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Abstract—Speech emotion recognition (SER) is an indispensable
part of fluid human-machine interaction and attracts lots of re-
search attentions. Recent work on SER has successfully applied
convolutional neural networks (CNNs) to learn feature representa-
tions from speech spectrograms. However, the fundamental prob-
lem of CNNs is that the spatial information in spectrograms is lost,
which includes positional and relationship information of low-level
features, such as pitch and formant frequencies. We propose a
novel architecture of sequential capsule networks (CapNets) by
leveraging the advantange of CapNets that spatial information can
be preserved in capsules and passed to upper capsule layers via
dynamic routing. Also, the dynamic routing algorithm provides an
effective alternative to pooling or storing recurrent hidden states for
obtaining utterance-level features from the sequential capsule out-
puts. To further improve the model’s ability to capture contextual
information, we introduce a recurrent connection to the sequential
structure. The experimental comparison of the proposed systems
and previously published systems using CNNs and recurrent neural
networks (RNNs) based on the IEMOCAP corpus demonstrates the
effectiveness of the proposed sequential CapNets.

Index Terms—Speech emotion recognition, capsule network,
spatial information, sequential, recurrent.

I. INTRODUCTION

EMOTION perception is an important step towards intel-
ligent human-machine speech-based interactions, espe-

cially for informing the processes of machine inference and
response generation during the interactions. The user’s input
speech contains rich emotive information, which needs to be
captured in order to enable the machine to exhibit “Emotional
Intelligence”.
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Speech emotion recognition (SER) aims to identify the af-
fective status of a speech utterance from the features such
as MFCC features, energy-related features and pitch-related
features [1]–[6]. The starting question is which features are
effective for emotion recognition. This is still an open question,
although there are some features that are commonly considered
to be highly related to emotions, such as F0 and energy [7]–[9].
The second question is how to predict the affective status based
on the input features. One possible way is to calculate the
statistics of some hand-crafted features and apply classifiers such
as support vector machine (SVM) or Gaussian mixture model
(GMM) to the statistics [3]. Since global statistics tend to ignore
detailed temporal variations in the features, researchers have also
investigated models to leverage temporal information. Schuller
et al. [5] applied hidden Markov model (HMM) to SER. The
HMM can handle temporal complexity with several hidden
states to respectively model various parts of the sequence of
low-level features (e.g. frame-level F0 and energy, etc.). Ex-
perimental results show that the performance increases as more
states are used, which reflects the potential of leveraging detailed
temporal variations.

Recently, deep learning techniques have been applied to SER
and demonstrated significant performance improvements [6],
[10]–[13]. Much research effort has been devoted to the two
questions above, relating to feature selection and model predic-
tion under the deep learning framework. The application of neu-
ral networks enables the automatic selection of effective features
and automatic learning of hidden representations. The work by
Han, Yu and Tashev [10] is representative in utilizing deep neural
network (DNN)-based models to learn neural features from input
features of MFCCs, pitch period and harmonics-to-noise ratio.
In addition to the above acoustic features, Li et al. [14] also
applied neural networks to lexical features (e.g. word embedding
– a neural representation of words) to infer users’ emotion states
in conversational dialogues. The weights of the input features
are determined automatically via network training. However,
it is difficult to determine which features should be included
in the input feature set. The increase of feature set size also
incurs training complexity. Satt et al. [15] present a novel
convolutional neural network (CNN)-based framework which
directly uses speech spectrograms as input. The spectrogram
is a 3-dimensional (time, frequency and magnitude) represen-
tation of a signal, depicting how the spectrum of frequencies
varies with time. Compared to the hand-crafted feature sets (e.g.

2329-9290 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 06,2022 at 03:43:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9543-1572
https://orcid.org/0000-0002-1432-161X
https://orcid.org/0000-0002-0943-2446
https://orcid.org/0000-0001-8481-6880
https://orcid.org/0000-0001-8533-0524
https://orcid.org/0000-0001-6725-1160
mailto:wuxx@se.cuhk.edu.hk
mailto:ywcao@se.cuhk.edu.hk
mailto:ywcao@se.cuhk.edu.hk
mailto:lu-h17@mails.tsinghua.edu.cn
mailto:sxliu@se.cuhk.edu.hk
mailto:dswang@se.cuhk.edu.hk
mailto:xyliu@se.cuhk.edu.hk
mailto:hmmeng@se.cuhk.edu.hk
mailto:zywu@se.cuhk.edu.hk


WU et al.: SPEECH EMOTION RECOGNITION USING SEQUENTIAL CAPSULE NETWORKS 3281

consisting of MFCCs, pitch and energy features), the spectro-
gram is an raw representation without much specific feature
expression. The powerful neural networks enable the automatic
extraction of features from the raw representation, and hence
reduce the burden of feature engineering. Various subsequent
efforts apply convolutional layers and pooling layers directly on
spectrograms and achieve successful results, demonstrating the
advantages of using spectrograms as input features [16]–[22].

Given the input feature of spectrograms, various network
architectures are proposed to capture the temporal information
(variation across time axis) and spatial information (variation
across time and frequency axes). The CNN structure is utilized to
decide which information are essential for emotion classification
and learn neural hidden representations that encode the informa-
tion from the spectrograms. However, CNN tends to ignore the
spatial information, e.g. relative positions of pitch and formant
features, but these actually provide important clues for SER [23].
Sabour, Frosst and Hinton [23] proposed the capsule network
structure with dynamic routing algorithm to consider the spatial
information and achieve successful results in digit recognition
from images. In this paper, we investigate the application of
capsule networks to SER, based on our previous work [24].
The recognition performance is expected to be improved via
accounting for spatial information in the spectrogram. The ap-
proach is as follows: First, the capsule-based SER systems use
spectrograms as inputs, which preserve much of the emotive
information in the inputs. We then apply a sequential structure
composed of window-level capsules to the spectrograms to avoid
local-to-global information loss. The sequential structure is able
to handle the input sequence of feature frames with variable
lengths. Recurrent connections are further introduced to the
sequential structure to capture the temporal information in the
input sequence. An utterance-level dynamic routing upon the
sequential capsule outputs is utilized to obtain the utterance
representation from each of the window-level outputs.

In summary, this paper presents a capsule network structure
uniquely suited for speech emotion recognition (SER), that
fully leverages the spatiotemporal information encoded in input
spectrograms. This aims to mitigate the problems of spatial (i.e.
frequency) information loss in the conventional CNN approach,
where the loss of local information will propagate to a higher
level, i.e. global information loss. Our contributions in devising
the capsule network approach present the advantages of: (i)
being able to handle input sequences of variable lengths; (ii)
applying dynamic routing to capture the spatial (i.e. frequency)
information in the spectrograms; (iii) incorporation of recurrent
connections to capture the temporal information in the spec-
trograms; (iv) introducing the curriculum learning scheme to
expedite capsule structure training; and (iv) demonstrating that
the capsule network approach can apply the learned sequential
structure to achieve superior performance in SER.

The rest of this paper is organized as follows: Section II
reviews the previous work on SER, summarizing the two
challenging problems of (i) spatial information loss, and (ii)
local-to-global information lost. The baseline systems based on
CNNs and recurrent neural networks (RNNs) are introduced in
Section III. Section IV describes the capsule structures and the

Fig. 1. Utterance (a) is a neutral statement without salient intonation rise. In
contrast, utterance (b) and (c) contain intonation rise at the beginning and the
end, respectively. Utterance (b) is uttered in an emotive way and utterance (c) is
in a question style. The emotive information provided by the salient intonation
rises at different positions is expected to be captured for emotion prediction.

dynamic routing algorithm. The details of systems implementa-
tion and the evaluation results are given in Sections V and VI,
respectively. Conclusions are drawn in Section VII.

II. RELATED WORK

Convolutional layers can effectively learn hidden represen-
tations that contain feature-level and time information for the
subsequent decision models (e.g. HMM [11], ELM [10]) or clas-
sification layers (e.g. softmax layer [15], attention layer [19]).
Convolutional layers are able to detect patterns described by
the kernels in an efficient way that different parts of the input
share the same kernels [21], [25]. Satt et al. [15] applied con-
volutional layers to learn spectrogram patterns that represent
emotive information, e.g. the silence or low-energy zones and
the harmonic structures. However, the detailed instantiation
information is ignored, because the shared kernels are applied
to every part of the input feature map, and the pooling operation
just selects those frames with salient values (e.g. maximum and
minimum) and ignores the other frames in the pooling window.
Chen et al. [26] proposed the dynamic multi-pooling CNN to
maintain three pooling operations on three disjoint parts of the
input feature map respectively, in order to capture simultaneous
feature events in the feature map. However, for each of pooling
operations, the problem of information loss still exists. As shown
in the three examples in Fig. 1, the salient feature pattern of
intonation rise exists in both the emotive utterance in Fig. 1(b)
and the neutral utterance (which is a question) in Fig. 1(c), but
not in the neutral utterance in Fig. 1(a). The different spatial
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information, i.e. the relative position, needs to be considered,
such that accurate emotion prediction can be generated based
on the salient patterns. The recent proposed capsule structure
can preserve the positional information in the form of vector
direction and pass the information to the upper layers (as will
be shown in Sec. IV-A2) [23]. Hence, the capsule structure
is expected to improve the performance with such positional
information.

The outputs of the convolutional layers are a sequence of
frames of variable lengths, which needs to be compressed to a
fixed-size global utterance-level representation. How to obtain a
global utterance-level representation from the local frame-level
features is another challenging problem, because utterance-level
statistics may obfuscate emotional information [27]. Recurrent
layers are integrated to capture the temporal information in
the sequence [12], [25], [28]–[32]. One possible method is to
use the last (and/or first)-timestep hidden states or outputs of
the top recurrent layer as utterance-level representation [15],
[20]. However, the last (or first) timesteps correspond to silence
frames in most cases. Also, contextual information propagation
vanishes across long distances. To address this problem, the
attention mechanism is utilized to summarize the time segments
that are relevant to emotion recognition from the feature se-
quence [33]–[35]. An attention weight αt is assigned to each
step t of the input sequence y of length T . These weights
determine the contribution of each step to the final summarized
representation z as

αt =
exp

(
w�yt

)
∑T

τ=1 exp (w
�yτ )

(1)

and

z =
T∑

τ=1

ατyτ , (2)

where w is trainable parameters. Since the summation is oper-
ated on the whole sequence, the long-distance contextual infor-
mation can be directly accessed, rather than propagated through
recurrent connections in recurrent neural networks (RNNs). The
steps that contain less emotive information are expected to be as-
signed lower attention weights, hence the output decisions can be
made with focuses more on the salient parts [12]. In addition to
the attention across timesteps, Xie et al. [36] introduce the atten-
tion across feature dimensions, i.e. the attentionα are calculated
to determine the weights for each feature dimension. However,
the two attentions across time and across feature dimensions are
calculated separately. A unified attention mechanism across both
dimensions is desirable. Another similar mechanism applied to
CNN for capturing salient parts is the gating mechanism [37],
which generates gate values (typically via the sigmoid function,
ranged from 0 to 1) based on the fixed-size input windows
over the feature map. The gate values are multiplied to the
outputs of the windows to obtain the gated outputs. Salient
parts are expected to have close-to-one gate values such that
the salient information can pass through the gates. However,
the gate value calculation is limited to a fixed-size window,
and so contrastive contextual information cannot be considered.

Fig. 2. Architecture of the baseline system composed of a CNN component,
GRU layers and a final softmax layer.

The dynamic routing algorithm introduced in [23] generates the
utterance-level representation by jointly considering the weights
assigned to timesteps and feature dimensions. Also, the whole
sequence can be accessed in the routing process, which ensures
the sufficient capturing of long-distance context.

The capsule structure is proposed to improve CNN
to capture detailed spatial information by Hinton
et al. [23], [38]. The dynamic routing algorithm connecting
the capsule layers is designed to pass the information to the
upper layer. In this work, we try to address the two problems
described above, i.e. spatial information loss and local-to-global
information loss, by using capsule structures with the dynamic
routing algorithm. We propose to apply a sequential structure
of capsule networks to SER to enhance the capturing of
spatial information across time and frequency axes in speech
spectrograms. The capsule structures have been successfully
applied to various tasks, e.g. image processing [23], natural
language understanding [39], [40] and speech processing [41],
[42]. Jalal et al. [43] also investigate the application of capsules
in SER. Our approach is novel in the sequential structure, the
recurrent connection and the utterance-level dynamic routing.

III. BASELINE SYSTEM BASED ON CNN AND RNN

The overall structure of the baseline system consists of a CNN
component and multiple recurrent layers [20], as shown in Fig. 2.
From the input spectrogram, a neural representation is learned
by the CNN component, where the convolutional layers are
expected to recognize feature patterns from the spectrogram and
the pooling layers are utlized to reduce the input feature size.
Upon the CNN component, gated recurrent units (GRUs) are
integrated to capture the temporal information. A final softmax
layer outputs the probabilistic predictions.

A. CNN Component

The CNN component is composed of convolutional layers and
pooling layers. For each convolutional layer, the input feature
map of the three dimensions (width, height and channel number)
is transformed to another 3-dimension feature map, as shown in
Fig. 3(a). A matrix of the three dimensions of width, height
and channel number, referred to as kernel, is applied to each
portion of the input feature map, by performing a element-wise
multiplication operation between the kernel and the feature map
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Fig. 3. Architecture comparison between CNN and capsule networks. There
are mainly two differences: (i) replacing a neuron that outputs a scalar with a
capsule (a group of neurons) that outputs a vector – the vector length is used
to represent the probability that certain feature pattern exists, and the vector
direction is used to represent instantiation parameters; (ii) replacing max-pooling
layer with dynamic-routing algorithm – the routing couples capsules in various
positions of the lower layer to the upper-layer capsules, enabling upper-layer
capsules to consider spatial relationships.

portion. The kernel is shared across different portions. The
multiplication outputs are fed to a non-linear activation (e.g.
ReLU) to generate the scale-valued outputs. One kernel and
the corresponding non-linear activation make up one neuron.
In practical use, multiple kernels are applied to obtain multiple
output values, referred to as multiple channels. The pooling layer
is responsible for reducing the spatial size of the input feature
map. A typical pooling operation is max-pooling, which takes
the maximum over values of a certain window (e.g. size of 2 ×
2) determined by the layer’s hyperparameters.

B. Recurrent Layers

Upon the CNN component, bi-directional GRU layers are
applied to capture temporal information. The outputs of the CNN
component are fed to the forward and backward GRU layers
respectively. The final state of forward GRU and the first state
of backward GRU are concatenated and fed to the subsequent
softmax layer for final predictions.

C. Classification Layer

This paper focuses on discrete emotion classes, e.g. the classes
of Happy, Angry, Sad and Neutral. The softmax layer is lever-
aged for calculating the probabilities of the emotions expressed
in the given speech. Generally only the emotion with the top
probability is considered.

IV. CAPSULE-BASED SYSTEMS

The whole architecture of the SER system based on capsule
networks is composed of one CNN component, multiple capsule
layers and one classification layer, as shown in Fig. 6. The
CNN component structure is the same as the baseline system.

Fig. 4. CNN perception of intonation rises at different positions. The shared
kernel is applied to various parts of the input. The activated outputs are high-
lighted as blue. Although the activated outputs come from different parts of the
input spectrogram, the max-pooling operation produces the same result (both
highlighted as blue), which hinders the accurate classification of the emotional
(left) and neutral (right) utterances.

Fig. 5. Capsule perception of intonation rises at different positions. The
intonation rises at different positions produce different capsule outputs, which
are highlighted as green and purple. The dynamic routing then passes the capsule
outputs to the upper layer. The final distinguished outputs (highlighted as green
and purple) support the accurate emotion classification.

Although the capsule structure is able to capture spatial informa-
tion, the computational cost is relatively higher than the CNN
structure. Also, convolutional layer kernels are shared across
the input feature map. This allows the CNN structure to transfer
knowledge about good weight values learned at one position in
an image to other positions. With the pooling operations, the
higher layers cover larger regions of the input. We therefore
aim to leverage the convolutional layers and pooling layers in
the CNN component to learn preliminary features for the upper
capsule layers. The following sections describe the capsule
layers we use.

A. Capsule Networks

The capsule network (CapNet) is proposed by Hinton
et al. [23], [38], [44] to improve the CNN structure’s sensitivity
to instantiation parameters of the recognized patterns, e.g. spatial
information. The idea is to maintain a group of neurons, instead
of a unique neuron, to capture both the existence probability
and the instantiation information. As shown in Fig. 3(b), convo-
lutional layers are utilized to create the first layer of capsules,
called primary capsules. The neurons of different channels at
the same position along the width- and height-axes of output
feature map of the convolutional layers are grouped together
to form a capsule. For the connection between capsule layers,
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Fig. 6. Architecture of the CNN_GRU_Cap system. For the GRU branch, the last hidden states (highlighted as red) are used as the utterance-level representation for
classification. For the capsule branch, the output feature map from the lower convolutional and pooling layers is first sliced into windows, and then a shared-weight
capsule layer is applied to the windows. Finally the window outputs are aggregated and routed to the subsequent layer to obtain utterance-level capsules for
classification.

the dynamic routing algorithm is applied to learn the hierarchical
relationships between the learned features in neighboring layers.

1) Dynamic Routing: Assume that the i-th capsule in layer
l is ui, and the j-th capsule in layer l+1 is vj . The ui is first
projected to the space of vj by

ûj|i = W ijui + bij , (3)

where W ij and bij are weight matrix and bias vector, and they
are both position-aware and trainable. To obtain the capsule vj

in the upper layer, the procedure described by (4)–7 is iterated
for a predefined number of times n, with the initial value of
dij = 0:

cij =
exp(dij)∑
k exp(dik)

, (4)

sj =
∑

i

cijûj|i, (5)

vj =
||sj ||2

1 + ||sj ||2
sj
||sj || (6)

and

dij ← dij + ûj|i · vj , (7)

where · represents dot production. The cij is the coupling
coefficient measuring the agreement between vj in the upper
layer and ûj|i projected from ui. Hence, this algorithm is also
called routing-by-agreement.

2) Comparison of CNNs and CapNets: The limitation of
CNNs is the insensitivity to detailed spatial information. The
neurons in the convolutional layers output a scalar, which only
provides the probability that the feature pattern (e.g. formants)
matches the kernel. However, the more detailed instantiation
parameters (e.g. position) are ignored. As shown in Fig. 4, the
shared kernel is applied to various parts of the spectrogram.
When the feature pattern (e.g. intonation rise) matches the
kernel, the output is activated (highlighted as blue), regardless
of which position (the beginning or ending part) the activation

occurs. Also, the max-pooling layer discards all but the most
activated neuron, which hinders the spatial relationship infor-
mation to be passed to the upper layers. As shown in Fig. 4,
the activated outputs at different positions are selected by the
max-pooling operation. The final CNN outputs of the neutral
and emotional utterances are the same. Hence, the subsequent
layers lack the essential information for distinguishing the two
utterances.

Compared to the CNN architecture, CapNets have two im-
provements, which enable CapNets to consider the detailed
instantiation parameters of the recognized feature patterns, as
shown in Fig. 3:
� Neuron vs. capsule: The neuron that outputs a scalar in

the convolutional layer is replaced with a capsule, i.e. a
group of neurons, that outputs a vector, which contains
the instantiation information. The information includes the
pose and position information of the recognized pattern.

� Max-pooling vs. dynamic-routing: The max-pooling layer
is replaced with the dynamic-routing algorithm, which
couples capsules in various positions of lower layer to
upper-layer capsules, enabling upper-layer capsules to con-
sider spatial relationship.

As shown in Fig. 5, the positional information distinguishes
the capsule outputs. The intonation rises at different positions
produce different capsule outputs, which are highlighted as
green and purple. The position-aware capsule outputs are then
passed to the upper layer via dynamic routing. The final distin-
guished outputs support the accurate emotion classification.

B. Sequential Capsules

In the task of SER, the input data is a sequence of feature
frames with variable lengths (up to 1000 frames). The capsules
corresponding to the ending frames will be trained with less data.
The parameter size of the capsule model is huge when the input
matrix is large, because the weight matrix for projecting the input
capsule values into hidden representations is position-aware, as
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TABLE I
CONFIGURATION OF THE CNN COMPONENT APPLIED TO THE INPUT

SPECTROGRAM. C, K, AND W STAND FOR CHANNEL NUMBER, KERNEL SIZE

AND POOLING WINDOW

TABLE II
NUMBER OF PARAMETERS IN VARIOUS SYSTEMS

shown in (3). Feeding the whole sequence with large length
to capsule layers is impractical, since the size of the trainable
weights is huge, proportional to the frame number, and the
weights are difficult to train (discussed in Sec. V-D).

In order to optimize the model upon the whole sequence
simultaneously, we propose the structure of sequential capsules
(SeqCaps), as shown in Fig. 6. The input frame sequence (e.g.
spectrogram) is first sliced into overlapping windows, and the
shared capsule layers are applied to each of these windows.
In each window, several separated convolutional layers shared
across windows are applied to the input to obtain primary
capsulesu. The primary capsules are routed to generate window-
level capsules v. The utterance-level capsules are then obtained
with utterance-level routing based on the output vectors o of
these windows, which are defined as:

o =
[
v�1 , . . .,v

�
m, ||v1||, . . ., ||vm||

]
. (8)

The window output vector consists of the orientations and
lengths of all them capsules in one window, since both the orien-
tations and lengths contain useful information for the utterance-
level emotion classification. Though the length information ||v||
is redundant given the vectors v, we intend to provide this
information explicitly to save the learning effort of the network.
Since the convolutional layers and the capsule layers are shared
across windows, the parameter number is reduced significantly
(as will be shown in Table II).

C. Recurrent Capsules

The temporal information of speech contains important cues
for emotion recognition. In order to enable the SeqCap model
to capture temporal information, we propose the structure of re-
current capsule (RecCap), by introducing recurrent connections
to the routing algorithm.

Denote the j-th capsule in layer l + 1 in window t− 1 as
vt−1,j and the i-th capsule in layer l in window t as ut,i. The
projected vector ût,j|i in window t is produced as Eq. 9:

ût,j|i = W u
ijut,i +W o

ijot−1 + bij , (9)

where the window-level output vector ot−1 contains both the
length and orientation information of all the m capsules in layer
l + 1 in window t− 1:

ot−1 =
[
v�t−1,1, . . .,v

�
t−1,m, ||vt−1,1||, . . ., ||vt−1,m||

]
. (10)

Via this connection, the spatial information in the previous
window can assist in determining the coupling coefficients and
activating the activity which is salient in terms of window steps.

D. Curriculum Learning

The training of capsule structure is challenging, due to the
introduction of utterance-level routing. The routing process
groups all the outputs of the windows in the whole utterance.
At the beginning of training, the projections ((3) and 9) are
under-trained and not yet convergent. The routing of long utter-
ances may propagate sub-optimal capsule grouping results to the
subsequent layers. Hence, we introduce a simple, yet effective
curriculum learning (CL)-based training scheme to the capsule
training [45]. The CL research argues for presenting examples
for learning in a meaningful order, e.g. from simple to complex
concepts, rather than the random order. The well-organized
order, similar to a curriculum, is believed to enhance the neural
structure learning [46]. A scoring function that indicates the
difficulty of learning each sample is defined for organizing the
samples.

In our task, recognizing emotions from shorter utterances is
defined as an easier task, and from longer utterances as a more
difficult task. The model is trained using shorter utterances first,
and gradually exposed to longer utterances. Hence, at the begin-
ning, the capsule sequence is short and the projection parameters
can be updated quickly towards the correct direction, without
propagation of sub-optimal routing results. In practice, for the
first epoch of training, we sort the utterances in the training set
in an order of increasing length, i.e. number of frames. After the
first epoch, the utterances are shuffled for each of the following
epochs (i.e. backed off to normal random-order training).

V. SYSTEM IMPLEMENTATION

To evaluate the performance of the capsule structures, we
compare the various systems consisting of convolutional layers,
GRU layers and attention layers with the capsule-based systems.

A. CNN Component

The common component for these systems is the CNN com-
ponent applied to the input spectrograms to extract neural rep-
resentations for the subsequent layers. The configuration of the
CNN component is shown in Table I. We apply two separated
convolutional layers with kernel of 2× 8 and 8× 2 to capture the
relationship information across frequencies and timesteps. The
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outputs of these two separated convolutional layers are concate-
nated together and passed through another two convolutional
layers and three max-pooling layers.

B. Baseline System Configuration

We refer to the CNN system described in [15] as one of the
baseline systems. The CNN system consists of five convolutional
layers and represents the state-of-the-art performance using
CNN structure.

We explore applying a GRU layer upon the CNN component
mentioned above via the system of CNN_GRU. The GRU layer
is bidirectional with 64 cells per direction. The final state of for-
ward GRU and the first state of backward GRU are concatenated
and fed to a dense layer with 64 units activated by ReLU and
dropped out with rate of 0.5. The dense layer outputs are then
fed to a linear dense layer with 4 units. A softmax function is
applied to the final outputs to obtain the emotion probabilities.
Cross entropy criterion is used as the training objective function.

As demonstrated in [19], an attention layer following the
GRU layer can further improve the system performance. We
also implement a baseline system CNN_GRU_Att that replaces
the last dense layer of the CNN_GRU with an attention layer
that is composed of class-agnostic bottom-up, and class-specific
top-down attention maps [47].

We also compare our proposed model with the capsule-
based structure LSTM_Cap proposed by Jalal et al. [43]. The
LSTM_Cap consists of two bi-directional long short-term mem-
ory (BLSTM) layers and two capsule layers. Each of the BLSTM
layers contains 256 cells (i.e. 128 per direction). The first capsule
layer is a primary capsule layer composed of four 1D convolu-
tional layers with 32 filters and kernel size of 5. The outputs
of the convolutional layers at each position are concatenated to
form a capsule. The second capsule layer contains four capsules
with 32 dimensions. The two capsule layers are connected via
dynamic routing.

C. Capsule-Based System Configuration

We develop two capsule-based systems CNN_SeqCap and
CNN_RecCap, by stacking SeqCaps and RecCaps on the CNN
component, respectively. The detailed structure of the SeqCap
is shown in Fig. 6, where the input matrix is the CNN outputs.
For each window sliced from the input matrix, 8 convolutional
layers with kernel size of 5 × 5 and channel number of 8 are
applied to the input matrix. Then for each position in the outputs
of the 8 convoutional layers, the units along the channel direction
are concatenated together to obtain capsules with size of 8
(i.e. the channel number). These capsules are then routed to the
subsequent window-level capsule layer with 8 capsules of size
8 in each window, as described by Eq. 3–7. The window output
vectors are then obtained as Eq. 8. An utterance-level routing
is conducted upon the window output vectors to produce 4
utterance-level capsules of size 16. The utterance-level capsules
are then fed to two dense layers and softmax function, with the
same configuration as the last two dense layers and softmax
function in CNN_GRU. The window used to slice the input

matrix is set to size of 40 input steps with shift of 20 steps. The
iteration number of the routing algorithm is set to 3.

The system of CNN_RecCap has the same architecture as
CNN_SeqCap, except the recurrent connection in the routing
from the primary capsules to the window-level capsules (Eq. 9).
The RecCap structure is expected to capture the temporal infor-
mation better than SeqCaps.

To further improve the system’s long-term view, we add an-
other branch of GRU layer upon the CNN component, parallel to
the capsule branch, denoted as CNN_GRU-SeqCap. The outputs
of the GRU layers and those of the capsule components are fed to
separate sets of dense layers and softmax function. The softmax
outputs of the two branches are merged together by heuristically
determined weights (e.g. 0.4 and 0.6), as shown in Fig. 6. At
the training stage, the total loss of CNN_GRU-SeqCap is the
unweighted sum of losses of the two branches. At the testing
stage, the output probabilities of the capsule branch and the
GRU branch are combined with the weights of λ and 1− λ

respectively. We set λ as 0.6 in our experiments. Similar archi-
tecture of CNN_GRU-RecCap replacing the SeqCaps structure
with RecCaps is also evaluated.

D. Parameter Sizes of Systems

The parameter numbers of the systems are shown in Table II.
The system CNN_Cap uses non-sequential capsule layers, i.e.
the whole input sequence is fed to the capsule layers. The
parameter number is proportional to the input sequence length
(e.g. 200 frames). As can be seen, the parameter number of
CNN_Cap is much greater than that of CNN_GRU, leading to
difficulty in training. With the sequential structure, the param-
eter numbers of the systems CNN_SeqCap and CNN_RecCap
decrease significantly (even smaller than that of CNN_GRU).
The parameter size of LSTM_Cap is also bigger than those of
CNN_SeqCap and CNN_RecCap, since no sequential structure
is used in the LSTM_Cap structure.

E. Network Training

We found that good weight initialization is quite important
to the convergence of CapNets [41]. In our experiments, we
use the Xavier initializer for both the CNN component and
the capsule layer initialization. The batch size is set to 16 and
the Adam algorithm is configured with parameters of β1 = 0.9,
β2 = 0.999 and ε = 1e-8 [48]. The learning rate is set to 0.001 in
the first 3 epochs, and decayed dynamically determined by the
average of training losses of the lastest 100 training steps. The
learning rate is reduced to 0.0005, 0.0002 and 0.0001 gradually,
when the average training loss is reduced by a factor of 10. The
models are all trained for 20 epochs and then optimized on the
validation set with respect to the weighted accuracy.

VI. SYSTEM EVALUATION

We conduct experiments to evaluate the effectiveness of the
sequential capsule and the recurrent capsule structures based on
a public corpus, using the common metrics of weighted accuracy
and unweighted accuracy.
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TABLE III
NUMBER OF UTTERANCES TO THE FOUR EMOTIONS IN THE EXPERIMENTAL

DATASET

A. Emotion Recognition Corpus

We evaluate the capsule structures on the common evaluation
dataset interactive emotional dyadic motion capture (IEMO-
CAP) database [49], which consists of five sessions, with two
speakers in each session. We adopt five-fold cross validation
as [15]: 8 speakers from four sessions in the corpus are used as
training data. One speaker from the remaining session is used
as validation data, and the other one as test data. To further
validate the effectiveness of the systems, we run the experiments
five times with different random seeds for t-test analysis. We
evaluate our systems on four emotions in the corpus, i.e. Neutral,
Angry, Happy and Sad, following previous work [15], [20].
The improvised data is used, and the utterance numbers of
the emotions are shown in Table III. It is already reported in
previous works [20], [50] that the category of Happy is difficult
to be recognized because of limited training data and its special
emotion characteristics, i.e. the Happy emotion relies on context
contrastive information more than the other categories.

Spectrograms are extracted from the speech signal in IEMO-
CAP and split into 2-second segments. The segments split from
one sentence share the same emotion label. The training is
conducted based on the 2-second segments. It is only during
the testing stage that the whole original spectrogram is used for
evaluation. The spectrograms are extracted with 40-ms Hanning
window, 10-ms shift and DFT of length 1600 (for 10 Hz grid
resolution). The frequency range of 0-5.12KHz is used, ignoring
the rest. The spectrograms are finally represented by a N ×M
matrix, where N ≤ 200 corresponds to the segment length and
M = 512 according to the selected frequency grid resolution.
We normalize the whole dataset to have zero mean and unit
variance.

B. Evaluation Metrics

We use two common evaluation metrics to evaluate the sys-
tems’ performance:
� Weighted Accuracy (WA) – the accuracy of all samples in

the test data.
� Unweighted Accuracy (UA) – the average of class accura-

cies in the test set.

WA =

∑K
i=1 Pi∑K
i=1 Ui

(11)

UA =

∑K
i=1 Pi/Ui

K
(12)

where Pi is the number of utterances with correct prediction of
emotion i, Ui is the number of utterances with actual emotion i,
and K is the number of emotions tested.

TABLE IV
PERFORMANCE IMPROVEMENT WITH CURRICULUM LEARNING

Fig. 7. Performances of CNN_SeqCap with various routing number.

C. Effectiveness of Curriculum Learning

We examine the CL training scheme on the models. The com-
parison of performances with and without CL training is shown
in Table IV. It can be found that the CL training scheme effec-
tively improves the performance of all the three capsule-based
structures, LSTM_Cap, CNN_SeqCap and CNN_RecCap, at
both WA and UA. This conforms with the nature of the capsule
structure that the dynamic routing applied to long sequences at
the beginning of training is not optimal and the resulting network
connections can be very different from the final convergent
connections. For the two conventional structures based on CNN
and GRU, of which the connections are static, the CL scheme
has little impact and only slightly improves the UA performance.
For fair comparison, we apply this training scheme in all the
following experiments.

D. Impact of Routing Number

Dynamic routing is the critical process for ensuring the
grouping of similar lower-layer capsules to upper layers. The
routing iteration can be conducted as many times as desired.
A typical number chosen in previous works [23], [39]–[41] is
3. Small number of iteration may lead to insufficient grouping
of the capsules. Whereas large iteration number can bring huge
computational burden. It is desirable to check that whether the
previous agreed iteration number of 3 still applies to the SER
task with spectrograms as inputs. Fig. 7 shows the performance
comparison of the system CNN_SeqCap with different routing
numbers, from 1 to 4. As can be found that, the iteration number
of 2 achieves the best performance (69.88% at WA, 56.97%
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TABLE V
WA AND UA OF PROPOSED AND BASELINE SYSTEMS. “+” DENOTES SYSTEM

COMBINATION BASED ON AVERAGE OF THE PREDICTED PROBABILITY VALUES

at UA). No improvements are observed with further iterations
of routing. Also, there is no significant difference between the
iteration numbers of 2 and 3. To ensure sufficient routing and
follow previous works, we select 3 as the number of iterations
for all the following experiments.

E. Effectiveness of Capsule Structures

Experimental results that compare the capsule-based systems
with the baseline systems based on the WA and UA metrics
provide evidences of superiority of the capsule structures.

Capsule vs. CNN: As shown in Table V, both the CNN_
SeqCap and the CNN_RecCap systems outperform the baseline
system CNN. The CNN_SeqCap has improvement of 3.76% at
WA and 0.11% at UA, and the CNN_RecCap has improvement
of 4.52% at WA and 1.57% at UA over the CNN system.
The LSTM_Cap also performs better than the baseline CNN
system. This shows the advantage of applying capsule struc-
tures to capture the spatial information. Our proposed systems,
CNN_SeqCap and CNN_RecCap, achieve better results at both
WA and UA than LSTM_Cap, which validates the effectiveness
of the proposed sequential structure.

SeqCap vs. GRU: The CNN_SeqCap outperforms both the
CNN_GRU and CNN_GRU_Att in Table V. We do the sta-
tistical analysis and find that the CNN_SeqCap outperforms
CNN_GRU_Att at WA and UA both significantly with p <
0.05. To analyze the intermediate mechanisms for better un-
derstanding of the CNN_GRU_Att and the capsule structure
CNN_SeqCap, we visualize the gradient values with respect
to the input spectrograms in Fig. 8. As highlithed with red
rectangles, the gradient values from the trained CNN_SeqCap
are sensitive to the salient features in the spectrograms, but
the values from the trained CNN_GRU_Att are insensitive.
This provides evidence of the capsule structure advantage in
capturing spectrogram spatial information.

RecCap vs. SeqCap: From Table V, it can be found
that CNN_RecCap outperforms CNN_SeqCap (0.76% of WA
marginally and 1.46% at UA significantly with p < 0.05), which
demonstrates the effectiveness of the recurrent connections. In
our experiments, we find that the CapNets have better per-
formance in the emotions Neutral, Angry and Sad, but worse
results for Happy, as shown in Table VI. This coincides with the
results in previous works [20], [50] that the category of Happy is

Fig. 8. Comparison of gradients with respect to the input spectrograms in (a),
obtained from the trained CNN_SeqCap in (b) and CNN_GRU_Att in (c).
The red rectangles highlight the comparison that the gradient values from
CNN_SeqCap are sensitive to the salient features in the spectrograms, but the
values from CNN_GRU_Att are insensitive.

TABLE VI
CONFUSION MATRIX OF CNN_SEQCAP

TABLE VII
CONFUSION MATRIX OF CNN_RECCAP

difficult to be recognized because of limited training data and its
special emotive characteristics of relying on context contrastive
information more than the other categories. From the results
shown in Table VI and Table VII, RecCaps improve accuracies
for Happy (from 1.69% to 11.9%) and Sad (from 72.52% to
77.49%) categories over SeqCaps, but accuracy for Angry de-
clines. This also coincides with the previous observation in [50]
that the two categories of Happy and Angry are similar in this
corpus.
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F. Combination of Capsule and GRU

The GRU and the SeqCap show superiority in capturing
temporal and detailed spatial information, respectively. It is
natural to ask the question whether the combination of SeqCap
and GRU brings further improvement. In the evaluation of com-
bining GRU and SeqCap, as shown in Table V, the CNN_GRU-
SeqCap system outperforms all the other four systems of CNN,
CNN_GRU, CNN_GRU_Att and CNN_SeqCap. This shows
that the combination is beneficial. The WA performance of
the combined system CNN_GRU-SeqCap is comparable with
state-of-the-art performance 72.7% as reported in [32], but the
UA performance still needs to be improved. It should be noted
that in [32] both improvised and scripted data are used, but in
this work we only use the improvised part following [15], [20].
We also investigate the combination of GRU and RecCap. The
combined system CNN_GRU-RecCap outperforms the baseline
systems of CNN and CNN_GRU, but is inferior to the system
of CNN_RecCap. However, both the CNN_GRU-RecCap and
the CNN_RecCap systems outperform the baseline of CNN and
CNN_GRU. The other combination option is to use the average
of generated probability values as predictions. The results in
Table V show that simple system combination based on averaged
probability also improves the WA performance.

It can be concluded that replacing GRUs in the CNN_GRU
with capsules brings improvement overall, with RecCaps giving
more gains than SeqCaps ( 3.42% vs. 2.66% at WA and 6.33% vs.
4.87% at UA significantly with p < 0.005). Augmenting GRUs
with capsules brings improvement overall, with SeqCaps giving
more gains than RecCaps (5.53% vs. 3.42% at WA and 7.87%
vs. 5.74% at UA significantly with p < 0.005).

VII. CONCLUSION

In this paper, we devise the approach of applying capsule
networks to the speech emotion recognition (SER) task. In order
to capture the spatial information from input speech spectro-
grams, we propose a novel sequential capsule structure to obtain
neural representations, and introduce recurrent connections to
the sequential structure to capture the temporal information.
The utterance-level dynamic routing is designed to obtain ut-
terance representations for the final emotion prediction. Objec-
tive evaluations using the publicly available dataset IEMOCAP
demonstrate the effectiveness of the proposed sequential capsule
structure, CNN_SeqCap, and the recurrent capsule structure,
CNN_RecCap. The CNN_SeqCap gives improvement of 3.76%
at WA and 0.11% at UA, and the CNN_RecCap has improvement
of 4.52% at WA and 1.57% at UA over the CNN system. In the
future, we plan to enhance the recurrent connection to capture
longer distance context to improve the recognition performance.

REFERENCES

[1] M. E. Ayadi, M. Kamel, and F. Karray, “Survey on speech emotion recog-
nition: Features, classification schemes, and databases,” Pattern Recognit.,
vol. 44, no. 3, pp. 572–587, 2011.

[2] M. M. E. Ayadi, M. S. Kamel, and F. Karray, “Speech emotion recognition
using Gaussian mixture vector autoregressive models,” Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., vol. 4, pp. 957–960, 2007.

[3] O.-W. Kwon, K. Chan, J. Hao, and T.-W. Lee, “Emotion recognition by
speech signals,” in Proc. 8th Eur. Conf. Speech Commun. Technol., 2003,
pp. 125–128.

[4] B. Schuller, A. Batliner, S. Steidl, and D. Seppi, “Recognising realistic
emotions and affect in speech: State of the art and lessons learnt from
the first challenge,” Speech Commun., vol. 53, no. 9–10, pp. 1062–1087,
2011.

[5] B. Schuller, G. Rigoll, and M. Lang, “Hidden Markov model-based speech
emotion recognition,” Proc. Int. Conf. Multimedia Expo., vol. 2, pp. 401–
404, 2003.

[6] S. Parthasarathy and C. Busso, “Semi-supervised speech emotion recogni-
tion with ladder networks,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 28, pp. 2697–2709, 2020, doi: 10.1109/TASLP.2020.3023632.

[7] M. Tahon and L. Devillers, “Towards a small set of robust acoustic features
for emotion recognition: Challenges,” IEEE/ACM Trans. Audio, Speech
Lang. Process., vol. 24, no. 1, pp. 16–28, Jan. 2016.

[8] J. Deng, X. Xu, Z. Zhang, S. Frühholz, and B. Schuller, “Semi-supervised
autoencoders for speech emotion recognition,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 26, no. 1, pp. 31–43, Jan. 2018.

[9] W. A. Jassim, R. Paramesran, and N. Harte, “Speech emotion classifica-
tion using combined neurogram and INTERSPEECH 2010 paralinguistic
challenge features,” IET Signal Process., vol. 11, no. 5, pp. 587–595, 2017.

[10] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition using deep
neural network and extreme learning machine,” in Proc. 15th Annu. Conf.
Int. Speech Commun. Assoc., 2014, pp. 223–227.

[11] J. Lee and I. Tashev, “High-level feature representation using recurrent
neural network for speech emotion recognition,” in Proc. 16th Annu. Conf.
Int. Speech Commun. Assoc., 2015.

[12] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech emotion
recognition using recurrent neural networks with local attention,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2017, pp. 2227–2231.

[13] S. Latif, R. Rana, S. Khalifa, R. Jurdak, J. Epps, and B. W. Schuller,
“Multi-task semi-supervised adversarial autoencoding for speech emo-
tion recognition,” IEEE Trans. Affect. Comput., to be published,
doi: 10.1109/TAFFC.2020.2983669.

[14] R. Li, Z. Wu, J. Jia, J. Li, W. Chen, and H. Meng, “Inferring user emotive
state changes in realistic human-computer conversational dialogs,” in Proc.
ACM Multimedia Conf. Multimedia Conf., ACM, 2018, pp. 136–144.

[15] A. Satt, S. Rozenberg, and R. Hoory, “Efficient emotion recognition from
speech using deep learning on spectrograms,” in Proc. Conf. Int. Speech
Commun. Assoc., 2017, pp. 1089–1093.

[16] D. Dai, Z. Wu, R. Li, X. Wu, J. Jia, and H. Meng, “Learning discriminative
features from spectrograms using center loss for speech emotion recog-
nition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp. 7405–7409.

[17] L. Guo, L. Wang, J. Dang, Z. Liu, and H. Guan, “Exploration of com-
plementary features for speech emotion recognition based on kernel ex-
treme learning machine,” IEEE Access, vol. 7, pp. 75 798–75 809, 2019,
doi: 10.1109/ACCESS.2019.2921390.

[18] L. Guo, L. Wang, J. Dang, L. Zhang, and H. Guan, “A feature fusion
method based on extreme learning machine for speech emotion recog-
nition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2018,
pp. 2666–2670.

[19] P. Li, Y. Song, I. McLoughlin, W. Guo, and L. Dai, “An attention pooling
based representation learning method for speech emotion recognition,” in
Proc. Conf. Int. Speech Commun. Assoc., 2018, pp. 3087–3091.

[20] X. Ma, Z. Wu, J. Jia, M. Xu, H. Meng, and L. Cai, “Emotion
recognition from variable-length speech segments using deep learn-
ing on spectrograms,” in Proc. Conf. Int. Speech Commun. Assoc.,
2018, pp. 3683–3687.

[21] L. Zhang, L. Wang, J. Dang, L. Guo, and H. Guan, “Convolutional neural
network with spectrogram and perceptual features for speech emotion
recognition,” in Proc. Int. Conf. Neural Inf. Process., 2018, pp. 62–71.

[22] Z. Yang and J. Hirschberg, “Predicting arousal and valence from wave-
forms and spectrograms using deep neural networks,” in Proc. Conf. Int.
Speech Commun. Assoc., 2018, pp. 3092–3096.

[23] S. Sabour, N. Frosst, and G. Hinton, “Dynamic routing between capsules,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3856–3866.

[24] X. Wu et al., “Speech emotion recognition using capsule networks,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp. 6695–6699.

[25] L. Guo, L. Wang, J. Dang, L. Zhang, H. Guan, and X. Li, “Speech
emotion recognition by combining amplitude and phase information using
convolutional neural network,” in Proc. Conf. Int. Speech Commun. Assoc.,
2018, pp. 1611–1615.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 06,2022 at 03:43:14 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TASLP.2020.3023632
https://dx.doi.org/10.1109/TAFFC.2020.2983669
https://dx.doi.org/10.1109/ACCESS.2019.2921390


3290 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

[26] Y. Chen, L. Xu, K. Liu, D. Zeng, and J. Zhao, “Event extraction via
dynamic multi-pooling convolutional neural networks,” in Proc. 53rd
Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural
Lang. Process., 2015, pp. 167–176.

[27] Z. Aldeneh and E. M. Provost, “Using regional saliency for speech emotion
recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2017, pp. 2741–2745.

[28] M. Wöllmer, A. Metallinou, N. Katsamanis, B. Schuller, and S. Narayanan,
“Analyzing the memory of BLSTM neural networks for enhanced emotion
classification in dyadic spoken interactions,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2012, pp. 4157–4160.

[29] W. Lim, D. Jang, and T. Lee, “Speech emotion recognition using convo-
lutional and recurrent neural networks,” in Proc. Asia-Pacific Signal Inf.
Process. Assoc. Annu. Summit Conf., 2016, pp. 1–4.

[30] G. Keren and B. Schuller, “Convolutional RNN: An enhanced model for
extracting features from sequential data,” in Proc. IEEE Int. Joint Conf.
Neural Netw., 2016, pp. 3412–3419.

[31] X. Zhu et al., “Dependency exploitation: A unified CNN-RNN approach
for visual emotion recognition,” in Proc. Int. Joint Conf. Artif. Intell., 2017,
pp. 3595–3601.

[32] J. Wang, M. Xue, R. Culhane, E. Diao, J. Ding, and V. Tarokh, “Speech
emotion recognition with dual-sequence LSTM architecture,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2020, pp. 6474–6478.

[33] Z. Zhao, Y. Zheng, Z. Zhang, H. Wang, Y. Zhao, and C. Li, “Ex-
ploring spatio-temporal representations by integrating attention-based
bidirectional-LSTM-RNNs and FCNs for speech emotion recognition,”
in Proc. of Conf. Int. Speech Commun. Assoc., 2018, pp. 272–276.

[34] S. Yoon, S. Dey, H. Lee, and K. Jung, “Attentive modality hopping
mechanism for speech emotion recognition,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2020, pp. 3362–3366.

[35] A. Nediyanchath, P. Paramasivam, and P. Yenigalla, “Multi-head attention
for speech emotion recognition with auxiliary learning of gender recog-
nition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2020,
pp. 7179–7183.

[36] Y. Xie, R. Liang, Z. Liang, C. Huang, C. Zou, and B. Schuller, “Speech
emotion classification using attention-based LSTM,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 27, no. 11, pp. 1675–1685, Nov. 2019.

[37] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, pp. 933–941, 2017.

[38] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in Proc. Int. Conf. Artif. Neural Netw., Springer, 2011,
pp. 44–51.

[39] W. Zhao, J. Ye, M. Yang, Z. Lei, S. Zhang, and Z. Zhao, “Investigating
capsule networks with dynamic routing for text classification,” in Proc.
Conf. Empirical Methods Natural Lang. Process., 2018, pp. 3110–3119.

[40] X. Zhang, P. Li, W. Jia, and H. Zhao, “Multi-labeled relation extraction
with attentive capsule network,” Proc. AAAI Conf. Artif. Intell., vol. 33,
pp. 7484–7491, 2019.

[41] J. Bae and D. Kim, “End-to-end speech command recognition with capsule
network,” in Proc. Conf. Int. Speech Commun. Assoc., 2018, pp. 776–780.

[42] M. Turan and E. Erzin, “Monitoring infant’s emotional cry in domestic
environments using the capsule network architecture,” in Proc. Conf. Int.
Speech Commun. Assoc., 2018, pp. 132–136.

[43] M. A. Jalal, E. Loweimi, R. K. Moore, and T. Hain, “Learning temporal
clusters using capsule routing for speech emotion recognition,” in Proc.
Conf. Int. Speech Commun. Assoc., 2019, pp. 1701–1705.

[44] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,”
in Proc. Int. Conf. Learn. Representations, 2018, pp. 1–15.

[45] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in Proc. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[46] G. Hacohen and D. Weinshall, “On the power of curriculum learning
in training deep networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 2535–2544.

[47] R. Girdhar and D. Ramanan, “Attentional pooling for action recognition,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 33–44.

[48] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[49] C. Busso et al., “IEMOCAP: Interactive emotional dyadic motion capture
database,” Lang. Resour. Eval., vol. 42, no. 4, pp. 335–359, 2008.

[50] X. Ma, Z. Wu, J. Jia, M. Xu, H. Meng, and L. Cai, “Speech emotion
recognition with emotion-pair based framework considering emotion dis-
tribution information in dimensional emotion space,” in Proc. Conf. Int.
Speech Commun. Assoc., 2017, pp. 1238–1242.

Xixin Wu (Member, IEEE) received the B.S. degree from Beihang University,
Beijing, China, the M.S. degree from Tsinghua University, Beijing, China, and
the Ph.D. degree from The Chinese University of Hong Kong, Hong Kong.
He had been a Research Associate with the Machine Intelligence Laboratory,
Cambridge University Engineering Department, and from 2021 has been a
Research Assistant Professor with the Stanley Ho Big Data Decision Analytics
Research Centre, The Chinese University of Hong Kong. His research interests
include speech synthesis and recognition, speaker verification, and neural net-
work uncertainty. He is a Member of ISCA.

Yuewen Cao (Member, IEEE) received the B.S. degree in communication
engineering from the Huazhong University of Science & Technology, Wuhan,
China, in 2017. She is currently working toward the Ph.D. degree with the
Human-Computer Communications Lab (HCCL), The Chinese University of
Hong Kong, China. Her research interests include speech synthesis and voice
conversion.

Hui Lu (Member, IEEE) received the B.S. degree in communication engineering
from Tongji University, Shanghai, China, in 2017. He received the M.S. degree
in computer technology from Tsinghua University, Beijing, China, in 2020. He
is currently working toward the Ph.D. degree with the Human-Computer Com-
munications Lab (HCCL), The Chinese University of Hong Kong, Hong Kong,
China. His research interests include speech synthesis and voice conversion.

Songxiang Liu (Member, IEEE) received the B.Eng. degree in automation
from Department of Control Science and Engineering, Zhejiang University,
Hangzhou, China, in 2016, and the Ph.D. degree from the Human-Computer
Communications Laboratory (HCCL), The Chinese University of Hong Kong,
Hong Kong, China, in 2021. His research interests include the broad field
of spoken language processing, including speech and singing synthesis (e.g.,
voice transformation and text-to-speech synthesis), audio adversarial attacks
and defense, etc.

Disong Wang (Graduate Student, Member, IEEE) received the B.S. degree
in mathematics and physics basic science from the University of Electronic
Science and Technology of China (UESTC) in 2015, and the M.E. in computer
applied technology from Peking University (PKU), in 2018. He is currently a
Ph.D. candidate with the Human Computer Communications Lab (HCCL) in the
Chinese University of Hong Kong (CUHK). His research interests include voice
conversion, text-to-speech synthesis, automatic speech recognition and their
applications to non-standard speech, such as dysarthric speech and accented
voice.

Zhiyong Wu (Member, IEEE) received the B.S. and Ph.D. degrees in computer
science and technology from Tsinghua University, Beijing, China, in 1999 and
2005, respectively. From 2005 to 2007, he was a Postdoctoral Fellow with the
Department of Systems Engineering and Engineering Management, The Chinese
University of Hong Kong (CUHK), Hong Kong. He then joined the Graduate
School at Shenzhen (now Shenzhen International Graduate School), Tsinghua
University, Shenzhen, China, and is currently an Associate Professor. He is also
a Coordinator with Tsinghua-CUHK Joint Research Center for Media Sciences,
Technologies and Systems. His research interests include intelligent speech
interaction, more specially, speech processing, audiovisual bimodal modeling,
text-to-audio-visual-speech synthesis, and natural language understanding and
generation. He is a Member of International Speech Communication Association
and China Computer Federation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 06,2022 at 03:43:14 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: SPEECH EMOTION RECOGNITION USING SEQUENTIAL CAPSULE NETWORKS 3291

Xunying Liu (Member, IEEE) received the Ph.D. degree in speech recognition
and the M.Phil. degree in computer speech and language processing from the
University of Cambridge, Cambridge, U.K., prior to his undergraduate study
with Shanghai Jiao Tong University, Shanghai, China. He was a Senior Re-
search Associate with Machine Intelligence Laboratory, Cambridge University
Engineering Department, University of Cambridge, and since 2016, he has
been an Associate Professor with the Department of Systems Engineering
and Engineering Management, The Chinese University of Hong Kong, Hong
Kong. His current research interests include large vocabulary continuous speech
recognition, statistical language modelling, audio-visual speech processing,
machine learning, language learning, speech synthesis and assistive technology.
He and his students were the recipients of a number of best paper awards and
nominations, including the Best Paper Award at ISCA Interspeech2010 for the
paper titled Language Model Cross Adaptation for LVCSR System Combination
and the Best Paper Award at IEEE ICASSP2019 for their paper titled BLHUC:
Bayesian Learning of Hidden Unit Contributions for Deep Neural Network
Speaker Adaptation. He is a Member of ISCA.

Helen Meng (Fellow, IEEE) received the B.S., M.S., and Ph.D. degrees in elec-
trical engineering from the Massachusetts Institute of Technology, Cambridge,
MA, USA. In 1998, she joined the Chinese University of Hong Kong, Hong
Kong, where she is currently the Chair Professor with the Department of Systems
Engineering & Engineering Management. She was the former Department
Chairman and the Associate Dean of Research with the faculty of Engineering.
Her research interests include human–computer interaction via multimodal and
multilingual spoken language systems, spoken dialog systems, computer-aided
pronunciation training, speech processing in assistive technologies, health- re-
lated applications, and Big Data decision analytics. She was the Editor-in-Chief
of the IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

between 2009 and 2011. She was the recipient of the IEEE Signal Processing
Society Leo L. Beranek Meritorious Service Award in 2019. She was also on the
Elected Board Member of the International Speech Communication Association
(ISCA) and an International Advisory Board Member. She is a ISCA, HKCS,
and HKIE.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 06,2022 at 03:43:14 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


