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ABSTRACT

We propose unifying one-shot voice conversion and cloning into a
single model that can be end-to-end optimized. To achieve this,
we introduce a novel extension to a speech variational auto-encoder
(VAE) that disentangles speech into content and speaker representa-
tions. Instead of using a fixed Gaussian prior as in the vanilla VAE,
we incorporate a learnable text-aware prior as an informative guide
for learning the content representation. This results in a content rep-
resentation with reduced speaker information and more accurate lin-
guistic information. The proposed model can sample the content
representation using either the posterior conditioned on speech or the
text-aware prior with textual input, enabling one-shot voice conver-
sion and cloning, respectively. Experiments show that the proposed
method achieves better or comparable overall performance for one-
shot voice conversion and cloning compared to state-of-the-art voice
conversion and cloning methods.

Index Terms— Voice conversion, voice cloning, VAE, speech
disentanglement

1. INTRODUCTION

Voice conversion and cloning are two techniques that are important
for personalized speech generation. Voice conversion aims to mod-
ify speech from a source speaker to make it sound as though it was
produced by a designated target speaker [1]. Voice cloning aims to
generate speech from text for a speaker absent from the training data
in a data-efficient manner [2]. The research community is especially
interested in both tasks under one-shot scenarios, i.e., when only a
few seconds of speech are available for the target speaker.

Traditionally, voice conversion [3] and cloning [2, 4] are stud-
ied separately. However, these two tasks share much in common
regarding how information flows from the input to the output, as il-
lustrated in Figure 1. Both tasks involve combining spoken content
with speaker identity to generate the desired speech. The reference
speech of the target speaker provides speaker identity information,
while the spoken content is provided by the source speech for voice
conversion and by the text for voice cloning. In real-world applica-
tions, it is desirable to model voice conversion and cloning jointly.
For instance, a user may wish to convert either their speech or typed
text into a designated character voice.

This motivates us to unify voice conversion and cloning into one
framework. We propose a solution incorporating the disentangled
content and speaker representations of speech, which serve as the
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Fig. 1. Information flow for voice conversion and cloning

key element to bridge voice conversion and cloning. With the de-
sired disentanglement, one can map either source speech or text into
the content representation, which can be combined with the speaker
representation disentangled from the reference speech to generate
the desired speech. Thus voice conversion and cloning can be re-
spectively achieved.

We adopt the variational auto-encoder (VAE) [5] as it is widely
used in learning disentangled representations and voice conversion
[6, 7, 8, 9, 10]. A naive voice conversion model based on VAE con-
sists of a content posterior and a speaker posterior to respectively
extract the content and speaker representations from speech. Two
fixed Gaussian priors are imposed to regularize the two posteriors
in a vanilla VAE. Recently proposed methods [9, 10] show that re-
stricting two Kullback-Leibler (KL) divergence terms for two poste-
riors can limit the amounts of information captured by the two latent
variables, thus facilitating the learning of disentangled representa-
tions and high-quality voice conversion. Based on this design, we
propose a novel extension that incorporates textual information to
improve voice conversion performance by inducing better disentan-
glement. Additionally, this extension allows for voice cloning, as
textual input is also accepted.

Specifically, we propose replacing the fixed isotropic Gaussian
prior for the content representation with a trainable text-aware one.
The text-aware prior is conditioned on the textual input to model the
distribution of content representation. Compared to a fixed Gaussian
prior, which provides a rather general regularization to the content
representation learning, the text-aware prior is more informative of
the linguistic content and can thus facilitate learning the more accu-
rate and speaker-independent content representation. Besides, exist-
ing methods [9, 10] impose two weight parameters on the two KL di-
vergence terms to facilitate disentanglement, the performance is very
sensitive to the choices of these two weight parameters. In contrast,
the proposed model is more robust to variations of weight parame-
ters due to the strong regularization provided by the text-aware prior.
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The improved disentanglement helps produce better voice conver-
sion performance.

Furthermore, the text-aware prior makes it possible to sample
the content representation from the textual input, which enables text-
to-speech (TTS) and especially one-shot voice cloning. The TTS
paradigm of the proposed model differs from the traditional multi-
speaker TTS methods that directly map the textual embedding and
speaker embedding to the speech acoustic features. Instead, the ex-
plicitly disentangled speech representations in the proposed model
divide the TTS into two modeling phases: 1) to convert the text into
a speaker-independent content representation using the text-aware
prior; 2) to combine the speaker representation with the content rep-
resentation and generate speech using the decoder. This two-phase
modeling paradigm makes the learning more structured and efficient,
thus helping produce good voice cloning performance.

We incorporate a modified evidence lower bound (ELBO) loss
function to train the text-aware prior jointly with other parts of the
proposed model end-to-end. After one training pass, the proposed
model can be directly applied to new speaker voices for both voice
conversion and cloning.

2. RELATED WORK

Our work is mainly related to recently proposed VAE-based speech
disentanglement methods [9, 10] that incorporate a learning objec-
tive similar to β-VAE [6]. We propose to incorporate the trainable
text-aware prior to better regularize the content representation learn-
ing, which improves voice conversion performance and enables one-
shot voice cloning. Several other methods have been proposed to
achieve voice conversion and cloning simultaneously. Some meth-
ods [11, 12] joint train a speech encoder and a text encoder to extract
the speaker-independent content representation, but these models do
not disentangle the speaker representation from speech, thus requir-
ing further adaptation training for an unseen speaker. Other methods
[13, 14, 15] adopt Glow [16] conditioned on the speaker embedding
to extract the speaker-independent content representation. While the
base distribution of Glow is set as the distribution of the textual
embedding, it is encouraged to extract speaker-independent content
representation. However, the content representation extracted us-
ing the conditional Glow remains significantly speaker-dependent,
which reduces speaker similarity for voice conversion, as shown by
the experimental results for SC-GlowTTS [13] in Section 5.3.

3. FORMULATION

3.1. VAE for speech disentanglement

We first introduce the VAE-based framework for speech disentan-
glement. Let D denote the speech corpus and y represent the speech
acoustic feature; the goal is to disentangle y into two latent vari-
ables zc and zs to encode the information of linguistic content and
speaker identity, respectively. To achieve this goal, we can adopt
a VAE to model the distribution of speech y with latent variables
zc and zs. We assume that the prior distributions for zc and zs are
isotropic Gaussians, denoted as p(zc) and p(zs), respectively. Let
the conditional distribution pθ(y|zc, zs) parameterized by θ define
the process of speech generation given the two latent variables, and
let qϕ(zc|y) and qϕ(zs|y) denote respectively the posterior distri-
butions of zc and zs, where ϕ represents the parameters. We re-
fer to p(zc), p(zs), qϕ(zc|y), qϕ(zs|y) and pθ(y|zc, zs) respectively
as content prior, speaker prior, content posterior, speaker posterior
and decoder. Recent works [9, 10] show the learning objective in

Eqn. (1) can facilitate the disentanglement of content and speaker
representations from speech, where βc and βs are two properly cho-
sen hyper-parameters. Note that when βc = βs = 1.0, Eqn. (1)
becomes the vanilla objective for VAE with two independent latent
variables.

Ey∼D[log p(y)] ≥ Ey,qϕ(zc|y),qϕ(zs|y)[log p(y|zc, zs)]
− βc · Ey[DKL[qϕ(zc|y) ∥ p(zc)]]

− βs · Ey[DKL[qϕ(zs|y) ∥ p(zs)]] (1)

It has been proved that Ey[DKL[qϕ(z|y) ∥ p(z)]] is an upper
bound of the mutual information between the latent variable and
speech: I[y, z] [9], here z is a general variable name covering zc
and zs. In this sense, properly chosen values for βc and βs can
restrict the information flowing from zc and zs to be precisely the
content and speaker identity, respectively. With the content and
speaker representations being disentangled from speech, this model
can achieve one-shot voice conversion by combining zc extracted
from the source speech with zs extracted from the target speech.

3.2. VAE with text-aware prior

While the Gaussian prior p(zc) can serve as a general target to limit
the amount of information captured by zc, it does not specify how zc
should be, thus can cause content information loss when we impose
a large βc. When corpus D includes transcripts, i.e., we have the text
x corresponding to each utterance y, it is desirable to incorporate the
textual information to regularize the content representation learning
further. We propose replacing the fixed Gaussian content prior with
a trainable one, which we define as pω(zc) with parameter ω. To
make pω(zc) text-aware, we model the conditional distribution of zc
given the text x, i.e., pω(zc|x) with a neural network. For a given
ẑc that is sampled from qϕ(zc|ŷ), the prior probability of ẑc is de-
fined as pω(ẑc) =

∫
x
pω(ẑc|x)p(x)dx ≈ 1

|D|
∑

x∼D pω(ẑc|x). In
practice, we adopt a single-point approximation to the summation.
Specifically, we let pω(ẑc) ≈ 1

|D|pω(ẑc|x̂), where x̂ is the text cor-
responding to ŷ. This approximation is reasonable since x̂ yields
the largest pω(ẑc|x̂) and thus 1

|D|pω(ẑc|x̂) contributes most to the
summation.

We substitute p(zc) in Eqn. (1) with pω(zc), which is then ap-
proximated by 1

|D|pω(zc|x) to derive the ELBO of the proposed
model. This produces the resultant ELBO shown in Eqn. (2), in
which we ignore a positive constant induced by 1

|D| .

E(x,y)[log p(y)] ≥ Ey,qϕ(zc|y),qϕ(zs|y)log p(y|zc, zs)
− βc · E(x,y)[DKL[qϕ(zc|y) ∥ pω(zc|x)]]
− βs · E(x,y)[DKL[qϕ(zs|y) ∥ p(zs)]] (2)

Since the text-aware prior is trainable, the optimization of the
proposed model is slightly different from the vanilla VAE. For each
batch of training data, we fix pω(·) when updating other parts of
the VAE. To update the text-aware prior, we fix other parts of the
VAE and sample zc from qϕ(·|y) for different y to do maximum
log-likelihood training over pω(·), which can be approximated by
the log-likelihood of ẑc evaluated by pω(·|x) as shown in Eqn. (3),
where C is a constant.

Ey,qϕ(zc|y)[log pω(zc)] ≈ E(x,y),qϕ(zc|y)

[
log

1

|D|pω(zc|x)
]

= E(x,y),qϕ(zc|y)[log pω(zc|x)] + C (3)
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Text: 𝑥 Speech: 𝑦

Speech: 𝑦

𝐸𝑛𝑐 : 𝜙

𝐸𝑛𝑐 : 𝜔

𝐸𝑛𝑐 : 𝜙

Speech: 𝑦′

𝐷𝑒𝑐: 𝜃

𝜇 𝑥; 𝜔 , 𝜎 𝑥; 𝜔

𝜇 (𝑦; 𝜙), 𝜎 (𝑦; 𝜙) 𝜇 (𝑦 ; 𝜙), 𝜎 (𝑦 ; 𝜙) 𝑁(0, 𝐼)

Alignment: 𝜔

𝑧 𝑧

Fig. 2. Model architecture (scissors denote stop of gradient)

In summary, the learning objective to be maximized for the pro-
posed model is shown in Eqn. (4), where sg(·) refers to the stop
gradient operation. The first three terms form the VAE learning ob-
jective that treats the content prior as a fixed one. The last term
guides the update of text-aware prior.

LT = Ey,qϕ(zc|y),qϕ(zs|y)[log p(y|zc, zs)]
− βc · E(x,y)[DKL[qϕ(zc|y) ∥ sg(pω(zc|x))]]
− βs · E(x,y)[DKL[qϕ(zs|y) ∥ p(zs)]]

− E(x,y)[Esg(qϕ(zc|y))[log pω(zc|x)]] (4)

4. IMPLEMENTATION

The overall architecture of the proposed model is shown in Figure
2. We adopt Enccy and Encsy to respectively model the content
and speaker posteriors. These two modules take in the speech and
output the mean and variance of the corresponding latent variable.
Dec models pθ(y|zc, zs) as a fixed-variance Gaussian where the
mean is the predicted acoustic feature. The content prior consists
of the Alignment module and Enccx. The Alignment module aims
to align the raw text onto a frame-level textual feature. Enccx takes
in the aligned textual feature and outputs the mean and variance of
the content representation. During training, the input to Enccy and
Encsy is the same, except that the input to Encsy is chunked and shuf-
fled along the time axis [17]. This operation can help learn a more
content-independent speaker representation. The KL-divergence be-
tween the content posterior and the content prior is normalized by
the time length.

To achieve voice conversion, we use Enccy to extract the content
representation from the source speech and obtain the speaker repre-
sentation from the target speech using Encsy; the two representations
are fed into Dec to generate the desired speech. For voice cloning,
the content representation is extracted from the text using Enccx.

Enccy consists of two layers of 1D 256-dimension convolution
with a kernel size of 3 and 2 layers of 256-dimension self-attention.
Encsy contains 4 layers of 256-dimension 1D convolution with the 2-
strided average pooling layer in between; the final output is averaged
globally along the time axis to obtain a single vector, which is fed
into a fully-connected layer to predict the mean and variance. The
Alignment module combines the text encoder, length predictor, and
length regulator from FastSpeech2 [18]. Enccx and Dec have the
same structure as Enccy , except that for Dec the output of the self-
attention is projected to the acoustic feature.

We train the proposed model on a single Tesla V100 GPU with
a batch size of 32. we adopt the Adam optimizer with a constant
learning rate of 10−4. We heuristically search βc over [1.0, 10.0]
and βs over [10−3, 10−1] using the validation set.

5. EXPERIMENTS

5.1. Dataset

For evaluation, we utilize the multi-speaker English speech corpus
VCTK [19]. It contains 109 speakers, from which we choose 8 for
validation and 11 for testing. We remove any leading or trailing
silence from all utterances and extract the mel-spectrograms using
the same settings as HiFi-GAN [20]. We preprocess the text in a
similar manner to FastSpeech-2 [18].

5.2. Baselines

We compare the proposed method with several strong baselines to
show its effectiveness in learning disentangled speech representa-
tions to achieve one-shot voice conversion and cloning. For dis-
entangled speech representation learning and voice conversion, we
adopt VQMIVC [21] that applies vector quantization and mutual in-
formation minimization to disentangle speech and achieve one-shot
voice conversion. The speech VAE with isotropic Gaussian content
prior [9] is also included in the comparison – we set βc = 4.0 and
βs = 10−3 and denote it as VAE-GP. For voice cloning, we choose
the recently proposed CDFSE [17] that utilizes an attention-based
speaker encoder to capture the speaker characteristic. We also in-
clude SC-GlowTTS [13] that can achieve both one-shot voice con-
version and cloning, and use the SC-GlowTTS-Trans variant as it
achieves good overall results without the fine-tuned vocoder. We re-
fer to the proposed speech VAE with text-aware prior as VAE-TP, for
which we set βc = 5.0 and βs = 10−3. The sizes of all compared
models are shown in the second column of Table 2. We use the same
pre-trained HiFi-GAN vocoder for all compared models to generate
the waveform.

5.3. Disentanglement evaluation

We report the equal error rate (EER) of speaker verification (SV)
using the content and speaker representations to demonstrate the
performance of disentanglement. Ideally, the speaker identity in-
formation should be captured only in the speaker representation zs,
which is expected to yield good SV performance. On the other
hand, the content representation zc should produce relatively worse
SV results. We extract the content and speaker representations
from all utterances in the test set using all compared models ex-
cept CDFSE, which does not explicitly disentangle speech into
content and speaker representations. The content representation is
averaged over time to obtain an utterance-level embedding. For SC-
GlowTTS, the content representation is extracted using the Glow
decoder conditioned on the speaker embedding of input speech. We
randomly select 4 utterances from each speaker as anchors, while
all the remaining utterances are taken as trials. The results yielded
by a pre-trained speech recognition bottleneck feature [22] and a
pre-trained SV model called Resemblyzer are also included for
reference.

The results are shown in Table 1. As can be observed, the
proposed method learns the best-disentangled representations for
content and speaker in terms of the EER. VQMIVC also achieves
good disentanglement, but the performance is worse than VAE-
GP and VAE-TP. SC-GlowTTS performs well on SV when using
speaker representation since the speaker encoder is pre-trained on
the large-scale SV corpus, but the content representation remains
largely speaker-dependent.

Resemblyzer: https://github.com/resemble-ai/Resemblyzer
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Table 1. SV results on content and speaker representations
Model EER (zc) ↑ EER (zs) ↓

Pre-trained 0.431 0.020

VQMIVC 0.361 0.076
SC-GlowTTS 0.131 0.030

VAE-GP 0.386 0.043
VAE-TP (ours) 0.441 0.029

5.4. Speech generation evaluation

We conduct objective and subjective evaluations to demonstrate the
effectiveness of the proposed model in one-shot voice conversion
and cloning. We randomly select five utterances from each speaker
in the test set as voice conversion sources, and one utterance from
each test speaker as the reference speech. In total, we obtain 550
converted utterances. For voice cloning, we select 50 sentences from
the LibriTTS test set [23] and synthesize them using the voice of
the 11 test speakers, resulting in 550 synthesized utterances in total.
Part of the converted and synthesized samples are available online.
We refer to voice conversion as CV and voice cloning as CL for
ease of writing. We include the evaluation results on samples copy-
synthesized by Hifi-GAN for reference, denoted as Copy-Syn.

For objective evaluations, we use Resemblyzer to extract
speaker embeddings from converted and synthesized utterances.
We report the cosine similarities (CS) between the generated utter-
ances and the reference speech as an indicator of speaker similarity.
Additionally, we employ a pre-trained speech recognition model
[24] to transcribe the generated utterances. A lower character er-
ror rate (CER) of the transcription indicates more accurate content
representation and more intelligible generated speech.

The results are shown in Table 2. We can observe that the pro-
posed VAE-TP model achieves the best speaker similarity for voice
conversion and cloning in terms of CS. VAE-TP also achieves better
results for CER of voice conversion than VAE-GP and VQMIVC.
SC-GlowTTS obtains the best conversion CER performance thanks
to the information preservation capability of the Glow decoder. Both
VAE-TP and CDFSE surpass SC-GlowTTS in cloning CER. CDFSE
achieves better cloning CER than VAE-TP by adopting a phoneme
classifier to regularize the content representation learning, while
VAE-TP relies only on the VAE objective without extra supervision.

Table 2. Speech generation objective evaluation results
Model Size CV-CS ↑ CV-CER ↓ CL-CS ↑ CL-CER ↓

Copy-Syn - 0.827 0.12% 0.827 0.12%

VQMIVC 336M 0.700 8.43% - -
VAE-GP 188M 0.715 7.93% - -
CDFSE 592M - - 0.758 1.96%

SC-GlowTTS 384M 0.719 0.58% 0.722 6.99%
VAE-TP (ours) 399M 0.740 1.49% 0.783 2.82%

We randomly select 15 converted and 15 synthesized utter-
ances for subjective evaluation. We ask 19 subjects who understand
English sufficiently to listen to these samples and evaluate their
naturalness and similarity to their corresponding reference speech.
The speech naturalness and speaker similarity are evaluated with a
5-scale mean opinion score (MOS). The proposed model achieves
overall comparable or better performance than all baselines for all
metrics, as shown in Table 3. While SC-GlowTTS achieves rela-

Samples: https://light1726.github.io/voice conversion and cloning/

tively better performance in conversion naturalness, its similarity
and cloning naturalness are worse than other methods.

Table 3. Speech generation subjective evaluation results
Models CV MOS (95% CI) CL MOS (95% CI)

Naturalness Similarity Naturalness Similarity

Copy-Syn 4.36±0.09 4.51±0.09 4.36±0.09 4.51±0.09

VQMIVC 3.69±0.10 3.63±0.11 - -
VAE-GP 3.66±0.10 3.67±0.10 - -
CDFSE - - 3.82±0.05 3.60±0.11
SC-GlowTTS 3.92±0.12 3.66±0.14 3.56±0.13 3.38±0.10
VAE-TP (ours) 3.73±0.10 3.71±0.10 3.81±0.08 3.66±0.09

5.5. Ablation study

In the ablation study, we aim to examine the effect of the text-aware
prior by comparing the proposed VAE-TP with VAE-GP, which has
a fixed Gaussian prior. We fix the weight parameter βs = 10−3 and
vary βc. We report SV EER using zc and transcription CER of con-
verted speech to indicate the disentanglement and voice conversion
performance, respectively. Table 4 shows that the performance of
VAE-GP is very sensitive to the value of βc. Although an increase in
βc leads to a more speaker-independent zc, it causes more loss of lin-
guistic information and transcription errors. While VAE-TP yields
a similar trend, it produces overall better performance and more ro-
bustness to varying βc than VAE-GP. This demonstrates the supe-
riority of the proposed text-aware prior in facilitating better speech
disentanglement and voice conversion.

Table 4. The effects of varying βc on VAE-GP and VAE-TP
Model Tasks βc = 1.0 βc = 5.0 βc = 10.0

VAE-GP EER (zc) ↑ 0.232 0.374 0.418
CV-CER ↓ 1.10% 11.11% 32.21%

VAE-TP (ours) EER (zc) ↑ 0.325 0.443 0.469
CV-CER ↓ 0.27% 1.49% 3.42%

6. CONCLUSION

We propose a unified framework that can perform both one-shot
voice conversion and cloning. We incorporate a learnable text-
aware prior into a speech VAE to disentangle speech into content
and speaker representations. Compared to the vanilla fixed Gaus-
sian prior, the text-aware prior is more informative regarding the
linguistic content and can aid the speech VAE in learning better-
disentangled representations. Additionally, the text-aware prior
allows for the flexibility to sample content representation from
text, enabling the proposed model to achieve both one-shot voice
conversion and cloning. Experimental results demonstrate that the
proposed model can achieve better or comparable voice conversion
and cloning performance compared to existing methods.
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