task [19]. Approximately 103 hours of speech was
recorded from 29 speakers among which 16 are dysarthric
speakers while the remaining 13 are healthy control speakers.
For speech recognition system development, the entire corpus is
further divided into 3 subset blocks per speaker, with each block

containing different speech contents based on a mix of common
and uncommon words. Among these, the same set of common
words contents are used in all three blocks, while the uncommon
words in each block are different. The data from Block 1 (B1)
and Block 3 (B3) of all the 29 speakers are used as the training
set (69.1 hours of audio, 99 195 utterances in total), while the
data of Block 2 (B2) collected from all the 16 dysarthric speakers
(excluding speech from healthy control speakers) serves as the
evaluation data set (22.6 hours of audio, 26 520 utterances in
total). After removing excessive silence at the start and end of
speech audio segments [10], a combined total of 30.6 hours of
audio data from Block 1 and 3 (99 195 utterances) were used as
the training set, while 9 hours of speech from Block 2 (26 520
utterances) was used for performance evaluation. Following the
configurations specified in [10], [52], recognition was performed
using a uniform language model with a word grammar network.

The performance of various expert neural architectures based
recognition systems are shown in line 1 to 11 of Table II together
with the modelling units, structural configurations, model com-
plexity and error cost functions used in training. These systems
include the hybrid frame level cross-entropy (CE) trained DNN
model [10], with tied tri-phone state targets (Sys. 1), TDNN
system [25]–[28] with tied tri-phone or tri-grapheme state targets
(Sys. 2, 3), bi-directional long short-term memory (BLSTM)
RNN modelling tied tri-phone state targets [10] (Sys. 4), and a set
of end-to-end systems directly modelling phoneme or grapheme
(letter) sequence outputs based on either the CTC [29] (Sys. 5, 6),
LAS [24], [30] (Sys. 7, 8, 9), or the Pychain TDNN architecture
with untied bi-phone or bi-grapheme outputs [31] (Sys. 10,
11). As the UASpeech training data set does not cover all the
test data words, direct acoustic to word end-to-end approaches
represented by RNN word transducers [53] are impractical for
this task. Hence, the scope of the investigation over possible
neural network architectures is restricted to those modelling
either sub-word phonetic targets or grapheme labels.

The performance of the baseline CE trained hybrid DNN
system modelling tied tri-phone state targets is shown in line
12 of Table II. This baseline system architecture was manually
designed by applying a series of modifications on top of the first
phonetic hybrid DNN system (Sys. 1 in Table II, also served as
one of the component branches in our 2018 UASpeech system
using system combination [10]). This seed phonetic hybrid DNN
(Sys. 1 in Table II), serving as the starting point of our baseline
DNN system development, contains 6 hidden layers, each with
2000 neurons using Sigmoid activation functions before the
output layer. Acoustic features fed into the network are 80-
dimension Mel-scale filter banks (FBKs) and delta features using
a context of 9 consecutive frames. Decision tree tied tri-phone
states are used and modeled using Softmax function at the output
layer.

A set of architecture modifications are then performed on this
6-layer prototype DNN: 1) a 100-dimension bottleneck hidden
layer is inserted immediately before the output layer followed
with Sigmoid activation functions, in order to constrain the
dimensionality while maintaining the necessary information for
tri-phone state classification; 2) in order to address the issues of
overfitting and vanishing gradient, a group of neural operations
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TABLE II
1-BEST AND ORACLE PERFORMANCE AND SYSTEM DESCRIPTION OF EXPERT DESIGNED NEURAL NETWORK ARCHITECTURES (SYS. 1-11), MANUALLY DESIGNED

DNN (SYS. 12) AND AUTOMATICALLY SEARCHED NEURAL ARCHITECTURE (SYS. 13). ALL SYSTEMS WERE TRAINED USING 80-DIMENSION INPUT FEATURES

BASED ON MEL-SCALE FILTER BANKS (FBKS) AND DELTA FEATURES. “SEEN” AND “UNSEEN” DENOTE TEST SET WORDS OCCURRING IN THE TRAINING DATA OR

OTHERWISE. “VERY LOW,” “LOW,” “MILD” AND “HIGH” DENOTE DIFFERENT INTELLIGIBILITY GROUPS

Fig. 1. Baseline system architecture of the manually designed DNN. The parts
circled by red dotted boxes will be used later for audio-visual speech recognition
system construction in Sec. V.

composed of ReLU activation, batch normalization [54] and
dropout [55] are applied to each hidden layer except the newly
added seventh bottleneck hidden layer; 3) in order to reduce
the overall number of network parameters given the limited
dysarthric speech available in the UASpeech corpus, the weight
matrices of the first 5 hidden layers positioned before the ReLU
activations were further decomposed into 5 pairs of factored
2000 × 200 linear and 200 × 2000 affine matrices, similar
with those used in the factored TDNN system [25]–[28]; 4)
in order to compensate the loss of hidden layer information
due to the use of subspace factored weight matrices, skipping
connections from the first to third, and from the fourth to sixth
hidden layers are also added; 5) in order to reduce the risk
of overfitting to unreliable tri-phone state alignments during
system training, mono-phone alignments are introduced to form
a second auxiliary task, with the multi-task weight set as 0.5.
After the aforementioned modifications, the resulting manually
designed baseline DNN architecture is shown in Fig. 1 (minus
the fusion with video information in dotted parts later used for
AVSR systems).

Several trends can be observed from Table II.

1) The hybrid LSTM system (Sys. 4), CTC and LAS based
end-to-end systems (Sys. 5, 6, 7) traditionally designed for
learning longer temporal contexts are outperformed by the com-
parable hybrid DNN, TDNN and Pychain TDNN systems (Sys.
1, 2, 3, 10, 11) modelling more restricted contexts.

2) As the training data does not cover all the test data words,
the CTC and LAS systems (Sys. 5, 6, 7) produced a large
disparity on WER between the seen and unseen words than the
other systems in Table II. This may be in part attributed to the
poor generalization of CTC and LAS systems when constructed
using only the words found in UASpeech training data. Similar
performance rank in terms of oracle error rates (last column
in Table II) between the CTC and LAS systems against other
systems in the table can also be found.

3) The above observations may be attributed to a combination
of two factors: the comparatively more limited training data
size and the mismatch against normal speech that manifests in,
for example, the shorter utterance duration of approximately
3 seconds on average in the UASpeech data. In order to as-
sess the impact from data quantity on the end-to-end systems
performance, further experiments are then conducted. A 1000-
hour Librispeech [22] (normal speech) data trained larger size
(42.78 M parameters) LAS system (Sys. 8) gives a WER of
76.4% [24] when directly used to recognize the UASpeech data.
After domain and speaker adaptation, this cross-domain adapted
LAS system’s WER (Sys. 9) was reduced to 35.0%, on par with
the UASpeech data trained hybrid feedforward DNN system
(Sys. 1) while still significantly (α = 0.05) outperformed by the
Pychain TDNN system (Sys. 10) using no out-of-domain speech
data by 3.43% absolute in WER.

4) Compared with the starting point DNN system (Sys. 1)
in table II, this baseline manually designed hybrid DNN (Sys.
12) produced an overall absolute WER reduction of 3.75%, as
well as 77% relative reduction in model size. A similar model
size reduction ratio was also obtained over various other hybrid
and end-to-end systems (Sys. 2 to 7, 10, 11) in Table II. Based
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on its performance and model compactness, the baseline DNN
system architecture (Sys. 12) in Table II was used in the fol-
lowing neural architecture search experiments in the rest of this
section to automatically learn the optimal subspace projection
dimensionality at each hidden layer.

Neural architecture search (NAS) techniques [32] can effi-
ciently automate neural network structure designs that have been
largely based on expert knowledge or empirical choice to date.
Among existing NAS methods, differentiable neural architecture
search (DARTS) [33]–[37] benefits from a distinct advantage
of being able to simultaneously compare a very large number
of candidate architectures during search time. This is contrast
to earlier and more expensive forms of NAS techniques based
on, for example, genetic algorithms [56] and Reinforcement
learning (RL) [57], [58], where explicit system training and
evaluation are required for a large number of candidate structures
under consideration.

Architecture search using DARTS is performed over an over-
parameterized parent super-network containing paths connect-
ing all candidate DNN structures to be considered. The search
is transformed into the estimation of the weights assigned to
each candidate neural architecture within the super-network.
The optimal architecture is obtained by pruning lower weighted
paths. This allows both architecture selection and candidate
DNN parameters to be consistently optimized within the same
super-network model.

With no loss of generality, we introduce the general form
of DARTS architecture selection methods. For example, the
l-th layer output hl can be computed as follows in the
super-network:

hl =

N l−1∑
i=0

λl
iφ

l
i(W

l
iz

l−1
i ) (1)

where l is the layer index, λl
i, zli denote the architecture

weight and input vector of the i-th candidate choice in layer
l. N l is the total number of choices of the layer l. The pre-
cise forms of neural architectures being considered at this
layer is determined by the linear transformation parameter
Wl

i and activation function φl
i(·) used by each candidate

system.
In conventional DARTS super-networks, Softmax func-

tions are used to model the architecture selection weight λl
i.

When the DARTS super-network containing both architec-
ture weights and normal DNN parameters is trained to con-
vergence, the optimal architecture can be obtained by prun-
ing lower weighted architectures that are considered less
important. However, when similar architecture weights are
obtained using a flattened Softmax function, the confusion
over different candidate systems increases and search errors
may occur.

In order to address the above issue, Gumbel-Softmax func-
tion [59] is used in this paper to sharpen the distribution of
architecture weights so that approximately one-hot vectors en-
coded 1 out of N selection decisions will be obtained. This
allows the confusion of choosing different architectures to be
minimized. The architecture weights of the Gumbel-Softmax

Fig. 2. Example part of a super-network containing different bottleneck pro-
jection dimensionality choices in one DNN hidden layer.

DARTS super-network are computed as,

λl
i =

exp((logαl
i +Gl

i)/T )∑N l−1
j=0 exp((logαl

j +Gl
j)/T )

(2)

where Gl
i = − log(− log(U l

i )) is a Gumbel variable, and U l
i is

a uniform random variable. When the temperature parameter
T approaches 0, the Gumbel-Softmax distribution is close to a
categorical distribution [59]. The temperature parameter T in
the Gumbel-Softmax distribution is annealed from 1 to 0.03
throughout our NAS experiments in this paper.

When using the back-propagation algorithm to update the
architecture weight parameters, different samples of the uniform
random variable U l

i lead to different values of λl
i in Eq. 2.

The loss function gradient, in a general form for both CE and
LF-MMI criteria, w.r.t logαl

k is computed as an average over J
samples of the architecture weights,

∂L
∂ logαl

k

=
1

J

J∑
j=0

∂L
∂hl,j

N l−1∑
i=0

1i=kλ
l,j
i − λ

l,j
i λ

l,j
k

T
φl
i(W

l
ih

l−1,j)

(3)
where λl,j is the j-th sample weights vector drawn from the
Gumbel-Softmax distrbution in the l-th layer, hl,j is the output
of l-th layer by using the j-th sample λl,j . The Gumbel-Softmax
variables λl at different layers are assumed to be mutually
independent during the sampling.

In order to find a trade-off between the model performance
and complexity, a penalized term is further added to the loss
function by incorporating the candidate network sizes,

L = LMTL + η
∑
l,i

λl
iC

l
i , (4)

where Cl
i is the number of parameters of the i-th candi-

date considered at the l-th layer, and η is the penalty scaling
factor.

In order to facilitate efficient search over a large number
of candidate architectures with varying hidden layer specific
projection dimensionality settings, parameter sharing among
candidate architectures is also used. An example portion of a
DARTS super-network containing all the candidate architectures
with different projection dimensions is shown in Fig. 2. As this
portion of super-network is positioned between the decomposed
projection and affine linear layers, the activation function φl

i(·)
in Eqn. (1) is set as an identity matrix. Parameter sharing among
different candidate architectures’ linear matrices W̃0:k (left to
right from the first column) and affine matrices Ŵ0:k (bottom
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to up from the first row) (k ∈ [0, n− 1]) is implemented by
the corresponding submatrices extracted from the large matrix
W̃0:n−1 and Ŵ0:n−1. Such sharing allows a large number of
projection dimensionality choices at each of the hidden layers,
e.g., selected from 8 values {25, 50, 80, 100, 120, 160, 200,
240}, as considered in this paper, to be simultaneously com-
pared for selection during search. This corresponds to a total
of 85 = 32768 candidate DNN systems to be selected from.
The 1-best auto-configured DNN architecture2 with 4.73 million
parameters produced by the above Gumbel-Softmax DARTS
approach is shown in the last line (Sys. 13) in Table II. It not
only has 20% fewer parameters than the manually designed
baseline DNN system (Sys. 12), but also statistically signifi-
cantly (α = 0.05) reduced the WER by 0.6% absolute WER.
The performance of this NAS DNN system, together with the
end-to-end systems (Sys. 5 to 7, 10, 11) and the manual DNN
baseline (Sys. 12) in Table II will be further evaluated in the
following section using data augmentation techniques.

III. DATA AUGMENTATION

Current deep learning-based speech recognition systems are
data and resource intensive. In order to reduce the risk of overfit-
ting when constructing such systems using limited training data,
data augmentation methods have been explored in the context
of normal speech recognition tasks. By expanding the limited
training data using, for example, tempo, vocal tract length
or speed perturbation [60]–[62], spectral distortion and mask-
ing [15], [60], stochastic feature mapping [63], cross domain
feature adaptation [64], simulation of noisy and reverberated
speech to improve environmental robustness [65] and end-to-end
back translation in end-to-end systems [66], the coverage of the
augmented training data and the resulting speech recognition
systems’ generalization performance can be improved.

In contrast, so far only limited research on data augmentation
targeting disordered speech recognition has been conducted.
Motivated by the temporal level differences between disordered
speech and normal speech such as slower speaking rates, re-
cent research in this direction has been largely focused on
tempo-stretching [47], [49] of normal speech recorded from
healthy control speakers. The resulting “disordered like” speech
carrying a slower speaking rate is used to augment the limited
dysarthric speech training data. Alternative approaches based
on cross-domain DNN adaptation [8], [10] and voice conver-
sion [67] have also been investigated.

One issue associated with the above existing approaches is
that either only applying a temporal level transformation to the
normal speech signals while the spectral envelope remains the
same, for example, in tempo-stretching [49], or a spectral level
transformation, for example, using cross-domain feature adap-
tation [8], is applied while the speech tempo remains unaltered.
Hence, data augmentation approaches that can exploit the full
spectral-temporal differences between normal and disordered

2NAS selected projection dimensions at each layer: {160, 160, 160, 120, 120}.
η in Eqn. 4 is set to be 0.21.

TABLE III
COMPARISON OF THE IMPLEMENTATION DOMAIN AND EFFECTS OF VTLP,
TEMPO PERTURBATION AND SPEED PERTURBATION ON MODIFIED SPEECH

SIGNAL. “
√

” INDICATES THAT CHANGE OCCURS AFTER PERTURBATION

speech are preferred, including speaking rate, articulatory im-
precision and changes in formant positions and volume. Fur-
thermore, previous researches mainly focused on transforming
out-of-domain normal speech to “disordered like” speech [68],
[69], while data augmentation directly using existing disordered
speech data has been very rarely studied.

In this section, a systematic investigation over data augmen-
tation techniques based on various spectral-temporal transfor-
mations is conducted for disordered speech recognition. The
resulting augmented speech data is produced from two sources:
a) spectral-temporal modification of normal speech of con-
trol speakers to “disordered like” speech of a target impaired
speaker; and b) spectral-temporal perturbation of existing disor-
dered speech. For each of the two sources, three data augmen-
tation techniques were used. These include i) vocal tract length
perturbation (VTLP) designed to only alter the spectral envelope
to simulate different vocal tract lengths potentially resulted from
imprecise articulators’ movements while keeping the speech
duration fixed; ii) tempo perturbation modifying the utterance
duration to emulate the slower speaking rate in disordered speech
while keeping the spectral shape and energy unchanged; and iii)
speed perturbation that modifies speech signals in terms of both
the duration and shape of the spectral envelope. A summary of
these three perturbation methods is presented in Table III.

When performing perturbation of the existing disordered
speech training data, a set of global perturbation factors, for ex-
ample, {0.9,1.1} in case of VTLP and speed perturbation, were
used. In contrast, when modifying the normal speech of control
speakers to simulate that of a target impaired speaker, speaker-
level perturbation factors were calculated as the average pho-
netic duration ratios between their respective speech obtained
using phoneme alignment analysis [47]. Force alignment using a
GMM-HMM system constructed using the HTK toolkit [70] was
first performed. The resulting frame-level phoneme alignments
were then used to compute the disordered speaker specific
perturbation factor as FDj

= tC
tDj

. Here Dj denotes the j-th

dysarthric speaker, tC means the average time duration of all
control speakers and tDj

is the time duration of dysarthric
speaker Dj .

The data augmentation techniques described in this section
were implemented to expand the limited dysarthric speech
training data while leaving the test set unchanged. The HCopy
tool provided by HTK [70] was used to apply VTLP based
frequency scaling. The tempo command based on the WSOLA
algorithm [71] and speed command provided in Sox [72] were
used for tempo perturbation and speed perturbation respectively.
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TABLE IV
PERFORMANCE OF VARIOUS HYBRID AND END-TO-END SYSTEMS TRAINED USING DIFFERENT DATA AUGMENTATION APPROACHES. “CTL” /“DYS” STANDS FOR

NORMAL / DISORDERED SPEECH.“TEMPO” /“SPEED” STANDS FOR TEMPO / SPEED PERTURBATION.“2X,”“4X” AND “6X” REFER TO THE AMOUNT OF AUGMENTED

TRAINING DATA. THE #HOURS COLUMN SHOWS THE TOTAL QUANTITY OF SPEECH DERIVED FROM THE ORIGINAL TRAINING DATA SET OR AUGMENTED

TRAINING DATA AFTER SILENCE STRIPPING APPLIED AT UTTERANCE BOUNDARIES

Following [62], three sets of global perturbation fac-
tors, {0.9,1.1}, {0.9,0.95,1.05,1.1} and {0.85,0.9,0.95,1.05,
1.1,1.15}, were applied to obtain augmented data based on
disordered speech. Speaker dependent perturbation factors dis-
cussed above were applied when modifying normal speech to
“disordered like” speech.

80-dimension Mel-scale filter bank and delta features were
then extracted from the augmented training data. Pitch parame-
ters extracted using the Kaldi toolkit [73] consisting of probabil-
ity of voicing (POV), normalized pitch, delta-log-pitch and their
deltas were also incorporated into the feature front-ends [74] for
subsequent system development in all the following experiments
of this paper. The CTC, LAS, Pychain systems (Sys. 5 to 7,
10, 11) in Table II, together with the manually designed DNN
baseline (Sys. 12) and the NAS auto-configured DNN system3

(Sys. 13), were retrained using various augmented data sets and
their performance contrast is shown in Table IV.

Several trends can be observed from the results of Table IV.
1) Among all the three data augmentation methods (VTLP,

tempo or speed perturbation), taking the manually designed
baseline hybrid phonetic DNN system (Sys. 3 to 8) for example,
with similar amounts of augmented training data being used,
speed perturbation (Sys. 5, 8) consistently outperformed the
other two methods being perturbation was applied to either
the healthy control speakers’ data (Sys. 3 to 5) or the original
dysarthric speech audio (Sys. 6 to 8).

2) Further experiments conducted on the same manually
designed baseline DNN system suggest applying speed perturba-
tion to both healthy control speaker’s data and dysarthric speech

3Searched over 6 different choices of projection dimensions
{80 120 160,200 240,300}.

(Sys. 11) outperformed applying it only to either of the two
subsets of training data (Sys. 5 and Sys. 8).

3) Further increasing the amounts of augmented data pro-
duced by perturbing both healthy control speaker’s data and
dysarthric speech from 130.1 hours (Sys. 11, 13) to 207.5 hours
(Sys. 12, 14) only led to marginal WER reductions of 0.1%-0.2%
absolute, with or without using additional pitch features. Hence,
the 130.1-hour augmented data set used by the manual designed
DNN (Sys. 13) together with its associated pitch features were
used and fixed as the training set for all subsequent UASpeech
experiments of this paper.

4) The performance comparison between the manually de-
signed DNN baseline (Sys. 13), the NAS auto-configured DNN,4

CTC, LAS and Pychain TDNN systems (Sys. 15 to 20) suggests
the performance ranking order among all systems constructed
using the same 130.1-hour augmented data set in Table IV is
consistent with that previously found in Table II where no data
augmentation is used.

The manually designed DNN and NAS auto-configured DNN
systems (Sys. 13, 15), both having the lowest average word
error rates and most compact model sizes among all systems
in Table IV, were then selected to conduct the following speaker
adaptation and audio-visual recognition experiments in the rest
of this paper.

IV. SPEAKER ADAPTATION

A key problem for many speech recognition tasks is to model
the systematic and latent variation among diverse speech data.
This often creates a large mismatch between the training and
evaluation data leading to recognition performance degradation.

4NAS selected projection dimensions at each layer using the 103.1 h aug-
mented data set: {240 200,200 200,240}. η in Eqn. 4 is set to be 0.
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A major source of such variability is attributable to speaker
level characteristics representing factors such as accent and
idiosyncrasy, or physiological differences that manifests in, for
example, age or gender. For disordered speech recognition tasks
considered in this paper, in addition to the wide range of variabil-
ity factors found in normal speech, the underlying causes and
severity levels of speech impairment among dysarthric speakers,
also compounded by the spectral-temporal perturbations per-
formed during the data augmentation stage discussed in Sec. III,
are expected to further increase the diversity among impaired
speakers.

To this end, speaker adaptation techniques play a vital role
in current ASR systems. These can be characterized into sev-
eral broad categories: a) auxiliary speaker embedding based
approaches that encode speaker-dependent (SD) characteris-
tics in a compact vector representation, for example, using
i-vectors [75]; b) feature transformation based methods [76],
[77] that are applied to acoustic front-ends and aim to produce
canonical, speaker invariant input features using, for example,
feature-space maximum likelihood linear regression (f-MLLR)
transforms [76]; and c) model-based adaptation techniques [41],
[78]–[81] that exploit specially designed SD DNN model param-
eters to compensate speaker level variability.

Compared with auxiliary feature and feature transformation
based adaptation approaches, model-based adaptation methods
have two advantages. First, the SD parameters can be jointly
estimated together with the speaker independent parameters in
the system consistently in speaker adaptive training (SAT) [80],
in contrast to the often offline, separate estimation of i-vectors
and f-MLLR transforms. Second, the amount of speaker specific
adaptation data practically determines the SD parameters’ mod-
elling granularity. When a larger amount of speaker level adap-
tation data is available, the SD parameter’s modelling resolution
can be accordingly increased. This allows the trade-off between
adapting only parts of the whole acoustic model and building
complete speaker dependent systems to be flexibly adjusted.
In contrast, for auxiliary feature and feature transform based
adaptation, SD feature embedding and transforms of fixed sizes
are often used.

In this section, several model-based adaptation approaches
are first used to construct speaker adaptively trained disordered
speech recognition systems based on the manually designed
and auto-configured NAS DNN systems (Sys. 13 and 15 of
Table IV) in Sec. III using the associated augmented data (using
speed perturbation of both control and dysarthric speech). SD
transforms that are applied to various parts of the DNN acoustic
model, include a) learning hidden unit contributions (LHUC)
scaling vectors applied to the hidden layer outputs for each target
speaker [78]; b) parameterized activation functions (PAct) with
speaker level vector scaling or bias applied to the input feature
before fed into the ReLU activations [79]; and c) hidden unit
bias vectors (HUB) [81] adding speaker level offset vectors to
the hidden unit outputs. The differences between these three
model-based adaptation methods when being applied to the
hidden layer ReLU activations inside the manually designed
and auto-configured NAS DNN systems of line 13 and 15 of
Table IV in Sec. III, are illustrated in Fig. 3.

Fig. 3. Schematic representation of model based adaptation methods including
learning hidden unit contributions (LHUC), hidden unit bias vectors (HUB) and
parameterised activation functions (PAct). Speaker dependent scaling or bias
parameters are marked in red.

TABLE V
PERFORMANCE COMPARISON BETWEEN DIFFERENT ADAPTATION METHODS

INCLUDING AUXILIARY SPEAKER EMBEDDING (I-VECTOR) AND MODEL BASED

ADAPTATION (LHUC, HUB AND PACT). IN MODEL BASED ADAPTATION, THE

ADAPTED NUMBER OF HIDDEN LAYERS REMAIN THE SAME DURING SPEAKER

ADAPTIVE TRAINING AND TEST TIME ADAPTATION. “IS” AND “IB” STAND FOR

INPUT SCALING AND INPUT BIAS, RESPECTIVELY. “†” DENOTES A STATISTICAL

SIGNIFICANCE DIFFERENCE IS OBTAINED OVER THE SYSTEM WITH ONE

ADAPTED HIDDEN LAYER (SYS. 3 OR 15)

The performance of different speaker adaptation techniques
when applied to the manually designed DNN and NAS auto-
configured DNN systems are shown in Table V. In all the
speaker adaptation experiments of this section, the 1-best outputs
produced by the un-adapted speaker independent systems (Sys.
1, 13 in Table V, and earlier in Table IV as Sys. 13, 15)
served as the supervision for subsequent test time adaptation
of speaker adaptively trained (SAT) systems constructed using
various adaptation methods introduced in this section. Con-
sidering the average amount of speaker specific data used in
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these experiments is approximately 34 minutes (after silence
stripping) for each dysarthric speaker, considerably larger than
that found in other ASR tasks such as the Switchboard corpus,
the number of DNN hidden layers on which LHUC, HUB or PAct
transforms are applied was also fine-tuned to increase modelling
resolution of the SD parameters, and to obtain the best adaptation
performance for each technique.

Several trends can be observed from Table V.
1) On both the manually designed DNN and NAS auto-

configured DNN systems, all of the model based adaptation
methods including LHUC, HUB and PAct (Sys. 3 to 12 and
Sys. 15 to 24) consistently outperformed i-vector input feature
based adaptation (Sys. 2, 14).

2) Among all three model based adaptation methods, the best
performance was obtained using the LHUC adapted manually
designed DNN and NAS auto-configured DNN systems (Sys. 9,
17), producing overall statistically significant (α = 0.05) WER
reductions of 2.8% and 2.9% respectively over the un-adapted
baseline systems (Sys. 1, 13).

The above speaker adapted systems’ performance were ob-
tained using approximately 34 minutes of adaptation data from
each impaired speaker. As discussed in Sec. I, the underlying
neuro-motor conditions, when compounded with co-occurring
physical disabilities, lead to the difficulty in collecting large
quantities of disordered speech from each target speaker. When
developing speech based assistive technologies for such people
with speech impairment, it is preferable to employ more power-
ful adaptation approaches to facilitate rapid, instantaneous adap-
tation to individual speakers’ voices. However, when performing
adaptation using very little speaker level data, for example, a few
seconds of speech, a severe data sparsity issue and the resulting
modelling uncertainty need to be addressed.

To this end, the inherent SD parameter uncertainty resulted
from limited adaptation data is addressed using Bayesian learn-
ing approaches. Rather than learning fixed value estimates of
the SD LHUC, HUB or PAct parameters using the standard
cross-entropy cost function, the following Bayesian predictive
inference (Eqn. 5) incorporating the SD adaptation parameter
uncertainty is used instead.

P (C̃s|Õs,Os, Cs) =

∫
P (C̃s|Õs, rs)p(rs|Os, Cs)drs (5)

where Os, Õs denote the adaptation data and test data for
speaker s, Cs stands for the corresponding supervision label,
rs denotes the SD parameters of speaker s, and C̃s refers to the
output states to be inferred.

The key task of Bayesian adaptation is to learn the underlying
SD parameter posterior distribution p(rs|Os, Cs) used to en-
code modelling uncertainty. This distribution can be efficiently
learned and approximated as a multi-variate Gaussian distri-
bution using a variational inference approach combined with
parameter sampling [81], [82]. For efficiency, the expectation of
SD parameters can be used to approximate the Bayesian integral
in Eqn. 5 for inference during recognition time.

P (C̃s|Õs,Os, Cs) ≈ P (C̃s|Õs,E[rs|Os, Cs]) (6)

TABLE VI
PERFORMANCE OF BASELINE OR BAYESIAN ADAPTATION ON 130-HOUR

AUGMENTED DATA SET TRAINED MANUALLY DESIGNED DNN AND NAS
AUTO-CONFIGURED DNN SYSTEMS USING VARYING REDUCING AMOUNTS OF

ADAPTATION DATA FROM 80% DOWN TO ONLY 1 UTTERANCE OF SPEECH

FROM EACH TARGET DYSARTHRIC SPEAKER (DURATION IN BRACKETS). THE

BOLD RESULTS INDICATE THE SMALLEST AMOUNTS OF SPEAKER LEVEL

ADAPTATION DATA THAT CAN PRODUCE PERFORMANCE IMPROVEMENTS OVER

THE UN-ADAPTED SYSTEMS (SYS. 1 OR 15) AFTER SPEAKER ADAPTATION. “†”
DENOTES A STATISTICAL SIGNIFICANCE DIFFERENCE OVER THE UN-ADAPTED

SYSTEMS

where E[·] denotes the expectation. Other symbols in Eqn. 6
are the same with those used in Eqn. 5. An example of apply-
ing Bayesian SD estimation to various model-based adaptation
approaches of Table V, leading to Bayesian LHUC (BLHUC),
Bayesian HUB (BHUB) and Bayesian PAct (BPAct) respec-
tively, are shown in Fig. 4.

A series of Bayesian adaptation experiments were then
conducted in order to demonstrate the minimum amounts of
dysarthric speaker level data that can produce statistically sig-
nificant (α = 0.05) recognition performance improvements over
the un-adapted baseline systems (Sys. 1, 15 in Table VI). This
can help improve the resulting ASR system’s practical deploy-
ment when new dysarthric speakers are freshly enrolled to the
system.

During Bayesian adaptation, the SD parameter prior distribu-
tion used was empirically set as N (0, 0.001) for all adaptation
methods. The SD adaptation parameters were estimated using
either as fixed values in baseline adaptation, or in a Bayesian
fashion, while the SI portion of the parameters inherited from
the SAT trained systems were kept fixed. Based on the full
data set adaptation results in Table V (Sys. 11, 23 vs. Sys. 12,
24), only input scaling based PAct adaptation is considered here
together with LHUC and HUB. Performance contrasts between
the baseline and Bayesian adaptation methods using varying
reduced amounts of speaker level data randomly sampled from
80% down to as little as 1 single utterance (3.06 seconds of
speech on average) are shown in Table VI. The following trends
can be found.

1) Irrespective of which of the three model adaptation methods
being used, Bayesian adaptation consistently outperform the
comparable baseline adaptation using fixed value estimation
across varying reduced amounts of speaker level data from 40%
down to 1 single utterance. For example, on the HUB adapted
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Fig. 4. Schematic representation of different Bayesian adaptation methods including Bayesian LHUC (BLHUC), Bayesian HUB (BHUB) and Bayesian PAct
(BPAct). The red dotted box at the bottom right corner of each plot represents the SD parameter uncertainty modelled by Bayesian learning.

NAS auto-configured DNN systems (Sys. 19, 20), when only
1% (50.8 seconds) of speaker level data is used, Bayesian HUB
adaptation (Sys. 20) significantly (α = 0.05) outperformed the
comparable HUB adapted baseline (Sys. 19) by 2.0% and the
un-adapted system (Sys. 15) by 1.6% absolute in WER respec-
tively.

2) The bold numbers in Table VI indicate the minimum
amounts of speaker level data that can produce statistically sig-
nificant (α = 0.05) recognition performance improvements over
the un-adapted baseline systems (Sys. 1, 15) for each adaptation
technique. It is clear that for the manually designed DNN system
with Bayesian HUB adaptation (Sys. 6), only a single utterance
of approximately 3.06 seconds of speech is required to produce
a statistically significant (α = 0.05) WER reduction of 1.2%
absolute over the un-adapted baseline system (Sys. 1).

V. AUDIO-VISUAL SPEECH RECOGNITION

Inspired by the bi-modal nature of human speech perception
and the success of audio-visual speech recognition (AVSR)
technologies when being applied to normal speech [42]–[44],
visual information is further incorporated to improve disordered
speech recognition performance. In order to address the data
sparsity resulting from the difficulty to collect large amounts
of high quality audio-visual (AV) data, a cross-domain visual
feature generation approach [45] was developed to generate
visual features for the UASpeech original audio data and the
augmented audio only data obtained using the speed perturbation
method presented in Sec. III. This allows sufficient AV parallel
disordered speech data to be used to develop AVSR systems.

High quality AV parallel data based on normal speech record-
ing of the LRS2 dataset [46] was used to construct AV inversion
neural network systems. However, the resulting AV inversion
system cannot be directly applied to dysarthric speech given
its large mismatch against the normal speech data in the LRS2
corpus. This mismatch may render the generated visual features
unreliable to use for subsequent AVSR system development [45],
[83]. Such mismatch can be compensated using, for example,
domain-adversarial neural network (DANN) [84] or multi-level
adaptive network (MLAN) [64]. Following the comparative
analysis over domain adaptation methods for AV inversion in our
previous research [83], the MLAN method was adopted to min-
imize the domain mismatch between the LRS2 and UASpeech
audio data.

An example MLAN network consisting of two DNN com-
ponents is shown in the left portion of Fig. 5. Each compo-
nent DNN contains a bottleneck layer positioned immediately

Fig. 5. Cross-domain visual feature generation system. The left part is the
MLAN network consisting of two DNN components, while the DNN on the right
is the AV inversion model using bottleneck features as cross-domain adapted
inputs from the second DNN component of the MLAN network.

before the output layer. The MLAN training process includes
the following steps: 1) the first-level DNN was trained with
the audio data from the in-domain UASpeech corpus; 2) the
resulting in-domain dysarthric speech trained DNN was then
used to produce bottleneck features for the out-of-domain data
of the LRS2 audio; 3) the second-level DNN was trained us-
ing the out-of-domain LRS2 audio data concatenated with the
bottleneck features computed from the previous step.

When feedforwarding the UASpeech data into the resulting
MLAN network, the combined effect produced by these two
cascaded component DNNs is such that the final bottleneck
features produced at the second-level DNN component will ex-
hibit smaller mismatch against the bottleneck features obtained
by feedforwarding the LSR2 audio into the MLAN network.
These cross-domain adapted bottleneck features are used in
AV inversion model training and visual feature generation (in
the right part of Fig. 5). The dimensionality of these MLAN
bottleneck features was set to 80, in line with the settings used
in our earlier research [11]. The resulting cross-domain adapted
AV inversion system was then applied to 103.1-hour augmented
training data previously derived using speed perturbation in
Sec. III (used by Sys. 13, 15 in Table IV), as well as the test
set, to produce 25-dimension visual features for AVSR systems
development.

The performance of various AVSR systems based on either the
manually designed DNN or NAS auto-configured DNN archi-
tecture and constructed using the above cross-domain generated
visual features are shown in lines 2 to 4, and 6 to 8 in Table VII .
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TABLE VII
PERFORMANCE OF 103.1-HOUR AUGMENTED TRAINING DATA BASED LHUC
SAT ADAPTED AUDIO-ONLY AND AUDIO-VISUAL SYSTEMS USING VARIOUS

AV MODALITY FUSION: A) INPUT FEATURE CONCATENATION; B) HIDDEN

LAYER FUSION; AND C) SCORE FUSION

In these systems, three forms of audio-visual modalities fusion
were used including: a) input audio-visual feature concatenation
(Sys. 2, 6 in Table VII, also shown in the left part of Fig. 1); b)
hidden layer fusion performed by concatenating the visual fea-
tures with outputs of the last non-bottleneck hidden layer (Sys. 3,
7 in Table VII, also shown in the right part of Fig. 1); and c) score
fusion (Sys. 4, 8 in Table VII) via a linear interpolation over the
output layer probability scores of the baseline audio-only ASR
system (Sys. 1 or 5), and those of the hidden layer fusion based
AVSR systems (Sys. 3 or 7) using equal weights. The results
suggest that score fusion between ASR and AVSR systems (Sys.
4, 8) consistently produced statistically significant (α = 0.05)
WER reductions of 0.4%-0.6% over the comparable audio-only
ASR systems (Sys. 1, 5).

The lowest WER of 25.21% was obtained using the NAS auto-
configured DNN AVSR system (Sys. 8 in Table VII, again shown
in the last line in Table VIII). To the best of our knowledge, this is
the lowest WER published so far on the UASpeech test set of 16
dysarthric speakers reported in the literature. Performance con-
trasts between this system against previously published systems
on the same task are shown in Table VIII. In particular, compared
with our CUHK 2018 system featuring a 6-way DNN system
combination [10] which defined state-of-the-art performance at
the time, an overall WER reduction of 5.39% absolute (17.61%
relative) was obtained. Furthermore, if excluding the 4 dysarthric
speakers of very low intelligibility, the average WER obtained
using our final AVSR system (Sys. 8, Table VII) is 15.79%, close
to the WERs found on normal speech recognition tasks.

VI. EXPERIMENTS ON THE CANTONESE CUDYS CORPUS

In this section, a comparable set of modelling components and
techniques that previously featured in the best performing sys-
tems on the English UASpeech task: neural architecture search
based DNN auto-configuration of Sec. II, speed perturbation
based data augmentation of Sec. III and LHUC speaker adaptive
training of Sec. IV, were further evaluated on a Cantonese
CUDYS dysarthric speech corpus [16].

The original 10-hour CUDYS corpus was further enlarged
with more dysarthric speech collected since its initial release
in 2015, and now contains speech from 27 impaired speakers.
The development and evaluation sets, which were derived from

TABLE VIII
PERFORMANCE COMPARISON BETWEEN VARIOUS RECENTLY PUBLISHED

SYSTEMS’ WERS ON THE UASPEECH TEST SET OF 16 DYSARTHRIC SPEAKERS

AND OUR BEST SYSTEM IN THIS PAPER (SYS. 8, TABLE VII)

a subset of 3.6 hours of speech collected from 21 impaired
speakers and based on short sentences, were used for perfor-
mance evaluation. The remaining part of the CUDYS data, after
being further supplemented with normal Cantonese speech data
from the SpeechOcean collection,5 formed a baseline training
data set of 21.4 hours. After speed perturbation based data
augmentation techniques of Sec. III was applied, the training
data size was further increased to 33.9 hours. In contrast to the
UASpeech task based on single word utterances, each utterance
in this task contains an average of more than six characters.
Hence, a manually configured lattice-free MMI [26] trained
factorized TDNN (f-TDNN) baseline system [25]–[28] with 7
context-splicing layers was used to model longer acoustic con-
texts. 40-dimension Mel-scale filter banks together with pitch
parameters were used as the inputs features for system develop-
ment. The Gumble-Softmax DARTS based neural architecture
search approach of Sec. II was then applied to automatically
learn the left and right context offsets6 and the linear projection
layer dimensionality7 of each factored TDNN hidden layer.
Speaker level variability was modelled using LHUC SAT and
test time unsupervised adaptation. Due to the poor quality of
video recordings in the CUDYS corpus caused by non-frontal
face poses, and the difficulty in accessing high quality Cantonese
audio-visual normal speech corpora with accurate transcripts
required for the MLAN cross-domain visual feature generation
approach of Sec. V, experiments were conducted on audio-only
ASR systems for the CUDYS task. A 4-gram language model
with a 80 K vocabulary was used. The character error rate (CER)
metric was used for performance evaluation.

The performance comparison between the baseline manually
configured TDNN, NAS auto-configured DNN, before and after
data augmentation and LHUC SAT were applied, and further
against the comparable graphemic (character) LAS, phonetic
CTC and Pychain TDNN systems are shown in Table IX. The
same trends as previously observed on the English UASpeech
task in Sec. II to Sec. IV can be found. First, data augmentation
reduced the CER by a statistically significant (α = 0.05) margin
of 4.2% absolute when the baseline LF-MMI TDNN system

5http://en.speechocean.com/datacenter/recognition.html
6Maximum context offset is set to be 6 for both left and right in each layer.
7Searched over 6 different choices of projection dimensions

{100 120,160 200,240 300}.
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TABLE IX
DESCRIPTION AND PERFORMANCE OF MANUALLY DESIGNED, NAS

AUTO-CONFIGURED LF-MMI TRAINED FACTORED TDNN SYSTEMS AND

VARIOUS END-TO-END SYSTEMS CONSTRUCTED ON THE CUDYS CORPUS.
“CTL” MEANS PERTURBING THE HEALTHY SPEECH TOWARDS “DISORDER

LIKE” SPEECH AND “DYS” MEANS PERTURBING THE EXISTING DYSARTHRIC

SPEECH DATA

was retrained using the larger augmented data set of 33.9 hours
(Sys. 3 vs. Sys. 1). Second, NAS auto-configured TDNN8 also
reduced the CER significantly (α = 0.05) by 1.9% absolute prior
to speaker adaptation being applied (Sys. 5 vs. Sys. 3). The
improvement from the NAS auto-configured TDNN system was
retained after LHUC SAT and unsupervised speaker adaptation
(Sys. 6 vs. Sys. 4). Large and statistically significant (α = 0.05)
CER differences were found between the best performing NAS
auto-configured TDNN system (Sys. 6) and the end-to-end
systems of similar complexity.

VII. CONCLUSION

This paper presented a series of developments associated with
the design of state-of-the-art dysarthric speech recognition sys-
tems on the largest publicly available UASpeech dysarthric En-
glish speech corpus and a Cantonese CUDYS dysarthric speech
dataset. Experimental results suggest the following trends.

First, the suitability of current data-intensive deep learning
based speech recognition system architectures, for example,
end-to-end systems that traditionally benefit from the use of large
quantities of data, needs to be re-assessed when being applied
to dysarthric speech recognition tasks. This is due to the limited
data quantity resulted from the difficulty in impaired speech data
collection, and the large mismatch against normal speech. To this
end, the auto-configured model structures derived from neural
architecture search have been shown to produce better perfor-
mance than a range of expert designed or manually configured
systems of comparable or larger model complexity, before and
after data augmentation or domain adaptation is used. Second,
data augmentation techniques can effectively expand the limited
training data by taking into account the systematic spectral and
temporal deviation of dysarthric speech from normal speech.
Third, the proposed speaker adaptation techniques can model
the large variability among impaired speakers in both the orig-
inal and augmented data, as well as allow fast adaptation to
individual dysarthric speakers to be effectively performed using
as little as a few seconds of speech. This user-centric feature is

8NAS selected projection dimensions at each layer:
{160 160,100 100,120 160,300} and context configurations {-4,6},{-5,4},{-
6,6},{-6,6},{-6,6},{-6,6},{-6,6}. η in Eqn. 4 is set to be 0.

important when practically deploying speech recognition based
assistive technologies to serve such people. Lastly, the use of
visual features can further improve the recognition performance
particularly for impaired speakers of low intelligibility whose
voice quality is severely degraded.

The combination of these techniques produced the lowest
published word error rate (WER) of 25.21% on the UASpeech
test set 16 dysarthric speakers, and an overall WER reduction of
5.39% absolute (17.61% relative) over a very complex CUHK
2018 dysarthric speech recognition system using a 6-way DNN
system combination and cross adaptation of out-of-domain nor-
mal speech data trained systems. Similar trends of performance
improvements obtained using these techniques were also found
on the CUDYS Cantonese dysarthric speech recognition task.
The average WER over dysarthric speakers on the English
UASpeech task obtained by our best AVSR system, if excluding
the most difficult speakers of very low intelligibility, is 15.79%.
This is considered to be close to the WERs often found on
normal speech recognition tasks. Future research will focus on
designing neural network architectures and multi-modal speech
recognition systems suitable for dysarthric speakers of very low
intelligibility.
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