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ABSTRACT

Dysarthric speech reconstruction (DSR), which aims to improve the
quality of dysarthric speech, remains a challenge, not only because
we need to restore the speech to be normal, but also must preserve
the speaker’s identity. The speaker representation extracted by the
speaker encoder (SE) optimized for speaker verification has been
explored to control the speaker identity. However, the SE may not
be able to fully capture the characteristics of dysarthric speakers that
are previously unseen. To address this research problem, we propose
a novel multi-task learning strategy, i.e., adversarial speaker adap-
tation (ASA). The primary task of ASA fine-tunes the SE with the
speech of the target dysarthric speaker to effectively capture identity-
related information, and the secondary task applies adversarial train-
ing to avoid the incorporation of abnormal speaking patterns into
the reconstructed speech, by regularizing the distribution of recon-
structed speech to be close to that of reference speech with high qual-
ity. Experiments show that the proposed approach can achieve en-
hanced speaker similarity and comparable speech naturalness with
a strong baseline approach. Compared with dysarthric speech, the
reconstructed speech achieves 22.3% and 31.5% absolute word er-
ror rate reduction for speakers with moderate and moderate-severe
dysarthria respectively. Our demo page is released here1.

Index Terms— Dysarthric speech reconstruction, voice conver-
sion, adversarial speaker adaptation, speaker identity

1. INTRODUCTION

Dysarthria arises from various neurological disorders including
Parkinson’s disease or amyotrophic lateral sclerosis, leading to weak
regulation of articulators such as jaw, tongue, and lips [1]. There-
fore, the resulting dysarthric speech may be perceived as harsh or
breathy with abnormal prosody and inaccurate pronunciation, which
degrades the efficiency of vocal communication for dysarthric pa-
tients. Attempts have been made to improve the quality of dysarthric
speech by using various reconstruction approaches, where voice
conversion (VC) serves as a promising candidate [2].

The goal of VC is to convert non-linguistic or para-linguistic
factors such as speaker identity [3], prosody [4], emotion [5] and
accent [6]. VC has also been widely applied in reconstructing dif-
ferent kinds of impaired speech including esophageal speech [7, 8],
electrolaryngeal speech [9, 10], hearing-impaired speech [11] and
dysarthric speech [2], where rule-based and statistical VC ap-
proaches have been investigated for dysarthric speech reconstruction

1Audio samples: https://wendison.github.io/ASA-DSR-demo/

(DSR). Rule-based VC tends to apply manually designed, speaker-
dependent rules to correct phoneme errors or modify temporal and
frequency features to improve intelligibility [12, 13]. Statistical VC
automatically maps the features of dysarthric speech to those of
normal speech, where typical approaches contain Gaussian mix-
ture model [14], non-negative matrix factorization [15, 16], partial
least squares [17], and deep learning methods including sequence-
to-sequence (seq2seq) models [18–20] and gated convolutional
networks [21]. Though significant progress has been made, previous
work generally ignores speaker identity preservation, which loses
the ability for patients to demonstrate their personality via acoustic
characteristics. Preserving the identities for dysarthric speakers is
very challenging since their normal speech utterances are difficult to
collect. A few studies [22, 23] use a speaker representation to con-
trol the speaker identity of reconstructed speech, where the speaker
encoder (SE) proposed in our previous work [23] is trained on a
speaker verification (SV) task by using large-scale normal speech.
However, the SE may fail to effectively extract speaker representa-
tions from previously unseen dysarthric speech, which lowers the
speaker similarity of reconstructed speech.

This paper proposes an improved DSR system based on [23]
by using adversarial speaker adaptation (ASA). The DSR system
in [23] contains four modules: (1) A speech encoder extracting ac-
curate phoneme embeddings from dysarthric speech to restore the
linguistic content; (2) A prosody corrector inferring normal prosody
features that are treated as canonical values for correction; (3) A
speaker encoder producing a single vector as speaker representation
used to preserve the speaker identity; and (4) A speech generator
mapping phoneme embeddings, prosody features and speaker repre-
sentation to reconstructed mel-spectrograms. The speaker encoder
and speech generator are independently trained by using large-scale
normal speech data. We term the resulting integrated DSR system
using SV-based speaker encoder as the SV-DSR, which can generate
the reconstructed speech with high intelligibility and naturalness. To
better preserve the identity of the target dysarthric speaker during
speech generation, speaker adaptation can be used to fine-tune the
speaker encoder by using the dysarthric speech data. However, this
approach inevitably incorporates dysarthric speaking patterns into
the reconstructed speech. Hence, we propose to use ASA to allevi-
ate this issue, and the resulting DSR system is termed as the ASA-
DSR. For each dysarthric speaker, ASA-DSR is first cloned from
SV-DSR and then adapted in a multi-task learning manner: (1) The
primary task performs speaker adaptation to fine-tune the speaker
encoder by using the dysarthric speech data to enhance the speaker
similarity; (2) The secondary task performs adversarial training to
alternatively optimize the speaker encoder and a system discrimi-
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Fig. 1. The architecture for the SV-DSR system. The ASA-DSR
has the same architecture, except that the speaker encoder 𝜃𝑠𝑣𝑠 of
SV-DSR is trained for a SV task on the normal speech, while 𝜃𝑎𝑠𝑎𝑠

of ASA-DSR is first initialized from 𝜃𝑠𝑣𝑠 and then fine-tuned by the
dysarthric speech via proposed ASA.

nator, by min-maximizing a discrimination loss to classify whether
the mel-spectrograms are reconstructed by ASA-DSR or SV-DSR,
which forces the reconstructed speech from ASA-DSR to have a
distribution close to that of SV-DSR without dysarthric speaking pat-
terns, rendering the reconstructed speech from ASA-DSR to main-
tain stable prosody and improved intelligibility.

The main contribution of this paper is the use of proposed ASA
approach to effectively preserve speaker identities of dysarthric pa-
tients after the reconstruction, without using patients’ normal speech
that is nearly impossible to collect. It is noted that our work is differ-
ent from [24] that aims to achieve robust speech recognition, as the
proposed ASA here is used to obtain regularized mel-spectrograms
for generating high-quality speech with enhanced speaker similarity.

2. BASELINE APPROACH: SV-DSR

As shown in Fig. 1, our previously proposed SV-DSR system [23]
contains four modules: speech encoder, prosody corrector, speaker
encoder and speech generator. The first three modules respectively
produce phoneme embeddings, prosody values and speaker repre-
sentation; and the fourth module, the speech generator, maps these
features to reconstructed mel-spectrograms.

Speech encoder: To recover the content, a seq2seq-based
speech encoder is optimized by two-stage training to infer the
phoneme sequence: (1) Pre-training on large-scale normal speech
data; (2) Fine-tuning on the speech of a certain dysarthric speaker 𝑠𝑑
to achieve accurate phoneme prediction. The outputs of pre-trained
speech encoder Φ𝑝 or fine-tuned speech encoder Φ𝑠𝑑 are used as
phoneme embeddings that denote phoneme probability distributions.

Prosody corrector: As abnormal duration and pitch are two
essential prosody factors that contribute to dysarthric speech [14],
a prosody corrector is used to amend the abnormal prosody to a
normal form, it contains two predictors to respectively infer normal
phoneme duration and pitch (i.e., fundamental frequency (𝐹0)). The
prosody corrector is trained by a healthy speaker’s speech with nor-
mal prosodic patterns: (1) Given the phoneme embeddings extracted
by the speech encoder Φ𝑝 as inputs, the phoneme duration predictor
𝜃𝑑 is trained to infer the normal phoneme durations that are obtained
from force-alignment via Montreal Forced Aligner toolkit [25]; (2)
The ground-truth phoneme durations are used to align phoneme em-
beddings and 𝐹0 as shown in Fig. 1, the expanded phoneme embed-
dings are denoted as p and fed into the pitch predictor 𝜃𝑝 to infer

normal 𝐹0 that is denoted by v. The prosody corrector is expected
to take in phoneme embeddings extracted from dysarthric speech to
infer normal values of phoneme duration and 𝐹0, which can be used
as canonical values to replace their abnormal counterparts for gener-
ating the speech with normal prosodic patterns.

Speaker encoder: The speaker encoder, 𝜃𝑠𝑣𝑠 , is trained on
a SV task to capture speaker characteristics. 𝜃𝑠𝑣𝑠 takes in mel-
spectrograms m of one utterance with arbitrary length to produce a
single vector as speaker representation: e = 𝑓𝑠 (m; 𝜃𝑠𝑣𝑠 ). Following
the training scheme in [6], 𝜃𝑠𝑣𝑠 is optimized to minimize a general-
ized end-to-end loss [26] by using normal speech data that is easily
acquired from thousands of healthy speakers.

Speech generator: The speech generator with parameters 𝜃𝑔
predicts mel-spectrograms as: z = 𝑓𝑔 (p, v, e; 𝜃𝑔). To generate nor-
mal speech, the speech generator is trained by using normal speech
data from a set of healthy speakers S. Each speaker 𝑠𝑖 ∼ S has
the training data set T𝑠𝑖 = {(m 𝑗 , p 𝑗 , v 𝑗 )}, where each sample cor-
responds to one utterance and contains mel-spectrograms m 𝑗 , ex-
panded phoneme embeddings p 𝑗 and pitch features v 𝑗 . Then speech
generator is optimized by minimizing the generation loss L𝑠𝑣

𝑔𝑒𝑛, i.e.,
the L2-norm between the predicted mel-spectrograms z𝑠𝑣

𝑗
and m 𝑗 :

L𝑠𝑣
𝑔𝑒𝑛 = E𝑠𝑖∼S, (m 𝑗 ,p 𝑗 ,v 𝑗 )∼T𝑠𝑖




z𝑠𝑣𝑗 − m 𝑗





2

(1)

z𝑠𝑣𝑗 = 𝑓𝑔

(
p 𝑗 , v 𝑗 , e𝑠𝑣𝑗 ; 𝜃𝑔

)
, e𝑠𝑣𝑗 = 𝑓𝑠

(
m 𝑗 ; 𝜃𝑠𝑣𝑠

)
(2)

During the reconstruction phase, the SV-DSR system takes
in the dysarthric speech of speaker 𝑠𝑑 to generate reconstructed
mel-spectrograms as 𝑓𝑔 (p̃, ṽ, e𝑠𝑣 ; 𝜃𝑔), where p̃ are phoneme em-
beddings extracted by fine-tuned speech encoder Φ𝑠𝑑 and expanded
with predicted normal duration, ṽ is predicted normal pitch, and e𝑠𝑣
is the speaker representation. Then Parallel WaveGAN (PWG) [27]
is adopted as the neural vocoder to transform 𝑓𝑔 (p̃, ṽ, e𝑠𝑣 ; 𝜃𝑔) to
speech waveform. SV-DSR is a strong baseline as it can gener-
ate the speech with high intelligibility and naturalness. However,
the speaker encoder is trained on normal speech, which limits its
generalization ability to previously unseen dysarthric speech. There-
fore, e𝑠𝑣 cannot effectively capture identity-related information of
dysarthric speakers. Our experiments found that SV-DSR may even
change the gender of speech after the reconstruction.

3. PROPOSED APPROACH: ASA-DSR

The proposed approach of adversarial speaker adaptation (ASA), as
illustrated in Fig. 2, aims to enhance speaker similarity, resulting in
the proposed ASA-DSR system that shares the same modules as SV-
DSR except for the speaker encoder. First, ASA-DSR is cloned from
SV-DSR, then a system discriminator 𝜑 is introduced to determine
whether its input mel-spectrograms are reconstructed by SV-DSR or
ASA-DSR systems. Given a dysarthric speaker 𝑠𝑑 with the adapta-
tion data set T𝑠𝑑 = {(m𝑘 , p𝑘 , v𝑘)}, where each element corresponds
to one dysarthric utterance, p𝑘 are phoneme embeddings extracted
by Φ𝑠𝑑 and expanded with dysarthric duration, v𝑘 is dysarthric pitch,
their normal counterparts can be obtained via the prosody corrector
as p̃𝑘 and ṽ𝑘 , respectively. SV-DSR and ASA-DSR generate recon-
structed mel-spectrograms as z̃𝑠𝑣

𝑘
and z̃𝑎𝑠𝑎

𝑘
respectively:

z̃𝑠𝑣
𝑘

= 𝑓𝑔 (p̃𝑘 , ṽ𝑘 , e𝑠𝑣𝑘 ; 𝜃𝑔), z̃𝑎𝑠𝑎
𝑘

= 𝑓𝑔 (p̃𝑘 , ṽ𝑘 , e𝑎𝑠𝑎𝑘
; 𝜃𝑔) (3)

where e𝑠𝑣
𝑘

and e𝑎𝑠𝑎
𝑘

are respectively produced from the speaker en-
coders 𝜃𝑠𝑣𝑠 (from SV-DSR) and 𝜃𝑎𝑠𝑎𝑠 (from ASA-DSR) to control
the speaker identity. Besides, ASA-DSR predicts dysarthric mel-



Fig. 2. Diagram of ASA. m𝑘 is the mel-spectrogram of dysarthric
speech. p𝑘 is phoneme embedding expanded with dysarthric dura-
tion, v𝑘 is the pitch of dysathric speech, their normal counterparts are
p̃𝑘 and ṽ𝑘 obtained via prosody corrector. GRL is gradient reversal
layer that passes the data during forward propagation and inverts the
sign of gradient during backward propagation. Only parameters of
𝜃𝑎𝑠𝑎𝑠 and 𝜑 are updated during the ASA process.

spectrograms as z𝑎𝑠𝑎
𝑘

used for adaptation:

z𝑎𝑠𝑎
𝑘

= 𝑓𝑔 (p𝑘 , v𝑘 , e𝑎𝑠𝑎𝑘
; 𝜃𝑔) (4)

Then speaker encoder 𝜃𝑎𝑠𝑎𝑠 of ASA-DSR and discriminator 𝜑 are al-
ternatively optimized with remaining networks frozen. On one hand,
𝜑 is optimized to minimize the discrimination loss L𝑑𝑖𝑠 :

L𝑑𝑖𝑠 = E(m𝑘 ,p𝑘 ,v𝑘 )∼T𝑠𝑑
{
L𝑠𝑣
𝑑𝑖𝑠

+ L𝑎𝑠𝑎
𝑑𝑖𝑠

}
(5)

L𝑠𝑣
𝑑𝑖𝑠

= log
(
1 − 𝑓𝑑

(
z̃𝑠𝑣
𝑘

; 𝜑
))

,L𝑎𝑠𝑎
𝑑𝑖𝑠

= log 𝑓𝑑

(
z̃𝑎𝑠𝑎
𝑘

; 𝜑
)

(6)

where 𝑓𝑑 (∗; 𝜑) is the posterior probability of mel-spectrograms re-
constructed by SV-DSR. On the other hand, 𝜃𝑎𝑠𝑎𝑠 is optimized to
minimize the multi-task learning (MTL) loss L𝑀𝑇𝐿 :

L𝑀𝑇𝐿 = E(m𝑘 ,p𝑘 ,v𝑘 )∼T𝑠𝑑
{
L𝑎𝑑𝑎𝑝𝑡 − 𝜆L𝑑𝑖𝑠

}
(7)

L𝑎𝑑𝑎𝑝𝑡 =


z𝑎𝑠𝑎

𝑘
− m𝑘




2 (8)

where 𝜆 is set to 1 empirically. The primary task minimizes the
adaptation loss L𝑎𝑑𝑎𝑝𝑡 to force speaker encoder 𝜃𝑎𝑠𝑎𝑠 to effectively
capture speaker characteristics from the dysarthric speech, so that
enhanced speaker similarity can be achieved in reconstructed mel-
spectrograms z̃𝑎𝑠𝑎

𝑘
. The secondary task maximizes the discrimina-

tion loss L𝑑𝑖𝑠 to force z̃𝑎𝑠𝑎
𝑘

to have a similar distribution to z̃𝑠𝑣
𝑘

that has high intelligibility and naturalness, which facilitates z̃𝑎𝑠𝑎
𝑘

to
maintain normal pronunciation patterns as z̃𝑠𝑣

𝑘
. As a result, the pro-

posed ASA-DSR preserves the capacity of SV-DSR to reconstruct
high-quality speech, while achieving improved capacity for preserv-
ing the speaker identity of the target dysarthric speaker 𝑠𝑑 .

4. EXPERIMENTS

4.1. Experimental Settings

The datasets used in our experiments contain LibriSpeech [28],
VCTK [29], VoxCeleb1 [30], VoxCeleb2 [31], LJSpeech [32] and

Table 1. Comparison Results of MOS with 95% Confidence Inter-
vals for Speaker Similarity.

Approaches M05 F04 M07 F02
Original 4.93±0.01 4.89±0.02 4.95±0.01 4.96±0.01
E2E-VC 2.66±0.12 2.50±0.13 2.47±0.16 2.27±0.14
SV-DSR 2.70±0.14 2.27±0.10 2.55±0.14 1.88±0.13
SA-DSR 3.26±0.09 3.04±0.12 3.25±0.15 2.99±0.15

ASA-DSR 3.27±0.10 3.16±0.15 3.20±0.13 2.93±0.15

UASPEECH [33]. Speech encoder Φ𝑝 is pre-trained by 960h train-
ing data of LibriSpeech, prosody corrector is trained by the data
of a healthy female speaker from LJSpeech, speaker encoder 𝜃𝑠𝑣𝑠
is trained by Librispeech, VoxCeleb1 and VoxCeleb2 with around
8.5K healthy speakers, speech generator 𝜃𝑔 and PWG vocoder
are trained by VCTK. For dysarthric speech, two male speakers
(M05, M07) and two female speakers (F04, F02) are selected from
UASPEECH, where M05/F04 and M07/F02 have moderate and
moderate-severe dysarthria respectively. We use the speech data of
blocks 1 and 3 of each dysarthric speaker for fine-tuning speech
encoder and ASA, and block 2 for testing. The inputs of speech
encoder are 40-dim mel-spectrograms appended with deltas and
delta-deltas which results in 120-dim vectors, the targets of speech
generator are 80-dim mel-spectrograms, all mel-spectrogtams are
computed with 400-point Fourier transform, 25ms Hanning window
and 10ms hop length. 𝐹0 is extracted by the Pyworld toolkit2 with
the 10ms hop length. To stabilize the training and inference of 𝐹0
predictor, we adopt the logarithmic scale of 𝐹0. All acoustic features
are normalized to have zero mean and unit variance.

The speech encoder, prosody corrector, speaker encoder and
speech generator adopt the same architectures as in [23], where
the speaker encoder contains 3-layer 256-dim LSTM followed by
one fully-connected layer to obtain the 256-dim vector that is L2-
normalized as the speaker representation [6]. The pre-training and
fine-tuning of speech encoder are performed by Adadelta opti-
mizer [34] with 1M and 2K steps respectively by using learning
rate of 1 and batch size of 8. Both duration and 𝐹0 predictors are
trained by Adam optimizer [35] with 30K steps by using learning
rate of 1e-3 and batch size of 16, speech generator is optimized
in a similar way except that the training steps are set to 50K. The
training of speaker encoder by using normal speech follows the
scheme in [6]. Convolution-based discriminator of StarGAN [36] is
used as the system discriminator and alternatively trained with the
speaker encoder during ASA for 5K steps. Four DSR systems are
compared: (1) SV-DSR; (2) ASA-DSR; (3) SA-DSR, which is an
ablation system that performs speaker adaptation similar with ASA-
DSR but without adversarial training; and (4) E2E-VC [18], which
is an end-to-end DSR model via cross-modal knowledge distillation,
where the speaker encoder used in SV-DSR is added to control the
speaker identity.

4.2. Experimental Results and Analysis

4.2.1. Comparison Based on Speaker Similarity

Subjective tests are conducted to evaluate the speaker similarity of
reconstructed speech, in terms of 5-point mean opinion score (MOS,
1-bad, 2-poor, 3-fair, 4-good, 5-excellent) rated by 20 subjects for
20 utterances randomly selected from each of four dysarthric speak-
ers, and the scores are averaged and shown in Table 1. For E2E-VC
and SV-DSR that use the SV-based speaker encoder to control the

2https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder

https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder


Table 2. Comparison Results of MOS with 95% Confidence Inter-
vals for Speech Naturalness.

Approaches M05 F04 M07 F02
Original 2.37±0.08 2.49±0.09 1.95±0.10 1.79±0.09
E2E-VC 3.64±0.11 3.40±0.13 3.58±0.12 3.35±0.12
SV-DSR 3.88±0.11 3.92±0.10 3.80±0.10 3.79±0.09
SA-DSR 3.56±0.09 3.22±0.14 3.67±0.11 3.38±0.12

ASA-DSR 3.84±0.09 3.86±0.12 3.79±0.09 3.75±0.11

Table 3. WER(Δ) (%) Results Comparison, Where ’Δ’ Denotes the
WER Reduction of Different Approaches Compared with Original
Dysarthric Speech.

Approaches M05 F04 M07 F02
Original 91.0 81.7 95.6 95.9
E2E-VC 69.8(21.2) 69.3(12.4) 73.1(22.5) 72.0(23.9)
SV-DSR 61.7(29.3) 64.6(17.1) 62.7(32.9) 65.3(30.6)
SA-DSR 69.6(21.4) 70.0(11.7) 67.8(27.8) 67.2(28.7)

ASA-DSR 62.5(28.5) 65.6(16.1) 62.7(32.9) 65.8(30.1)

speaker identity, lower speaker similarity is achieved. Through our
listening tests, the gender of reconstructed speech by E2E-VC and
SV-DSR may be changed especially for female speakers, this shows
the limited generalization ability of the SV-based speaker encoder to
extract effective speaker representations from the dysarthric speech.
However, with the speaker adaptation to fine-tune the speaker en-
coder, both SA-DSR and ASA-DSR can accurately preserve the gen-
der with improved speaker similarity, showing the necessity of using
dysarthric speech data to fine-tune the speaker encoder to effectively
capture identity-related information of dysarthric speech.

4.2.2. Comparison Based on Speech Naturalness

Table 2 gives the MOS results of naturalness of original or recon-
structed speech from different systems. We can see that all DSR
systems improve the naturalness of original dysarthric speech, and
SV-DSR achieves highest speech naturalness scores for all speak-
ers, which shows the effectiveness of explicit prosody correction to
generate the speech with stable and accurate prosody. By using the
speaker adaptation without adversarial training, SA-DSR achieves
lower naturalness improvements, due to partial dysarthric pronunci-
ation patterns incorporated into the reconstructed speech. This issue
can be effectively alleviated by using the proposed ASA to align
the statistical distributions of reconstructed speech from ASA-DSR
and SV-DSR, which facilitates ASA-DSR to generate high-quality
speech that achieves comparable naturalness with SV-DSR.

4.2.3. Comparison Based on Speech Intelligibility

Objective evaluation of speech intelligibility is conducted by us-
ing a publicly released speech recognition model, i.e., Jasper [37],
to test the word error rate (WER) with greedy decoding, and the
results are shown in Table 3. Compared with original dysarthric
speech, SV-DSR achieves largest WER reduction for all dysarthric
speakers, showing the effectiveness of prosody correction to improve
the speech intelligibility. Compared with SV-DSR, the adaptation
version of SV-DSR without adversarial training, i.e., SA-DSR, has
smaller WER reduction, which is caused by the incorporation of
dysarthric speaking characteristics into reconstructed speech. How-
ever, with the proposed ASA to alleviate this issue, ASA-DSR out-
performs E2E-VC and SA-DSR and matches the performance of SV-
DSR, leading to 22.3% and 31.5% absolute WER reduction on av-
erage for speakers M05/F04 and M07/F02 that have moderate and
moderate-severe dysarthria respectively.

Fig. 3. AB preference test results with 95% confidence intervals
for different combinations of phoneme duration and 𝐹0, where ‘GG’
denotes Ground-truth duration and Ground-truth F0, ‘GP’ denotes
Ground-truth duration and Predicted F0, and ‘PP’ denotes Predicted
duration and Predicted F0.

4.2.4. Influence of Phoneme Duration and 𝐹0

We also conduct an ablation study to investigate how the phoneme
duration and F0 influence the quality of reconstructed speech by the
proposed ASA-DSR system. Three combinations of phoneme dura-
tion and F0 are used to generate the speech. We perform AB pref-
erence tests, where listeners are required to select the utterance that
sounds more normal, i.e., more stable prosody and precise articula-
tion, from two utterances generated by two different combinations.
The results are illustrated in Fig. 3. For the comparison ‘GG vs. GP’
(i.e., Ground-truth duration and F0 versus Ground-truth duration and
Predicted F0) of different speakers, more reconstructed speech sam-
ples are favored by using predicted normal F0 (p-values ≪ 0.05).
For the comparison ‘GP vs PP’ (i.e., Ground-truth duration and Pre-
dicted F0 versus Predicted duration and F0), using the predicted nor-
mal duration can significantly improve speech quality especially for
speakers M05, M07 and F02 who have abnormally slow speaking
speed. This shows that both phoneme duration and F0 affect speech
normality, and the prosody corrector in ASA-DSR derives normal
values of phoneme duration and F0, which facilitate the reconstruc-
tion of speech to have normal prosodic patterns.

5. CONCLUSIONS

This paper presents a DSR system based on a novel multi-task
learning strategy, i.e., ASA, to simultaneously preserve the speaker
identity and maintain high speech quality. This is achieved by a pri-
mary task (i.e., speaker adaptation) to facilitate the speaker encoder
to capture speaker characteristics from the dysarthric speech, and a
secondary task (i.e., adversarial training) to avoid the incorporation
of dysarthric speaking patterns into reconstructed speech. Exper-
iments show that the proposed ASA-DSR can effectively achieve
dysarthria reductions with improved naturalness and intelligibility,
while speaker identity can be effectively maintained with 0.73 and
0.85 absolute MOS improvements of speaker similarity over the
strong baseline SV-DSR, for speakers with moderate and moderate-
severe dysarthria respectively.
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