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Abstract—Discriminative training techniques define state-of-
the-art performance for automatic speech recognition systems.
However, they are inherently prone to overfitting, leading to poor
generalization performance when using limited training data. In
order to address this issue, this paper presents a full Bayesian
framework to account for model uncertainty in sequence dis-
criminative training of factored TDNN acoustic models. Several
Bayesian learning based TDNN variant systems are proposed to
model the uncertainty over weight parameters and choices of
hidden activation functions, or the hidden layer outputs. Efficient
variational inference approaches using as few as one single pa-
rameter sample ensure their computational cost in both training
and evaluation time comparable to that of the baseline TDNN
systems. Statistically significant word error rate (WER) reductions
of 0.4%–1.8% absolute (5%-11% relative) were obtained over a
state-of-the-art 900 h speed perturbed Switchboard corpus trained
baseline LF-MMI factored TDNN system using multiple regular-
ization methods including F-smoothing, L2 norm penalty, natural
gradient, model averaging and dropout, in addition to i-Vector plus
learning hidden unit contribution (LHUC) based speaker adapta-
tion and RNNLM rescoring. The efficacy of the proposed Bayesian
techniques is further demonstrated in a comparison against the
state-of-the-art performance obtained on the same task using the
most recent hybrid and end-to-end systems reported in the liter-
ature. Consistent performance improvements were also obtained
on a 450-h HKUST conversational Mandarin telephone speech
recognition task. On a third cross domain adaptation task requiring
rapidly porting a 1000-h LibriSpeech data trained system to a
small DementiaBank elderly speech corpus, the proposed Bayesian
TDNN LF-MMI systems outperformed the baseline system using
direct weight fine-tuning by up to 2.5% absolute WER reduction.

Index Terms—Bayesian learning, domain adaptation, gaussian
process, LF-MMI, variational inference.
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I. INTRODUCTION

THERE has been a long history of using discriminative train-
ing techniques to improve the performance of automatic

speech recognition (ASR) systems. In current neural network
based systems, these discriminative training methods define the
state-of-the-art performance. From the previous generation of
Gaussian mixture model based Hidden Markov Models (HMMs)
ASR systems [1]–[6] to the current systems using a hybrid HMM
deep neural network (DNN) architecture [7]–[12], performance
improvements obtained over the conventional cross-entropy
(CE) trained systems have been widely reported. Although in
recent years there has been a significant trend of moving from
hybrid HMM-DNN system architectures to all neural end-to-end
(E2E) modelling paradigm represented by listen, attend and spell
(LAS) [13], connectionist temporal classification (CTC) [14],
RNN transducers (RNN-T) [15] and neural transformers [16],
state-of-the-art hybrid HMM-DNN systems featuring sequence
discriminative training techniques, for example, maximum mu-
tual information (MMI) criterion [1], [17], [18] trained factored
time delay neural networks (TDNNs) [10], [19]–[21], remain
highly competitive against end-to-end approaches to date [17],
[22]–[24].

Since discriminative training methods were first introduced to
the earlier generation of GMM-HMM based speech recognition
systems [1], [25], [26], they have been long known to be prone
to overfitting when using limited training data and a sparse rep-
resentation of the modelling confusion over possible erroneous
recognition hypotheses. In the context of deep neural network
based ASR systems, this overfitting issue also presents [27],
for example, when using smaller sized and shallower lattices to
train systems with a very large number of HMM state targets [9].
Such issue is further aggravated by the use of stochastic gradient
based optimization techniques that operate sequentially in a
batch mode on smaller subsets of data randomly drawn from
the complete training data collection.

In order to address the above issue, several categories of
techniques have been developed in recent years to improve
the generalization performance of discriminative training for
DNN based ASR systems. Drawing inspirations from the earlier
regularization techniques used in the discriminative training
of GMM-HMM systems [28], the first category of methods
attempts to alleviate the problem by optimizing the interpolated
error cost between a sequence level discriminative training
criterion, for example, MMI, and the conventional CE cost,
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as in F-smoothing [9]. Motivated by the data intensive nature
of deep learning techniques, the second category of techniques
reduce the risk of overfitting using data augmentation methods.
By expanding the limited training data using, for example, speed
perturbation [29], spectral deformation [30], simulation of noisy
and reverberated speech [31], the coverage of the augmented
training data and the resulting speech recognition systems’
generalization performance can be improved. The third category
of methods address the overfitting issue by modifying the opti-
mization algorithm. These include the incorporation of an addi-
tional L2 norm term into the original discriminative error cost
function [8]. Second-order methods represented by Hessian-free
optimization [32]–[34] and the use of natural gradient [35]–[37]
have been investigated. Model parameter averaging [37] over
different batch intervals at the end of a training epoch can also
be used, for example, employed in the Kaldi toolkit as a standard
regularization technique. Weight noise adds noise directly to
the network parameters to improve generalization [38], [39].
Finally, dropout, a simple and effective approach used in deep
learning models to avoid overfitting [40] can also be adopted.
However, it lacks of a mathematically well defined framework
to model the underlying DNN ASR systems’ uncertainty arising
from the use of limited data, when compared with Bayesian neu-
ral networks [41]. Most of the above regularization techniques
are currently used in the Kaldi implementation of lattice-free
maximum mutual information (LF-MMI) sequence training of
factored TDNN systems [10].

This paper presents a mathematically well grounded, full
Bayesian framework to account for model uncertainty in se-
quence discriminative training of factored TDNN acoustic
models. In contrast to conventional Bayesian neural networks
marginalizing over the CE error cost, an integration of the
sequence level MMI criterion is used. Modelling uncertainty
is addressed using three full Bayesian approaches. Bayesian
TDNN systems [42]–[46] are used to model uncertainty over the
weight parameters. Gaussian Process TDNN systems are further
introduced to consider both the uncertainty associated with the
weight parameters, as well as that over the choice of hidden
activation functions. Variational TDNN systems are proposed to
consider the uncertainty over the hidden layer outputs. Efficient
variational inference approaches developed for all the above
Bayesian TDNN systems using a very small number of samples
(as low as one) ensure their computational cost in both training
and evaluation time comparable to that of the baseline TDNN
systems. A theoretical connection is further drawn between full
Bayesian inference and dropout by re-formulating the latter as
a special case of Bayesian TDNN systems.

Experiments conducted on a state-of-the-art 900-h speed
perturbed Switchboard corpus trained baseline LF-MMI fac-
tored TDNN system featuring multiple built-in regularization
methods including F-smoothing [9], L2 norm [8], natural gra-
dient [35]–[37], model averaging [37] and dropout [40], as well
as i-Vector [47], [48] and learning hidden unit contribution
(LHUC) [49] speaker adaptation suggests the proposed Bayesian
TDNN, Gaussain Process TDNN and variational TDNN systems
consistently outperform the baseline systems by a statistically
significant margin of 0.4%-1.8% absolute (5%-11% relative)

reduction in word error rate over the NIST Hub5’00, RT02
and RT03 sets. Similar consistent performance improvements
were also obtained after the recurrent neural network language
model rescoring, as well as on a 450-h (with speed perturbation)
HKUST conversational Mandarin telephone speech recognition
task. The efficacy of the proposed Bayesian estimation tech-
niques is further demonstrated on a cross domain adaptation task.
A 1000-h LibriSpeech corpus trained LF-MMI TDNN system is
rapidly domain adapted to a highly challenging elderly speech
recognition corpus based on a 10-h Dementia Bank Pitt database.
Consistent performance improvements of 1.1% absolute WER
reduction over LF-MMI baseline TDNN systems using direct
weight fine-tuning were obtained.

The main contributions of this paper are summarized below:
1) This paper presents a first use of a mathematically well

grounded, full Bayesian framework to account for model
uncertainty in sequence discriminative training of fac-
tored TDNN acoustic models. A systematic overview and
comparison over different full Bayesian TDNN learning
variants is given. In contrast, only limited previous re-
search on Bayesian neural network learning techniques
was conducted for language modelling [50]. More re-
cently, a Bayesian learning framework was used to account
for model uncertainty in sequence discriminative training
of factored TDNN acoustic models in our preliminary
research [43], [44]. Stochastic noise injection to model
parameters [38] was also exploited to improve the gener-
alization performance of E2E ASR systems [39], [51].

2) Efficient variational inference approaches developed for
all the above Bayesian TDNN systems using a very small
number of samples (as low as one) ensure their compu-
tational cost comparable to that of the baseline systems.
The generic nature of the proposed methods also allows
them to be extended to other end-to-end approaches to ad-
dress similar modelling uncertainty issues during system
development.

3) Significant performance improvements on multiple data
sets were obtained over baseline LF-MMI factored TDNN
systems constructed using a large ensemble of built-in
regularization methods including F-smoothing, L2 norm
penalty, natural gradient, model averaging and dropout.

4) This paper further presents the earliest work on full
Bayesian learning driven rapid domain adaptation of LF-
MMI TDNN based ASR systems. In contrast to the previ-
ous research based on transfer learning [52], the proposed
Bayesian domain adaptation technique provides an alter-
native useful approach to the problem of under-resourced
speech recognition system development.

The rest of this paper is organized as follows. Section 2
introduces a full Bayesian learning framework for several neural
network model variants that account for the uncertainty over
the weight parameters, and the choice of activation functions
or the hidden layer outputs. These include Bayesian neural
networks (BNNs), Gaussian Process neural networks (GPNNs)
and Variational neural networks (VNNs). Time delay neural
networks (TDNNs) are presented in Section 3. Section 4 dis-
cusses the Bayesian estimation of TDNNs. Section 5 shows the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 29,2021 at 05:21:34 UTC from IEEE Xplore.  Restrictions apply. 



1516 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

experiments and results. Finally, the conclusions are drawn in
Section 6.

II. BAYESIAN LEANING BASED NEURAL NETWORK

In this section, we introduce several forms of Bayesian learn-
ing based neural networks presented in this paper, including
Bayesian Neural Networks (BNNs), Gaussian Process Neural
Networks (GPNNs) and Variational Neural Networks (VNNs).

A. Bayesian Neural Network

In conventional neural networks using fixed-point parameter
estimates, the uncertainty associated with the prediction is hard
to quantify. Bayesian neural networks (BNNs) offer a formalism
to understand and quantify the uncertainty by using the posterior
distribution to model the parameter uncertainty in the predictive
distribution [53], [53]–[57]. To make predictions for the obser-
vations of test utterance O∗

r, we average over all the parameter
values, weighted by their posterior probability.

p(H∗
r|O∗

r,D) =

∫
p(H∗

r|O∗
r,w)p(w|D)dw (1)

where H∗
r is the predicted word-sequence for utterance r, w is

the activation parameter, p(w |D) denotes the posterior distribu-
tion to be learned from training data D = {Hr,Or}, Or is the
sequence of observation for utterance r and Hr is the reference
word transcription for utterance r.

If all subsequent layers l + 1, . . . , L are removed, the ex-
pected hidden node output h(l)

i of the i-th node in the l-th layer
is marginalized over different parameter estimates.

h
(l)
i =

∫
φ
(
w

(l)
i • h(l−1)

)
p(w

(l)
i | D)dw

(l)
i (2)

where h(l−1) is the input vector fed into the l-th hidden layer
(the output from the previous layer l − 1), p(w(l)

i |D) denotes
the node dependent activation parameter posterior distribution,
φ(·) is the activation function and • denotes the dot product.

B. Gaussian Process Neural Network

Gaussian Processes (GPs) [58] are powerful nonparametric
distributions over continuous functions that are used in prob-
abilistic modelling for many machine learning applications
including regression and classification tasks and beyond. A
function modelled using Gaussian process is represented as

f(x) ∼ GP (m(x), k(x,x′)) (3)

where x,x′ are arbitrary inputs, m(·) is the mean function and
k(·, ·) is the kernel function.

The above formulation is known as the kernel space view of
GP models [58]. The associated computational complexity over
the kernel covariance function during inference is determined
by the size of the training data, and therefore impractical to be
directly applied in the large-scale tasks, for example, speech
recognition systems that often use tens of millions of frame
samples or more in training. An alternative and computationally
more tractable form of GP models uses basis function interpola-
tion (see Chapter 2 of [58]), leads to the following weight space

view of GP,

f(x) = λλλT • φ(x) =
∑
m

λmφm(x) (4)

where k(·, ·) = φ(·)Tφ(·), λλλ ∼ N (·, ·) represents amplitudes of
different basis functions φm(x) in φ(·).

The connection between neural networks and Gaussian Pro-
cesses has also been extensively studied. Based on MacKay’s
work on the Bayesian neural network [54], Neal [59] proved
that single-hidden-layer Bayesian neural networks of infinite
width are equivalent to Gaussian Processes [58]. Hazan and
Jaakkola [60] and later Lee [61] proposed the use of GP kernels
to approximate infinitely wide deep neural networks. In deep
Gaussian processes (DGPs) [62] models deep belief neural
network layers were replaced by Gaussian Processes.

The form of traditional Bayesian neural networks introduced
earlier in Sec. II-A only considers the uncertainty associated with
weight parameters, but not the network structural configurations.
For example, the choice over the hidden activation functions can
be learned using a simple output level interpolation of commonly
used basis activation functions, i.e., Sigmoid, Tanh, ReLU as the
following.

h
(l)
i =

∑
m

λ
(l,m)
i φm

(
w

(l,m)
i • h(l−1)

)
(5)

where λ
(l,m)
i is the m-th basis activation coefficient and φm is

the m-th basis activation function.
Within a more general framework of Gaussian Process neural

networks (GPNNs), not only the weight parameters inside the
activation functions can be treated as random variables, the
additional uncertainty over the basis coefficients can also be
considered. The prediction is rewritten as

p(H∗
r|O∗

r,D) =

∫ ∫
p(H∗

r|O∗
r,w,λλλ)p(w|D)p(λλλ|D)dwdλλλ

(6)
where p(λλλ |D) and p(w |D) denote the basis activation coef-
ficient and parameter posterior distributions respectively. We
assume these two variables are independent. The general form of
Gaussian Process Neural Network can be further simplified into
four special cases in Table I by considering different uncertainty
modelling combinations (marginalization over both w and λλλ or
only one of them).

Similarly, the expected hidden node output h(l)
i in GPNN can

be modified into the integration of both the weight parameters
and basis coefficients in Eqn. (7).

h
(l)
i =

∑
m

∫ ∫
λ
(l,m)
i φm

(
w

(l,m)
i • h(l−1)

)
p(w

(l,m)
i |D)p(λ

(l,m)
i |D)dw

(l,m)
i dλ

(l,m)
i

(7)

where h(l−1) is the input vector fed into the l-th hidden layer,
p(λ

(l,m)
i |D) and p(w

(l,m)
i |D) denote the basis activation coef-

ficient and parameter posterior distributions.
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TABLE I
DESCRIPTION OF BAYESIAN, GAUSSIAN PROCESS AND VARIATIONAL TDNN
LAYER IN TERMS OF THEIR RESPECTIVE FORMS OF NUMBER OF SAMPLES,
UNCERTAINTY MODELLING, NUMBER OF FREE PARAMETERS AFTER TYING

AND THE SPEED RATIO RELATIVE TO THE STANDARD TDNN LAYER IN

TRAINING AND EVALUATION, BY ASSUMING THE INPUT VECTOR SIZE AS a,
THE NUMBER OF HIDDEN NODES AS b AND THE LATENT VARIABLE z

DIMENSION AS c FOR A SINGLE LAYER. THE BAYESIAN AND GAUSSIAN

PROCESS TDNN LAYERS ARE CONSTRUCTED FOLLOWING THE

IMPLEMENTATION DETAILS OF SECTION IV-E

C. Variational Neural Network

In contrast to the BNN and GPNN models presented in Sec. II-
A and Sec. II-B, when modelling the uncertainty associated with
hidden layer outputs, variational neural networks (VNNs) [63]–
[66] can be used. Instead of modelling the uncertainty over
the weight parameters inside the activation functions in BNNs
or assuming additional uncertainty over the activation basis
coefficients in GPNNs, variational neural networks introduce
a latent variable Z to encode the uncertainty associated with the
hidden layer outputs, and in turn the final predictive distribution.

p(H∗
r|O∗

r,D) =

∫
p(H∗

r|O∗
r,Z

∗
r)p(Z

∗
r|O∗

r,D)dZ∗
r (8)

where p(Z∗
r |O∗

r,D) denotes the latent variable posterior distri-
bution to be learned from the training data D.

Similarly, the expected hidden node output is calculated as in
Eqn. (9).

h(l)=

∫
φ
(
[Z∗

r
(l−1),h(l−1)]

)
p(Z∗

r
(l−1) |O∗

r,D)dZ∗
r
(l−1)

(9)
where p(Z∗

r
(l−1) |O∗

r,D) denotes the latent variable posterior
distribution of layer l, φ(·) is the activation function. Note
that majority of systems only consider one layer to apply the
variational distribution.

III. TIME DELAY NEURAL NETWORK

Time delay neural networks (TDNNs) [10], [17], [19]–[21],
[67] based hybrid HMM-DNN acoustic models in recent years
defined state-of-the-art speech recognition performance over a
wide range of tasks, due to their strong power in modelling
long range temporal dependencies in speech. In particular,
the recently proposed factored TDNN systems [21] featuring
lattice-free MMI sequence discriminative training [10] remain
highly competitive against all neural end-to-end approaches to
date [17], [22]–[24].

TDNNs can be considered as a special form of one-
dimensional convolutional neural networks (CNNs) [68] when

Fig. 1. An example TDNN architecture with the option of using standard
TDNN, Bayesian TDNN and Gaussian Process TDNN. In this example, the
input dimension of all hidden nodes is assumed to be two. w1 and w2 are the
corresponding weights for each input dimension of a hidden node. Conven-
tional TDNN systems use fixed value, deterministic estimation of the weight
parameters w1, w2 (Top left). B-TDNN systems of Sec. IV-A use latent weight
posterior distributions to account for model uncertainty. The GP-TDNN systems
of Sec. IV-C use latent weight posterior distributions for three basis activations
of varying non-linearity to be combined over, thus considering uncertainty over
both the weight parametersw1,w2 and the choice of hidden activation functions.

parameters are tied across different time steps. An example
TDNN model is shown in Fig. 1. The bottom layers of TDNNs
are designed to learn a narrower temporal context span, while
the higher layers to learn wider, longer range temporal con-
texts. One important type of hyper-parameters in TDNN models
controlling its temporal modelling ability is the left and right
splicing context offsets. These alter the temporal context ranges
effectively learned in each TDNN hidden layer. The splicing
context offsets used in the example of Fig. 1 are {-1,0} {0,1}
{-3,0} {0,3} from the bottom to the top layer. In this paper, we
adopt a factored form of TDNN model structure [21], which
compresses the weight matrix by using semi-orthogonal matrix
decomposition.

IV. BAYESIAN ESTIMATION OF TDNN

This section presents the LF-MMI based sequence level
discriminative estimation schemes for Bayesian TDNNs (B-
TDNNs), Gaussian Process TDNNs (GP-TDNNs) and Varia-
tional TDNNs (V-TDNNs). In addition, dropout is re-formulated
as a special case of Bayesian TDNN systems, before being
further extended into a more generalized form and integrated
with the full Baysian TDNN systems.

A. Bayesian TDNN

For any cost error function using the cross-entropy or the
sequence training criterion, for example, MMI [1], the same
back-propagation algorithm in the gradient chain can be applied
as in Eqn. (10). The only term needs to be changed is the first
part in the chain, which is modified into the specific error cost
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function gradient w.r.t the last layer outputs ∂F
∂hL

j
in different

tasks.

∇l
θi
F =

∑
j

∂F

∂hL
j

{∑
k

∂hL
j

∂hL−1
k

. . .

[∑
i

∂hl
i

∂θli

]}
︸ ︷︷ ︸

gradientchain

(10)

where θ(l)i =w
(l)
i corresponds to the i-th node dependent param-

eter in the l-th layer, h(l)
i is the i-th hidden node output in the

l-th layer and F is the error cost function, for example, the MMI
criterion [1] in Eqn. (11).

FMMI(D;Θ)=
∑
r

log
p(Or|Hr)

kP (Hr)∑
H′

r
p(Or|H′

r)
kP (H′

r)
(11)

where P (H′
r) is the language model probability for the confus-

able word sequence H′
r, Hr is the reference word sequences,

Θ contains the hyper-parameters of the latent distributions in
Bayesian and Gaussian Process TDNNs as well as fixed param-
eters inside them if there are any, k is the acoustic scaling factor.
The sum of the denominator is taken over all possible word
sequences for utterance r.

The following marginalization of the training data MMI loss
function in Eqn. (11) is optimized to infer the latent weight
parameter distribution in p(H∗

r|O∗
r,D).

F = log

∫
exp {FMMI(D;Θ)}Pr(w)dw (12)

where w ∈ Θ and Pr(w) denotes the weight prior distribution.
When the MMI criterion in Eqn. (12) uses no acoustic prob-

ability scaling (k=1) and a sufficiently large set of confusable
word sequence H′

r for each utterance in the training data, the
evidence integral in Eqn. (12) is equivalent to a marginalization
of the conditional maximum likelihood of the reference word
sequences Hr given Or.

The commonly used variational inference is used to approxi-
mate the integration in Eqn. (12). Instead of explicitly computing
the posterior distribution, the evidence lower bound is first
derived by Jesen’s inequality in Eqn. (13). Then we directly op-
timize the evidence lower bound to find a variational distribution
q(w) to approximate the posterior distribution. The first term in
the evidence lower bound of Eqn. (13) can be approximated with
Monte Carlo sampling method in Eqn. (15). Further rearranging
the second KL term in the lower bound in Eqn. (13) allows the
hyper-parameters μμμ and σσσ to be differentiable and updated.

F ≥
∫

q(w)FMMI(D;Θ)dw − KL(q(w)‖Pr(w))

= LMMI
1 − LMMI

2 = LMMI

(13)

where q(w) is the variational approximation of the parame-
ter posterior distribution p(w|D), KL(q‖Pr) is the Kullback-
Leibler (KL) divergence between q and Pr. For simplicity, both
q and Pr are assumed to be Gaussian distributions,

q(w) = N (μμμ,σσσ2), Pr(w) = N (μμμr,σσσ
2
r) (14)

The first term LMMI
1 in Eqn. (13) can be efficiently approx-

imated by Monte Carlo sampling method. The integrand is

re-parameterized so that it does not depend on the μμμ and σσσ
directly, but instead on the standard normal distribution εεε.

LMMI
1 ≈ 1

N

N∑
k=1

FMMI(D;Θ,wk)

wk = μμμ+ σσσ 
 εεεk

(15)

where εεεk = N (0, I) is the k-th sample in the total N samples
and 
 denotes the Hadamard product.

The KL divergence between q andPr of the second termLMMI
2

can be simplified into an analytical form as follows.

LMMI
2 =

∑
j

{
log

σr,j

σj
+

σ2
j + (μj − μr,j)

2

2σ2
r,j

− 1

2

}
(16)

where μj and σj are the j-th component of variational posterior
distribution hyper-parameters μμμ, σσσ, μr,j and σr,j are the j-th
component of prior distribution hyper-parameters μμμr and σσσr

respectively.
The gradients w.r.t the hyper-parameters μj , σj are given as

below.

∂LMMI

∂μj
=

1

N

N∑
k=1

∂FMMI(D;Θ, εεεk)

∂μj
−μj−μr,j

σ2
j

∂LMMI

∂σj
=

1

N

N∑
k=1

∂FMMI(D;Θ, εεεk)

∂σj
− σ2

j−σ2
r,j

σjσ2
r,j

(17)

where the gradients required by the right hand side of Eqn. (17)
can be directly calculated using the standard back-propagation
method.

B. Bayesian Dropout TDNN

Dropout is a standard technique widely used in deep learning
to avoid overfitting [40]. It can be viewed as a special form of
Bayesian TDNN systems when variational distribution q(w) is
written as the following form.

q(w) = aδ(w) + (1− a)N (0,σσσ2
1) (18)

where a is the interpolation weight of two component distribu-
tions and σσσ1 is fixed to be a small constant value, for example,
exp(−3). δ(w) is the delta function taking the value of 1 when
using the weight parameter w. Traditionally, a is parametrized
as a Bernoulli random variable. In this case, w either keeps its
original value with probabilitya, or is replaced by a dropout sam-
ple drawn from the N (0,σσσ2

1) with probability 1− a. It is clear
that the first variational distribution component in the standard
Dropout of Eqn. (18) can not be Bayesian estimated. In order
to generalize it and fully integrate it into the Bayesian TDNN
system training process, the following Bayesian Dropout [41]
in Eqn. (18) can be used.

q(w) = aN (μμμ,σσσ2
0) + (1− a)N (0,σσσ2

1) (19)

where hyper-parameterσσσ0 is learned by variational inference as
in B-TDNN while σσσ1 is fixed as a small constant value.

When using Monte Carlo sampling to approximate the first
term of the evidence lower bound in Eqn. (13), the corresponding
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weight samples for Bayesian Dropout TDNNs are modified as
given in Eqn. (20).

wk = a(μμμ+ σ0σ0σ0 
 εεεk) + (1− a)σ1σ1σ1 
 εεεk (20)

where a is the interpolation weight fixed to be 0.5 on all our
experiments, εεεk is the k-th sample drawn from εεεk = N (0, I)
and 
 denotes the Hadamard product.

With the variational distribution q(w) defined in Eqn. (19)
and the prior distribution Pr(w) = N (μμμr,σσσ

2
r), the second KL

divergence of the second term LMMI
2 in Eqn. (13) can also be

approximated as [41]:

LMMI
2 ≈ a

∑
j

{
σ2
0,j + (μj − μr,j)

2

2σ2
r,j

− log(σ0,j)

}

+ (1− a)
∑
j

{
σ2
1,j

2σ2
r,j

− log(σ1,j)

}
− C

(21)

where μj and σi,j are the j-th components of μμμ and σσσi, C is a
constant term. Note that the KL divergence term approximated in
Eqn. (19) is multiplied by the probability of the weights keeping
the values. If the dropout probability is set to be zero (a = 1), it
leads to the same form of Bayesian TDNNs using the variational
distribution of Eqn. (14).

C. Gaussian Process TDNN

Gaussian Process time delay neural networks (GP-TDNN)
model can be viewed as a specific type of the more general
Gaussian Process neural networks (GPNNs) that are introduced
in Sec. II-B. The connection between Gaussian Processes (GP)
and GP-TDNNs, lies in the fact that for each hidden node of
a TDNN, a weight space view [58] of a Gaussian Processes
expressed as an interpolation over Sigmoid, Tanh, ReLU basis
activation outputs, as in Eqn. (5) of Sec. II-B, is used to replace
the use of a single ReLU activation function of fixed value
parameters in a standard TDNN model. This corresponds to
the GP-TDNN0 model shown in Table I. Further consideration
over the modelling uncertainty associated with either the basis
activation coefficients λλλ, or the basis activation internal weight
parameters w, or both of these, leads to the other GP-TDNN
variants (GP-TDNN1, GP-TDNN2 and GP-TDNN3) shown in
Table I.

Similar to the variational inference procedure used in Sec. IV-
A for Byesian TDNNs, the evidence lower bound in Eqn. (22) is
used to approximate the MMI criterion marginalization F over
both w and λλλ.

F ≥
∫∫

q(w)q(λλλ)FMMI(D;Θ)dwdλλλ

− KL(q(w)‖Pr(w))− KL(q(λλλ)‖Pr(λλλ))

= LMMI
1 − LMMI

2 − LMMI
3 = LMMI

(22)

where {λλλ,w} ∈ Θ and we assume the statistical independence
between w and λλλ holds. q(w) and q(λλλ) are the variational
approximations of the parameter posterior distribution p(w|D)
and basis coefficient posterior distribution p(λλλ|D) respectively.

Fig. 2. An example Variational TDNN. Note that the output vector of l-th
layer hl

t is used as the input of the inference network ΦInfer and prior network
ΦPrior to calculate the mean and variance of the latent variable’s variational
and prior distributions respectively. Then we concatenate the latent variable zlt
sampled from the inference network ΦInfer with hl

t as the input of the (l+1)-th
layer.

KL(q‖Pr) is the Kullback-Leibler (KL) divergence between q
and prior distribution Pr. Following the settings used in Byesian
TDNNs of Sec. IV-A, q and Pr are both set to be Gaussian
distributions and the first term LMMI

1 is calculated by Monte
Carlo sampling method.

D. Variational TDNN

In variational TDNNs (V-TDNNs), the MMI cost function is
marginalized over a sequence level hidden outputs meta-vector
Z = [z1, z2, . . . , zT ], where the time instance level random hid-
den output vectors [z1, z2, . . . , zT ] are assumed to be indepen-
dent among themselves. This leads to the following marginalized
cost function

F = log

∫
exp {FMMI(D;Θ,Z)}Pr(Z)dZ

=

T∑
t=1

log

∫
exp {FMMI(D;Θ, zt)}Pr(zt)dzt

(23)

where zt is the latent variable at time t and Pr(zt) denotes the
prior distribution of the latent variable.

Then, the variational lower bound is derived to approximate
the marginalization of MMI criterion F in Eqn. (24).

F ≥
∑
t

∫
q(zt)FMMI(D;Θ)dzt −

∑
t

KL(q(zt)‖Pr(zt))

= LMMI
1 − LMMI

2 = LMMI

(24)
where q(zt) is the variational approximation of the posterior
distribution p(zt|D) and Pr(zt) is the prior distribution. As
shown in Fig. 2,

q(zt) = N (μμμt,σσσ
2
t ), Pr(zt) = N (μμμr,t,σσσ

2
r,t) (25)

where hyper-parametersμμμt,σσσ2
t are calculated from an inference

network ΦInfer(ht), hyper-parameters μμμr,t, σσσ2
r,t are computed

by a prior network = ΦPrior(ht).
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In common with the estimation procedures used in B-TDNN,
LMMI is further approximated by Monte Carlo sampling, i.e.,

LMMI = LMMI
1 − LMMI

2

≈
∑
t

1

N

N∑
k=1

FMMI(D;Θ,μμμt + σσσt 
 εεεk)

−
∑
t

KL(q(zt)‖Pr(zt))

(26)

where zt = μμμt + σσσt 
 εεεk, εεεk = N (0, I) is the k-th sample in
the total N samples and 
 denotes the Hadamard product.

E. Implementation Details

The performance and efficiency of the proposed Bayesian,
Gaussian Process and Variational TDNN systems in Sec. IV-A
to IV-D are affected by the following set of implementation
details. Striking a sensible balance between performance and
computational cost is crucial for practical implementation of
these systems.

1) Choice of prior distribution: When training Bayesian
learning based models, a suitable choice of parameter prior
needs to be set. In our experiments, we set the priors for
various Bayesian learned LF-MMI TDNN systems to be based
on the comparable converged standard fixed-parameter TDNN
systems. In addition, all the other parameters in the Bayesian
learning based LF-MMI TDNN models are initialized using the
parameters obtained from the comparable half-trained standard
TDNN systems. The combination of these two settings in prac-
tice was found to yield a good balance between convergence
speed and performance.

2) Modelling uncertainty at different layers Applying
Bayesian estimation of all layers inside TDNN systems is highly
expensive in both model training and evaluation. It is well known
that deep neural networks including TDNNs are powerful mod-
els that are capable of producing denoised and invariant features
in their higher layers for accurate classification of the inputs. It
is therefore expected that the modelling uncertainty associated
with the lower layers of TDNN systems will be much larger than
those of the higher layers. This is confirmed in our experiments
to be presented in Sec. V-A. In practice, it is found that Bayesian
estimation only needs to be applied to the first TDNN hidden
layer where the largest modelling uncertainty is expected, while
further applying Bayesian estimation of any subsequent higher
layers produces no further performance improvement.

3) Parameter tying for variational distributions The exten-
sive use of variational distributions during Bayesian inference in
Sec. IV-A to IV-D leads to a large number of latent distribution
hyper-parameters to be estimated and stored. In order to ensure
the number of free parameters in the proposed Bayesian and
Gaussian Process TDNN systems to be comparable to that of the
standard TDNN systems, the variational distribution variance
σσσ is shared among all the hidden nodes of the same layer for
Bayesian and Gaussian Process TDNN systems. In addition, we
further share the latent distribution over the weight parameters

TABLE II
PERFORMANCE (WER%) COMPARISON BETWEEN TDNN, B-TDNN SYSTEMS

CONSTRUCTED USING THE 75-HOUR SWITCHBOARD TRAINING SUBSET BY

DRAWING VARYING NUMBER OF SAMPLES (1,2 AND 3). THE WERS WERE

EVALUATED ON THE HUB5’ 00, RT03S AND RT02 TEST SETS

†Denotes a Statistically Significant Difference is Obtained Over the TDNN Baseline
System (Line 1). (SWB1 and CHM Denote the Switchboard and Callhm Subsets of the
Hub5’ 00 Test Set; FSH and SWB2 Denote the Fisher and Switchboard Subsets of the
RT03S Test Set; SWB3, SWB4 and SWB5 Denote Three Switchboard Subsets in the
Rt02 Test Set.)

w across all basis activation functions of Eqn. (7) in GP-TDNN
systems to control the overall system complexity.

4) Parameter sampling in inference The inference algo-
rithms of all the Bayesian estimated TDNN systems presented
in Sec. IV-A to IV-D require the use of Monte Carlo sampling
to approximate the respective parts of their lower bounds com-
puting the MMI criterion expectation in Eqn. (15) and Eqn. (26)
given the variational distributions. The resulting inference cost
during model training is therefore linearly increased with respect
to the number of samples being drawn as in Table I. Experimental
results in Table II further show that only a marginal difference in
Word Error Rate (WER) was observed by drawing more samples
(two and three samples) in the forward pass of Bayesian TDNN
systems. In order to maintain the Bayesian learned TDNN
systems’ overall computational cost during model training com-
parable to that of the conventional TDNNs as shown in line 2 and
5-9 in Table I, only one sample is drawn in Eqn. (15) and Eqn.
(26) for all the Bayesian estimated TDNN systems presented in
this paper. The KL term in Eqn. (13), Eqn. (22) and Eqn. (24) is
set to be proportional to the batch size. During evaluation, the
inference of Bayesian, Gaussian Process and Variational TDNNs
in Eqn. (1), Eqn. (6) and Eqn. (8) are efficiently approximated
by computing the expectation of the model parameters or the
latent variables using the respective posterior distributions. For
example, during recognition time, the weight parameters w in
the B-TDNN systems are approximated by the mean of their
latent distribution given as follows:∫

p(H∗
r|O∗

r,w)p(w|D)dw ≈ p (H∗
r|O∗

r,E [w|D]) (27)

Thus, the speed ratio relative to the standard TDNN system in
Table I is approximately 1.0 at the test stage.

5) System description Following the above implementation
details, the description of a set of Bayesian, Gaussian Process
and Variational TDNN systems in terms of their respective
forms of uncertainty modelling, number of free parameters
after tying and the speed ratio relative to the standard TDNN
systems in training and evaluation is presented in Table I. In
the table, four variants GP-TDNN systems by considering no
uncertainty (GP-TDNN0), or the uncertainty associated with
either the activation basis coefficients λλλ (GP-TDNN1), or the
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activation internal weight parameters w alone (GP-TDNN2), or
the uncertainty associated with both w and λλλ (GP-TDNN3), are
also shown.

As shown in Table I, by assuming the input vector size as
a, the number of hidden nodes as b and the latent variable z
dimension as c for a single layer, each standard TDNN layer
has a total of ab parameters in the weight matrix w. With
the aforementioned parameter tying, each B-TDNN layer has
a total of ab latent distribution parameters for the mean μμμ,
and the number of parameters in the shared variance being a.
Compared with a standard TDNN layer, a GP-TDNN0 layer has
a total of ab parameters for the weight matrix, plus 3b additional
parameters for the basis activation coefficients λλλ. Compared
with a GP-TDNN0 layer, a GP-TDNN1 layer requires 3 more
parameters for the shared variance term of the latent distribution
over λλλ. By sharing the latent distribution over w across all
basis activation functions of Eqn. (7), a GP-TDNN2 layer only
needs a total of a more parameters for the shared variance term
of the distribution over w. If we model the uncertainty over
both the basis activation coefficients λλλ and weight parameters
w inside the activation functions, the GP-TDNN3 layer has a
total of 3 + a more parameters than a GP-TDNN0 layer. For the
Variational TDNN layer modelling the hidden output uncertainty
as shown in Fig. 2, it requires 4ac parameters for the inference
network ΦInfer and prior network ΦPrior to generate the mean
and variance of the latent vatiables z, plus additional ab+ cb
parameters for the weight matrix w.

In addition, when using the above efficient sampling during
inference for model training (as low as one sample drawn)
and evaluation, the Bayesian, Gaussian Process and Variational
TDNN systems only require a moderate increase in system
training time of 10%-30% over the standard TDNN baseline
systems during training, while their computational complexity
is comparable to that of standard TDNN systems during the
testing stage.

V. EXPERIMENTS

This section is organized as follows. Firstly, in Section V-A,
the performance of various Bayesian, Gaussian Process and
Variational LF-MMI TDNN systems constructed using a 75-
hour subset of the LDC Switchboard I data are evaluated. This
initial set of experiments serve to confirm the implementation
details and settings given in Sec. IV-E suitable to use for the
subsequent larger experiments in the rest of this paper. Secondly,
in Sec. V-B, the main set of experiments are conducted on a full
900-hour speed-perturbed Switchboard corpus to fully evaluate
the performance of the Bayesian estimated LF-MMI TDNN
systems proposed in Sec. IV. Performance comparison against
the baseline LF-MMI TDNN system which used multiple reg-
ularization methods (F-smoothing, L2 norm penalty, natural
gradient, model averaging and dropout), in addition to i-Vector
plus learning hidden unit contribution (LHUC) based speaker
adaptation and Kaldi recipe LSTM recurrent neural network lan-
guage model (RNNLM) rescoring is drawn. Thirdly, in Sec. V-C,
a comparable set of experiments are conducted in a 450-hour
speed-perturbed HKUST conversational Mandarin telephone

speech recognition task. Finally, the performance of Bayesian
estimated LF-MMI TDNN systems are further evaluated on a
cross domain adaptation task which requires porting a 1000-h
LibriSpeech data trained LF-MMI TDNN system to a small
DementiaBank elderly speech corpus. In all our experiments,
we follow the Kaldi chain model setup,1 except that we used
40-dimension filterbank features as the input features instead
of the 40-dimension high-resolution Mel-frequency cepstral
coefficients (MFCCs). All of our models were trained with one
thread on a single NVIDIA Tesla V100 Volta GPU card. For all
results presented in this paper, matched pairs sentence-segment
word error (MAPSSWE) based statistical significance test was
performed at a significance level α = 0.05.

A. Experiments on 75-Hour Switchboard Task

In this part, an investigation of different full Bayesian TDNN
learning variants is conducted on the 75-hour Switchboard task
to verify the feasibility of implementation details and settings
in Sec. IV-E for further experiments in the rest of this paper.
We first investigate the suitable number of layers to apply
Bayesian estimation. After determining which layer(s) to in-
corporate Bayesian modelling, we compare the performance of
the Bayesian TDNN system, Bayesian Dropout TDNN system,
Gaussian Process TDNN system and Variational TDNN system
described in Sec. IV-A to IV-D. Finally, we demonstrate the
robustness of different Bayesian learning based TDNN systems
by varying the model sizes (by varying hidden layer dimension-
ality).

Task Description: Our 75-hour Switchboard I data con-
sists of randomly selected 1082 conversational sides out of
the 4870 speakers from the 300-hour Switchboard I cor-
pus released by LDC (LDC97S62). On top of the Linear
Discriminant Analysis (LDA) transformed Perceptual Linear
Prediction (PLP) coefficients up to the second order, our
baseline GMM-HMM system with 2904 tied tri-phone states
was trained using Maximum Likelihood Linear Transform
(MLLT) [69], [70]. The speaker adaptive training (SAT) [71]–
[73] approach was also applied to further generate the align-
ments for neural network training and the numerator lattices
for LF-MMI training. For performance evaluation, a four-
gram language model (LM) trained on the Switchboard and
Fisher transcripts (LDC2004T19, LDC2005T19) was used to
evaluate NIST HUB5’00 (LDC2002S09, LDC2002T43), RT03
(LDC2007S10) and RT02 (LDC2004S11) test sets. The per-
formance of the LF-MMI trained standard TDNN system2 is
shown in line 1 of Table III. At this stage, i-Vector [74] and
speed perturbation were not incorporated.

Experimental Results and Analysis As shown by most
results in Table III, the proposed Bayesian estimated TDNN
systems except the Variational TDNN system significantly out-
perform the TDNN baseline system (line 1 in Table III) across
all three test sets. Several trends are listed as follows.

1All of this is in published Kaldi code at https://github.com/kaldi-asr/kaldi/
tree/master/egs/∗/∗/local/chain/tuning/run_tdnn_7q.sh

2All of this is in published Kaldi code at https://github.com/kaldi-asr/kaldi/
tree/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_7q.sh
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TABLE III
PERFORMANCE (WER%) COMPARISON OF TDNN, B-TDNN, BD-TDNN,
GP-TDNN AND V-TDNN SYSTEMS CONSIDERING THE UNCERTAINTY AT

DIFFERENT LAYERS CONSTRUCTED USING THE 75-HOUR SWITCHBOARD

TRAINING SUBSET. THE WERS WERE EVALUATED ON THE HUB5’ 00, RT03S
AND RT02 TEST SETS

†Denotes a Statistically Significant Difference is Obtained Over the TDNN Baseline
System (Line 1). (SWB1 and CHM Denote the Switchboard and Callhm Subsets of the
Hub5’ 00 Test Set; FSH and SWB2 Denote the Fisher and Switchboard Subsets of the
RT03S Test Set; SWB3, SWB4 and SWB5 Denote Three Switchboard Subsets in the Rt02
Test Set.)

1) Experiments conducted on the Bayesian TDNN systems
(B-TDNN, Sec. IV-A, line 2-6 in Table III) show that
Bayesian estimation only needs to be applied at the first
layer, as further applying the Bayesian estimation of any
subsequent higher layers produces no additional improve-
ment. This confirms the hypothesis previously discussed
in Sec. IV-E that the modelling uncertainty associated
with the lower layers of TDNN systems will be much
larger than those of the higher layers. Based on this set of
experiments, the uncertainty is considered at the first layer
of all Bayesian learning based TDNN systems in the rest
of the paper.

2) Compared with the LF-MMI trained TDNN system (line
1 in Table III), the Bayesian TDNN system (B-TDNN,
Sec. IV-A, line 2 in Table III) consistently produces a lower
WER across all three test sets. For example, the largest
absolute WER reduction (1.8%) is obtained on the SWB5
subset of the Rt02 test set.

3) The Gaussian Process TDNN systems (GP-TDNN,
Sec. IV-C, line 8-11 in Table III) outperformed the
Bayesian TDNN system (B-TDNN, Sec. IV-A, line 2 in
Table III) on the Rt02 test set by 0.2% (SWB3 subset)
to 0.8% (SWB4 subset) absolute WER reduction, while
the Variational TDNN system (V-TDNN, Sec. IV-D, line
12 in Table III) was outperformed by the Bayesian TDNN
system (B-TDNN, Sec. IV-A, line 2 in Table III).

4) The Bayesian Dropout TDNN system (BD-TDNN,
Sec. IV-B, line 7 in Table III) achieves similar performance
on three test sets as the Bayesian TDNN system (B-TDNN,
Sec. IV-A, line 2 in Table III). Based on these results, the
Bayesian Dropout TDNN system is not considered in the

following large-scale experiments conducted on the 900-
hour speed-perturbed Switchboard corpus in Sec. V-B.

5) Performance comparison of varying model sizes in Fig. 3
suggests that Bayesian and Gaussian Process TDNN sys-
tems are more robust against the change of model sizes,
in particular over more complex systems containing up to
250 million parameters (14.7 times of the baseline TDNN
system size in line 1 of Table III).

B. Experiments on 300-Hour Switchboard Task

To fully evaluate the performance of the Bayesian estimated
LF-MMI TDNN systems, experiments were further conducted
on the 300-hour (900 h after speed perturbation) Switchboard
conversational English telephone speech recognition task.

Task Description: The Switchboard I telephone speech cor-
pus consists of approximately 300 hours audio data released by
LDC (LDC97S62). The baseline GMM-HMM system with 6008
tied tri-phone states was trained based on 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) to generate alignments
for the neural network training. The performance of LF-MMI
trained TDNN baseline system incorporated with i-Vector [74]
and speed perturbation was shown in line 1 of Table IV. In
addition, the effects of LHUC [49] speaker adaptation were
investigated. For performance evaluation, Kaldi recipe LSTM
recurrent neural network language model (RNNLM) trained
on the Switchboard and Fisher transcripts (LDC2004T19,
LDC2005T19) was used to rescore the nbest lists produced by
the LF-MMI trained systems with a four-gram language model
(LM).

Experimental Results and Analysis: Three main trends can
be found in the results of Table IV and Table V.

1) The Bayesian TDNN system (B-TDNN, Sec. IV-A, line
9 in Table IV) consistently outperforms the TDNN base-
line system (line 8 in Table IV) across all three test sets.
For example, 0.9% absolute WER reduction was achieved
on the SWB5 subset of Rt02 test set. When compared
with the Bayesian TDNN system (B-TDNN, Sec. IV-A,
line 9 in Table IV), the Gaussian Process TDNN system
(GP-TDNN2, Sec. IV-C, line 12 in Table IV) produced
by up to 0.5% absolute WER reduction on the SWB3
subset of Rt02 test set. On this task, the varational TDNN
(V-TDNN, Sec. IV-D, line 14 in Table IV) made no sig-
nificant improvements over the TDNN baseline system
(line 8 in Table IV). The hidden output distribution in the
variational neural network depends on the input data on
a frame-by-frame time varying basis. This may introduce
undesired artefacts in the resulting hidden layer outputs
that are expected to be more invariant to variability in
data. This may in part explain the performance difference
between V-TDNN and B-TDNN/GP-TDNN systems con-
sistently found in the experiments of this paper.

2) By further incorporating LHUC or Kaldi recipe LSTM
recurrent neural network language model (RNNLM) or
both of them, similar performance improvements can still
be maintained. Statistically significant WER reductions of
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TABLE IV
PERFORMANCE (WER%) COMPARISON OF TDNN, B-TDNN AND GP-TDNN SYSTEMS ON THE HUB5’ 00, RT03S AND RT02 TEST SETS BEFORE AND AFTER

APPLYING LHUC AND RNNLM RESCORING

†Denotes a Statistically Significant Difference is Obtained Over the TDNN Baseline System (Line 1, 8, 14, 21). (SWB1 and CHM Denote the Switchboard and Callhm
Subsets of the Hub5’ 00 Test Set; FSH and SWB2 Denote the Fisher and Switchboard Subsets of the RT03S Test Set; SWB3, SWB4 and SWB5 Denote Three Switchboard
Subsets in the Rt02 Test Set.)

TABLE V
PERFORMANCE CONTRASTS OF LHUC ADAPTED TDNN, B-TDNN, GP-TDNN SYSTEMS RESCORED BY LARGE RNNLMS AGAINST OTHER STATE-OF-THE-ART

SYSTEMS CONDUCTED ON THE 300-HOUR SWITCHBOARD TASK. THE OVERALL WERS IN “()” ARE NOT REPORTED BY THE ORIGINAL PAPERS AND ARE

RECALCULATED USING THE SUBSET WERS
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Fig. 3. Performance comparison of different TDNN, B-TDNN, GP-TDNN2, GP-TDNN3 and V-TDNN systems with equal model complexity on the HUB5’ 00
(a,b), Rt03S (c) and Rt02 (d) test sets. The model size (measured in the number of parameters) is increased from 1.5 m to 5 m, 17 m, 64 m and up to 250 m by
varying the linear, projection and affine layers dimensionality. The standard TDNN system (line 1 in Table III) containing 17 m parameters is shown in the middle
of the four figures.

0.3% (SWB1 subset of Hub5’00 test set) to 1.8% (SWB5
subset of Rt02 test set) absolute (4% to 11% relative)
were obtained by the Gaussian Process TDNN system
(GP-TDNN2, Sec. IV-C, line 33 in Table IV) over the
TDNN baseline system (line 29 in Table IV).

3) The experimental results show that the proposed Bayesian
TDNN, Gaussian Process TDNN systems (line 2-6, line
30-34 in Table IV) significantly outperform the TDNN
baseline systems (line 1, line 29 in Table IV) with and with-
out speed perturbation. This suggests that the proposed
method and data augmentation are mostly complementary
and their improvements largely additive.

4) In order to further evaluate the best performing Bayesian
trained systems in Table IV, the LHUC adapted baseline
TDNN (line 29 in Table IV), Bayesian TDNN (B-TDNN,
line 30 in Table IV) and Gaussian Process TDNNs (GP-
TDNN, line 31-34 in Table IV) were evaluated using a
larger RNNLM. The performance of these systems are
shown in Table V. These are then compared with the
state-of-the-art performance obtained on the Switchboard
task using the most recent hybrid and end-to-end sys-
tems reported in the literature (line 1-6 in Table V). Two
larger LSTM recurrent neural network language models

(RNNLMs)3 performing forward and backward contexts
based word prediction respectively with twice the num-
ber of LSTM cells (2048) and projection dimensionality
(1024) compared with the smaller LSTM RNNLM used
in Table III were trained. System (1) and System (2) in
Table V were RWTH BLSTM hybrid systems without
and with affine transformation for environment adapta-
tion [75]. System (3) was the Google Listen, Attend and
Spell end-to-end system built with SpecAugment [30].
System (4)-(6) were the IBM LSTM based attention
encoder-decoder end-to-end systems built with SpecAug-
ment and weight noise [51]. Competitive performance is
achieved by the Bayesian estimated TDNN systems (line
8-12 in Table V) on the CHM subset of Hub5’00 test set
and Rt03S test set when compared with the state-of-the-art
systems (line 1-6 in Table V). A general trend can be ob-
served in Table V such that our B-TDNN and GP-TDNN
systems can produce WERs similar to state-of-the-art end-
to-end systems with much fewer parameters. For example,
by achieving the similar 13.6% WER on the CHM subset

3Dropout operation with 85% retention was applied to the output nodes of
each layer.
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TABLE VI
PERFORMANCE (CER%) COMPARISON OF TDNN, B-TDNN AND GP-TDNN

SYSTEMS ON THE HKUST MANDARIN CONVERSATIONAL TELEPHONE SPEECH

DEV, NIST MANDARIN RT03S AND EVAL97 EVALUATION SETS

†Denotes a Statistically Significant Difference is Obtained Over the TDNN Baseline
System (Line 1, 7). Note That Significant Different Test Was Not Performed on the Dev
Test Set

of the Hub5’00 test set, our GP-TDNN3 system only
needs 25% number of parameters of the IBM system (5)
producing a comparable WER 13.4%. Furthermore, our
GP-TDNN3 system achieves a state-of-the-art WER of
11.8% on the Rt03S test set with 93.2% parameter size
reduction when compared with the IBM system (6).

C. Experiments on 150-Hour HKUST Task

The performance of Bayesian estimated TDNN systems are
further evaluated on a 150-hour (450 h after speed perturbation)
HKUST conversational Mandarin telephone speech recognition
task.

Task Description: The HKUST Mandarin Telephone
Speech contains 150 hours training data released by LDC
(LDC2005S15, LDC2005T32). The development set released
in 2014 [76] was used as the validation set. The NIST Rt03S
(LDC2007S10) and 1997 NIST Hub5 Mandarin evaluation
set [77] were used to form a 2.7-hour test set. Based on the
speaker adaptive training (SAT) [71]–[73], a GMM-HMM base-
line system with 4000 tied triphone states was trained4 with
40-dimensional MFCCs and 3-dimensional pitch features [78]
to generate the alignment for the neural network training. The
tri-gram language model trained with the training data transcript
(LDC2005T32) was used in decoding. All our recognition re-
sults were evaluated based on Character Error Rate (CER).

Experimental Results and Analysis Two similar trends ob-
served in Table IV can also be found in Table VI.

(1) Compared with the TDNN baseline system (line 1 in Ta-
ble VI), the Bayesian TDNN system (B-TDNN, Sec. IV-
A, line 2 in Table IV) produced 1% absolute CER re-
duction across all three test sets. No additional CER
improvement was further obtained on the Gaussian Pro-
cess TDNN systems (GP-TDNN, line3-6 in Table VI,

4Following the published Kaldi code at github.com/kaldi-
asr/kaldi/egs/hkust/s5/run.sh

TABLE VII
PERFORMANCE (WER%) OF THE LF-MMI TRAINED TDNN SYSTEM ON THE

LIBRISPEECH DEV AND TEST TEST SETS

Sec. IV-C) over the Bayesian TDNN system (B-TDNN,
Sec. IV-A, line 2 in Table IV).

(2) By further incorporating LHUC based speaker adap-
tation, similar performance improvements can still be
maintained. The best performance was achieved by the
B-TDNN system (Sec. IV-A, line 8 in Table VI) and GP-
TDNN1 (Sec. IV-C, line 10 in Table VI). For example,
up to 1.3% absolute CER reduction was achieved on the
Rt03S set by GP-TDNN1 system (Sec. IV-C, line 10 in
Table VI) when compared with TDNN baseline system
(line 7 in Table VI).

D. Experiments on DementiaBank Pitt Elderly Speech

We further evaluate the performance of Bayesian estimated
LF-MMI TDNN systems on a cross domain adaptation task
which requires porting a 1000-h LibriSpeech corpus trained
LF-MMI TDNN system to an elderly speech recognition task
based on the DementiaBank Pitt database.

Task Description: The DementiaBank Pitt corpus5 [79] con-
tains 33-hour audio data, which was split into 27.16-hour train-
ing data and 5.81-hour test data. The training data segmentation
refinement was first performed by removing excessive silence
at the start and end of each utterance in the DementiaBank Pitt
corpus. After silence stripping, the DementiaBank Pitt corpus
contains 15.75-hour training data (9.72-hour elderly participant
data + 6.03-hour investigator data) and 3.14-hour test data (1.93-
hour elderly participant data + 1.21-hour investigator data). A
GMM-HMM baseline was trained with 39-dimensional PLP fea-
tures following the same procedures described in V-A. A 4-gram
language model based on the DementiaBank Pitt transcripts,
Switchboard and Fisher transcripts and additional text data of
392.4 millions words from the Gigaword collection released by
LDC (LDC2011T07) was used in decoding. More details can be
found in [80]. The TDNN baseline system was trained with the
DementiaBank Pitt data only and its performance was shown
in line 7 of Table V-D. Speed perturbation was also applied to
expand the training data to 59 hours in total. The performance
of the TDNN system trained on the augmented 59-hour data
was shown in line 10 of Table V-D. The Librispeech corpus [81]
contains 1000 hours of English read speech. Table VII shows the
performance of the Librispeech based LF-MMI TDNN system.6

During domain adaptation, the fine-tuning adapted baseline
TDNN systems (line 2,5,8,11 in Table VIII) reinitialized the
input and the output layer of the LibriSpeech corpus trained
LF-MMI TDNN model, while the Bayesian adapted B-TDNN

5https://dementia.talkbank.org/access/English/Pitt.html
6Following the setup in github.com/kaldi-asr/kaldi/egs/librispeech/s5/run.sh

and github.com/kaldi-asr/kaldi/egs/librispeech/s5/local/chain/run _ tdnn.sh
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TABLE VIII
PERFORMANCE (WER%) COMPARISON OVER THE DEMENTIABANK PITT CORPUS TRAINED TDNN SYSTEMS, FINE-TUNING ADAPTED BASELINE TDNN SYSTEMS

AND BAYESIAN ADAPTED B-TDNN SYSTEMS ON THE PARTICIPANT AND INVESTIGATOR TEST SETS BY USING 4-HOUR, 8-HOUR 16-HOUR SUBSET OF THE PITT

DATA OR AN AUGMENTED 55-HOUR PITT DATA SET

†Denotes a Statistically Significant Difference is Obtained Over the TDNN Baseline System (Line 1, 4, 7, 10).

systems (B-TDNN, Sec. IV-A, line 3,6,9,12 in Table VIII)
replaced the first layer of the LibriSpeech corpus trained TDNN
model with the Bayesian layer and reinitialized the output layer.
The baseline TDNN system was cross domain adapted to the
Pitt data using parameter fine-tuning, while the B-TDNN system
was Bayesian adapted to the same data. The fine-tuning adapted
baseline TDNN system serves as the prior of the Bayesian
adapted B-TDNN system.

Experimental Results and Analysis Performance compar-
ison between the fine-tuning adapted baseline TDNN and
Bayesian adapted B-TDNN systems was shown in Table VIII.
Two main trends can be concluded.

1) By using different amounts of training data, the Bayesian
adapted B-TDNN systems (B-TDNN, Sec. IV-A, line 3,
6, 9, 12 in Table VIII) consistently outperform the fine-
tuning adapted baseline TDNN systems (line 2, 5, 8, 11 in
Table VIII). The best performance was obtained on the
Bayesian adapted B-TDNN system (line 12 in Table VIII)
using the augmented 59-hour DementiaBank Pitt data.
This corresponds to a total 1.1% absolute WER reduction
over the fine-tuning adapted baseline TDNN system (line
11 in Table VIII).

2) When using the 4-hour subset of the Pitt data for cross
adaptation, the largest WER absolute reduction up to
2.5% was obtained by the Bayesian adapted B-TDNN
system (B-TDNN, Sec. IV-A, line 3 in Table VIII) over
the fine-tuning adapted baseline TDNN system (line 2 in
Table VIII).

VI. CONCLUSION

This paper presents a full Bayesian framework to account for
model uncertainty in sequence discriminative training of fac-
tored TDNN acoustic models. Several Bayesian learning based
TDNN variant systems are proposed to model the uncertainty
over weight parameters and choices of hidden activation func-
tions, or the hidden layer outputs. Efficient variational inference
approaches using as few as one single parameter sample ensure
their computational cost in both training and evaluation time

comparable to that of the baseline TDNN systems. The dropout
technique is reformulated as a special case of Bayesian TDNN
systems.

Experiments conducted on a state-of-the-art 900-h speed
perturbed Switchboard corpus suggests the proposed Bayesian
TDNN, Gaussain Process TDNN and variational TDNN systems
consistently outperform the LF-MMI trained TDNN baseline
systems by a statistically significant margin of 0.4%-1.8% ab-
solute (5%–11% relative) reduction in word error rate over the
NIST Hub5’00, RT02 and RT03 test sets. Similar consistent
performance improvements were also obtained on a 450-h (with
speed perturbation) HKUST conversational Mandarin telephone
speech recognition task. On a third cross domain adaptation
task requiring rapidly porting a 1000-h LibriSpeech data trained
system to a 10-h Dementia Bank elderly speech corpus, the
proposed Bayesian TDNN LF-MMI systems outperformed the
baseline TDNN system domain adapted using direct weight
fine-tuning by 1.1% absolute WER reduction.

The proposed Bayesian learning methods applied to TDNNs
benefit from a distinct advantage of the underlying latent variable
distributions estimation being fully integrated with the overall
system training consistently using the same sequence level
MMI error cost function. This is in contrast to many existing
regularization techniques employed in state-of-the-art speech
recognition systems including, but not limited to, Gaussian-
based weight noise [38], [39], L2 norm [8] and model aver-
aging [37]. More specifically, the Gaussian-based weight noise
is normally kept fixed and not learnable. L2 norm regularization
may be considered as a special form of maximum a posteriori
(MAP) estimation [82], which restricts the estimation of weight
parameters using a fixed Gaussian prior distribution of zero mean
and unit variance. Model averaging that is currently used as a
standard regularization method in the Kaldi toolkit [10] can be
viewed as averaging over the weight parameters drawn from
an unknown distribution that model the parameter estimates
obtained at different training epochs or intervals.

Experimental results obtained across three task domains sug-
gest among all the techniques presented in this paper, the
proposed Bayesian TDNNs and Gaussian Process TDNNs

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 29,2021 at 05:21:34 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: BAYESIAN LEARNING OF LF-MMI TRAINED TIME DELAY NEURAL NETWORKS FOR SPEECH RECOGNITION 1527

(GP-TDNN2 and GP-TDNN3 variants in particular) consis-
tently outperform the baseline TDNN systems featuring state-
of-the-art configurations including multiple regularization meth-
ods, data augmentation, speaker adaptation and RNNLM rescor-
ing, and therefore are worth further studying on end-to-end
speech recognition systems.

We would also like to note that Gaussian Process TDNNs
have the additional ability of modelling neural architecture
uncertainty in terms of the suitable activation functions to be
used in TDNNs. This unique advantage of GP-TDNNs is as
expected and also precisely one of the strengths traditionally
associated with Gaussian Processes that is well known for
providing powerful non-parametric modelling and black box
optimization, for example, in the context of auto-configured
Bayesian neural architecture search [83].
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