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ABSTRACT
The expressive quality of synthesized speech for audiobooks is lim-
ited by generalized model architecture and unbalanced style dis-
tribution in the training data. To address these issues, in this pa-
per, we propose a self-supervised style enhancing method with VQ-
VAE-based pre-training for expressive audiobook speech synthesis.
Firstly, a text style encoder is pre-trained with a large amount of un-
labeled text-only data. Secondly, a spectrogram style extractor based
on VQ-VAE is pre-trained in a self-supervised manner, with plenty
of audio data that covers complex style variations. Then a novel ar-
chitecture with two encoder-decoder paths is specially designed to
model the pronunciation and high-level style expressiveness respec-
tively, with the guidance of the style extractor. Both objective and
subjective evaluations demonstrate that our proposed method can ef-
fectively improve the naturalness and expressiveness of the synthe-
sized speech in audiobook synthesis especially for the role and out-
of-domain scenarios.1

Index Terms— expressive speech synthesis, self-supervised
style enhancing, VQ-VAE, pre-training

1. INTRODUCTION

Recent text-to-speech (TTS) models, e.g., Tacotron 2 [1], Trans-
formerTTS [2], FastSpeech 2 [3], have been developed with the
capability to generate high-quality speech with a neutral speaking
style. However, limited expressiveness persists as one of the ma-
jor gaps between synthesized speech and real human speech, which
draws growing attention to expressive speech synthesis studies [4, 5,
6, 7]. Synthesizing long-form expressive datasets, e.g., audiobooks,
is still a challenging task, since wide-ranging voice characteristics
tend to collapse into an averaged prosodic style.

There are a lot of works focusing on audiobook speech synthe-
sis [8, 9, 10]. Recently, [11] proposes to use the neighbor sentences
to improve the prosody generation. To make better use of contex-
tual information, a hierarchical context encoder that considers ad-
jacent sentences with a fixed-size sliding window is used to predict
a global style representation directly from text [12]. Besides, [13]

† Work conducted when the first author was intern at Microsoft.
* Corresponding authors. This research is supported by National Nat-

ural Science Foundation of China (62076144), Shenzhen Science and Tech-
nology Program (WDZC20220816140515001, JCYJ20220818101014030),
the CUHK Stanley Ho Big Data Decision Analytics Research Centre and the
Centre for Perceptual and Interactive Intelligence.

1Audio samples: https://Chenxuey20.github.io/StyleSpeech

tries to consider as much information as possible (e.g., BERT em-
beddings, text embeddings and sentence ID) to improve style pre-
diction. On top of these, a multi-scale hierarchical context encoder
is proposed to predict both global-scale and local-scale style embed-
dings from context in a hierarchical structure [14]. All these existing
works mainly focus on how to use the semantic information of con-
textual text to predict the expressiveness through an additional style
encoder module. Too much information (phoneme, timbre, style,
etc.) is simply mixed in the encoder part, leading to challenges for
mel-spectrogram decoder. In addition, another serious problem for
audiobook synthesis is the unbalanced style distribution in audio-
book dataset. Most sentences are relatively plain narration voices,
and only a small part is role voices with rich style variations, which
brings a great challenge to modeling of style and expressiveness rep-
resentation with limited audiobook training data, especially for role
and out-of-domain scenarios.

To solve the above-mentioned poor expressiveness problem in
audiobook speech synthesis caused by generalized model architec-
ture and unbalanced style distribution in the training data, this paper
proposes a self-supervised style enhancing method with VQ-VAE-
based pre-training for expressive audiobook synthesis. Firstly, a text
style encoder is pre-trained with the help of a large amount of easily
obtained unlabeled text-only data. Secondly, a spectrogram style ex-
tractor based on VQ-VAE is pre-trained using plenty of audio data
that covers multiple expressive scenarios in other domains. On top
of these, a special model architecture is designed with two encoder-
decoder paths with the guidance of style extractor. To summarize,
the main contributions of this paper are:

• We propose a VQ-VAE-based style extractor to model a better
style representation latent space and relieve the unbalanced
style distribution issues, which is pre-trained by plenty of eas-
ily obtained audio data that can cover complex style varia-
tions in a self-supervised manner.

• We design a novel TTS architecture with two encoder-
decoder paths to model the pronunciation and high-level
style expressiveness respectively, so as to enrich the expres-
sive variation of synthesized speech in complex scenarios by
strengthening both the encoder and decoder of TTS model.

• Both objective and subjective experimental results show that
our proposed style enhancing approach achieves an effective
improvement in terms of speech naturalness and expressive-
ness especially for the role and out-of-domain scenarios.
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Fig. 1. Proposed model structure, where (a) shows the overall architecture with two encoder-decoder paths, (b) shows details of Extended
Variance Adaptor and (c) shows Mel-spectrogram Decoder containing Phoneme Decoder and Style Decoder with interaction.

2. RELATED WORK

Our work is related to Context-aware Augmented Deep Embed-
ded Clustering (CADEC) [15] and Vector Quantized-Variational
AutoEncoder (VQ-VAE) [16].

2.1. CADEC

CADEC is a two-stage style learning approach from abundant un-
labeled plain text in a self-supervised manner. Firstly, it uses con-
trastive learning [17] to pre-train style embedding to distinguish sim-
ilar and dissimilar utterances. To this end, a similar utterance is cre-
ated by replacing an emotional word, determined by an emotion lex-
icon, with a similar one, while the other utterances in the randomly
sampled minibatch are treated as dissimilar utterances. Secondly,
the training samples in style embedding space are clustered by mini-
mizing deep clustering loss [18], reconstruction loss and contrastive
loss together. Compared with BERT [19], CADEC style embedding
is more effective in learning styles other than content.

2.2. VQ-VAE

VQ-VAE is a powerful representation learning framework that can
make effective use of the latent space. It combines VAE framework
with discrete latent representations through a parameterisation of the
posterior distribution of (discrete) latents given an observation. It
can successfully model important features that usually span many
dimensions in data space (e.g., objects span many pixels in images,
phonemes in speech, the message in a text fragment, etc.) as opposed
to focusing or spending capacity on noise and imperceptible details
which are often local. Many extension models have been proposed,
leading to high performance in various tasks, e.g., prosody learning
[20] and speaker diarization [21].

3. METHODOLOGY

The overall architecture of our proposed model is illustrated in Fig. 1
(a). It mainly consists of two encoder-decoder paths with interaction.
The first and primary one is the fine-grained phoneme path, while the
second one is the coarse-grained style path.

3.1. Phoneme encoder-decoder path

The phoneme encoder-decoder path mainly focuses on the pronun-
ciation based on FastSpeech 2 [3]. Both the phoneme encoder and
phoneme decoder consist of several feed-forward Transformer (FFT)

blocks, which are a stack of self-attention layer and 1D-convolution
with residual connection and layer normalization. As shown in Fig.
1 (b), the phoneme hidden embedding Hp is repeated to frame-level
phoneme representation H

′
p by length regulator (LR) in the extended

variance adaptor. And it is worth noting that only H
′
p is further fed

to the phoneme decoder in this path, not together with the pitch and
energy, which is different from FastSpeech 2.

3.2. Style encoder-decoder path

The style encoder-decoder path focuses on the style modeling of syn-
thesized speech. Specifically, a text style encoder and a spectrogram
style extractor are designed and pre-trained to learn the style-related
representations from contextual text and mel-spectrogram respec-
tively, with a huge amount of unlabeled data. A style decoder is
further adopted to make a better fusion of the explicit style features
and implicit style representations in the decoding stage.

3.2.1. Style Encoder

We adopt the CADEC encoder [15] as our style encoder. It employs
a pre-trained BERT [19] as backbone to extract semantic features,
and an emotion lexicon [22] to extract emotion features. By con-
trastive learning with data augmentation and deep embedded clus-
tering with an autoencoder structure, it can be trained with abundant
unlabeled pain text and extract a more style-related representation
from context. Finally, by accepting the contextual text C, CADEC
encoder can output a global style representation:

Hs = CADEC(C0) (1)

Hcs = Concat[CADEC(Ci), i = −k, ..., k] (2)

where Concat[.] is the concatenation operation, Hs and Hcs are the
hidden style embeddings for the contextual text C0 of the current
utterance and for the 2k + 1 neighbor utterances respectively.

3.2.2. Extended Variance Adaptor

Based on FastSpeech 2, the extended variance adaptor is designed
to explicitly model the style-related features e.g, duration, pitch and
energy. As shown in Fig. 1 (b), the phoneme encoder output Hp

and style encoder output Hs are added together (denoted as Hps)
to fed into the pitch predictor, energy predictor and duration predic-
tor respectively to predict the phoneme-level explicit style features,
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which are related to both the phoneme and style. Furthermore, the
predicted pitch and energy together with the implicit style embed-
ding Hs are repeated to become the frame-level style embedding
H

′
s by the length regulator.

3.2.3. Style Extractor

As shown in Fig. 2, we adopt VQ-VAE [16] as our style extractor
to extract a style-related latent representation from mel-spectrogram
with a large amount of unlabeled audio data. Specifically, the en-
coder consists of two 2D-convolution layers with batch normaliza-
tion (BN) and ReLU activation, followed by several ResBlock [23]
layers, while the decoder adopts a symmetrical structure with the en-
coder. Besides, the one-hot speaker embedding conditions are also
fed to decoder to remove the influence of timbres.

Only the low-frequency band of the mel-spectrogram Mel20
(first 20 bins in each frame) is taken as input, as it is considered
to contain almost complete style and much less content information
compared with the full band. Besides, in order to further guide the
model to extract style-related latent representations, we also use the
frame-level pitch Hp, frame-level energy He and text features Hs

as additional inputs. Finally, a discrete style-related representation
Hse can be extracted from the vector quantization layer output of
well-pretrained style extractor, which can be described as follows:

Hse = V QV AE(Mel20,Hp,He,Hs) (3)

3.2.4. Style Decoder

The style decoder is designed to further integrate the explicit style
features (pitch, energy) and implicit style embeddings in the decod-
ing stage. As shown in Fig. 1 (c), in order to make the style transi-
tions among contextual sentences more natural and smooth, a cross-
attention module followed by residual connection is firstly adopted
to consider the hierarchical context. Here, the frame-level style em-
bedding H

′
s of current utterance is the query, while the hierarchi-

cal context style embedding Hce from style encoder is the key and
value. After that, several 1D-convolution layers with batch normal-
ization and ReLU activation are further used to learn a style-related
representation and finally output the style embedding Hsd.

3.3. Interaction between phoneme and style paths

Existing expressive speech synthesis works mainly simply introduce
style information into the TTS encoder part, leading to challenges to
the mel-spectrogram decoder. As shown in Fig. 1 (c), we make the
feature interaction between phoneme and style paths not only in the
encoder part but also in the mel-spectrogram decoder part. Specif-
ically, the output embedding Hsd of style decoder is fed into each
FFT block of phoneme decoder as an additional style input in order
to fully integrate the style and pronunciation information. After that,
the well-mixed output embedding H

′
ps of mel-spectrogram decoder

based on the two encoder-decoder paths is finally fed into the post
linear layer to reconstruct the mel-spectrogram.

3.4. Training strategy and inference procedure

As shown in Fig. 1(a), our proposed model is trained in three stages.
i) In the first stage, the style encoder is pre-trained with a large

amount of text data. Training details are similar to [15].
ii) In the second stage, the style extractor is trained with a large

amount of audio data. Consistent with the original VQ-VAE, the to-
tal training loss consists of a reconstruction loss for reconstructing

E
ncoder

Vector
Quantization

D
ec
od
er

Speaker
Conditions

Fig. 2. Style Extractor based on VQ-VAE.

the mel-spectrogram, a vector quantisation loss for updating the dic-
tionary and a commitment loss for making sure the encoder commits
to an embedding.

iii) In the third stage, the TTS model is trained with audiobook
data. The model parameters of style encoder and style extractor are
frozen without gradient update. An additional style loss Lstyle is
adopted to the style encoder-decoder path to give a guidance from
the pre-trained style extractor.

Lstyle = MSE(Hsd,Hse) (4)

where MSE is the mean square error (MSE) loss, Hsd and Hse

are the outputs of style decoder and style extractor respectively. The
total loss is as follows:

Ltotal = Ltts + αLstyle (5)

where Ltts is the TTS loss consistent with FastSpeech 2.
During inference, the style extractor is abandoned (as shown by

the dotted line in Fig. 1 (a)). By accepting phoneme and context
input, the model can synthesize speech with more expressive styles.

4. EXPERIMENTS

4.1. Datasets and system settings

We use 3 types of internal Mandarin datasets to train style encoder,
style extractor and TTS model respectively. The style encoder is
trained with a large plain text dataset, containing 7.5M audiobook
sentences. The style extractor is trained with a large multi-speaker
audio corpus, which contains around 400 hours of audios with corre-
sponding text and covers a wealth of application scenarios and style
variations. We use an audiobook corpus to train the TTS model. It
has around 30-hour speech data with context and is cut into 30,000
audio clips, of which 1000 clips are used for validation and 500 clips
for test, and the rest for training. Besides, another small audiobook
dataset covering several different categories is further used to eval-
uate the out-of-domain performance. Details are shown in Table 1.

Table 1. Datasets of different training stages.
Stage Style Encoder Style Extractor TTS model
Type Text Audio Audiobook
Size 7.5M 400 hours 30 hours

For feature extraction, we transform the raw waveforms into 80-
dim mel-spectrograms with sampling rate 16kHz, frame size 1200
and hop size 240. The context of current sentence is made up of
its two past sentences, two future ones and itself. The codebook
size of style extractor is set to 512 and the style loss coefficient α
is 1. All the trainings are conducted with a batch size of 16 on a
NVIDIA V100 GPU. The Adam optimizer is adopted with β1 =
0.9, β2 = 0.98. In addition, a well-trained HiFi-GAN [24] is used as
the vocoder to generate waveform. Two FastSpeech 2 based methods
are implemented for comparison as follows:

• FastSpeech 2: Original FastSpeech 2 [3] is implemented as
the first baseline method.

• FS2-CADEC: Inspired by [15], we set an end-to-end TTS
model by combining CADEC encoder with FastSpeech 2.
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Table 2. Subjective and objective evaluation results for different models.

Model MOS Style MOS Paragraph CMOS F0 Energy Duration MCD(out-of-domain) (out-of-domain) (out-of-domain) RMSE RMSE MSE
Ground Truth 4.22 ± 0.14 4.17 ± 0.11 - - - - -
FastSpeech 2 4.00 ± 0.10 4.09 ± 0.13 -0.161 58.930 10.848 0.0636 5.969
FS2-CADEC 3.97 ± 0.10 4.08 ± 0.10 -0.022 58.865 10.788 0.0629 5.951
Proposed 4.08 ± 0.09 4.17 ± 0.08 0 57.271 10.697 0.0617 5.937

4.2. Subjective comparison for different systems

Mean Opinion Score (MOS) is first conducted in terms of the com-
prehensive performance of synthesized speech including sound qual-
ity, naturalness, expressiveness, etc, to ensure that all baseline sys-
tems are well reproduced. Furthermore, style MOS is used to only
focus on the style expressiveness of synthesized speech, and para-
graph Comparative MOS (CMOS) is used to evaluate the style tran-
sition among sentences within a paragraph. All the tests are con-
ducted on Microsoft UHRS crowdsourcing platform. As our ulti-
mate goal is to synthesize any other given audiobook, we mainly
focus on the out-of-domain role performance. 50 single sentences
and 20 short paragraphs are randomly selected in an out-of-domain
set. Each audio is judged by at least 10 native speakers.

As shown in Table 2, our proposed approach achieves the best
MOS of 4.08 and best Style MOS of 4.17 compared with the base-
line methods. Specially, our proposed approach achieves compa-
rable results to the ground truth recording on Style MOS. In the
paragraph-level comparison, our proposed approach also achieves
the best CMOS performance. These results demonstrate the effec-
tiveness of our proposed methods especially on the role style expres-
siveness in out-of-domain scenarios.

4.3. Objective comparison for different systems

For the objective evaluation of synthesized speech, we employ the
root mean square error (RMSE) of pitch and energy, the mean square
error (MSE) of duration and mel cepstral distortion (MCD) as the
objective evaluation metrics.

As shown in Table 2, our proposed model achieves 57.271 for
F0 RMSE, 10.697 for Energy RMSE, 0.0617 for duration MSE and
5.937 for MCD, which outperforms all the baselines on all metrics.
These results indicate that our proposed model can predict more ac-
curate explicit style features, e.g., duration, pitch and energy, and
reconstruct more preserved mel-spectrograms, than baselines.

4.4. Analysis for the pre-training strategy

To further verify whether the pre-training strategy with plenty of au-
dio data is helpful for the style representation latent space modeling
of the unbalanced audiobook data, we also train a style extractor with
only audiobook dataset for comparison. We extract a few role style
embeddings with different style categories in the audiobook dataset
by the above-mentioned two well-trained style extractors and make
a t-SNE visualization respectively.

Fig. 3 (a) shows the extracted style embeddings when only au-
diobook dataset participates in training, and Fig. 3 (b) shows the
extracted style embeddings when we use the large dataset to train
the style extractor. Obviously, compared to Fig. 3 (a), there is a bet-
ter cohesion and distribution differences among different styles in
Fig. 3 (b). Note that the style in audiobook dataset is too complex to
be divided into several categories, and there may be several slightly
different distribution forms even within the same style category by
manual annotation. The results show that it’s difficult to model the
style representation latent space with only unbalanced and limited
audiobook data, and our proposed pre-training strategy with a large

amount of audio data that covers multiple expressive scenarios in
other domains is necessary and beneficial for the style latent space
modeling of audiobook speech synthesis.

(a) (b)

Fig. 3. Visualization of style embedding space trained with different
datasets. Each color indicates a ground truth style category. (a) rep-
resents style embeddings while training with only audiobook dataset.
(b) represents style embeddings while training with large dataset.

4.5. Ablation study for the model architecture

To further investigate the influence of several main modules in our
proposed model, we have tried three other settings: i) Proposed w/o
Style Encoder: The style encoder is removed, only the output Hp

of phoneme encoder is fed to the extended variance adaptor for both
the two paths. ii) Proposed w/o Style Decoder: The style decoder
is removed, both the outputs H

′
p and H

′
s of the extended variance

adaptor are fed to phoneme decoder together. iii) Proposed w/o
Style Extractor: The style extractor is removed, which means the
style loss Lstyle is removed during the TTS training stage.

CMOS is employed to compare the synthesized speech in terms
of naturalness and expressiveness. As shown in Table 3, the per-
formance of the three settings is degraded to various degrees re-
spectively compared with the proposed method. This indicates
that all these components have substantial impact on our proposed
model. Furthermore, the results also indicate that both our proposed
style pre-training strategy and the novel TTS architecture with two
encoder-decoder paths can alleviate the role and out-of-domain
expressiveness deterioration problem caused by unbalanced style
distribution and insufficient model generalizability.

Table 3. CMOS comparison for ablation study.
Model CMOS
Proposed 0

w/o Style Encoder -0.142
w/o Style Decoder -0.133
w/o Style Extractor -0.150

5. CONCLUSION

This work addresses the problem of poor expressiveness in audio-
book speech synthesis due to generalized model architecture and
unbalanced style distribution in the training data. We propose a
pre-trained VQ-VAE-based style extractor and a novel TTS architec-
ture with two encoder-decoder paths. Both objective and subjective
experiments demonstrate the effective performance of our proposed
method in terms of naturalness and expressiveness of the synthesized
speech, especially for the role and out-of-domain scenarios.
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