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Abstract
Multi-talker speech recognition and target-talker speech recog-
nition, both involve transcription in multi-talker contexts, re-
main significant challenges. However, existing methods rarely
attempt to simultaneously address both tasks. In this study,
we propose a pioneering approach to empower Whisper, which
is a speech foundation model, to tackle joint multi-talker and
target-talker speech recognition tasks. Specifically, (i) we freeze
Whisper and plug a Sidecar separator into its encoder to sepa-
rate mixed embedding for multiple talkers; (ii) a Target Talker
Identifier is introduced to identify the embedding flow of the
target talker on the fly, requiring only three-second enrollment
speech as a cue; (iii) soft prompt tuning for decoder is explored
for better task adaptation. Our method outperforms previous
methods on two- and three-talker LibriMix and LibriSpeechMix
datasets for both tasks, and delivers acceptable zero-shot perfor-
mance on multi-talker ASR on AishellMix Mandarin dataset.1

Index Terms: multi-talker speech recognition, target-talker
speech recognition, prompt tuning, domain adaptation

1. Introduction
Driven by the rapid development of deep learning along with
the availability of large-scale data, automatic speech recogni-
tion (ASR) has achieved significant progress in recent years
[1]. However, speech recognition in the multi-talker scenarios,
where overlapping may exist, remains challenging and has at-
tracted much attention.

To tackle the multi-talker speech recognition problem, var-
ious approaches have been explored. Conventional cascaded
systems employ a speech separation module as a front-end to
separate mixed speech signals, which are then fed into a single-
talker ASR system for transcription [2, 3]. However, these sys-
tems usually show limited performance due to the mismatch of
their optimization objectives, and may need further joint train-
ing [2]. Recently, end-to-end models have garnered interest ow-
ing to their outstanding performance. One primary challenge in
training an end-to-end multi-talker ASR system is to associate
prediction with the corresponding target labels for loss calcula-
tion [4]. Consequently, techniques such as Permutation Invari-
ant Training (PIT) [5, 6, 7, 8, 9], Heuristic Error Assignment
Training (HEAT) [10, 11, 12], and Serialized Output Training
(SOT) [13, 14, 15] have emerged. Although these methods have
yielded impressive results, they often necessitate training from
scratch or performing full fine-tuning on pre-trained models,
which does not fully capitalize on the existing advancements
developed for standard single-talker ASR. Enlightened by find-
ings that the ASR encoder captures more acoustic information

1The code is available at https://github.com/LingweiMeng/Whisper-
Sidecar

in its lower layers and more linguistic information in the upper
layers [16, 17, 18], a recent study advocates for the use of a
Conv-TasNet-like [19] Sidecar separator to tackle multi-talker
speech recognition, without distorting the parameters of a well-
trained single-talker ASR model [20, 21].

Target-talker ASR, which aims to efficiently recognize
speech of a target talker under a multi-talker scenario, also holds
substantial practical value. End-to-end approaches have been
investigated and achieved substantial progress [22, 23]. How-
ever, these methods typically necessitate an external [9, 24, 25]
or internal [26] module to derive the speaker embedding from
the enrollment speech of target-talker, consequently increasing
the model’s computational burden. Moreover, they typically
only output the transcripts of an assigned target talker, neglect-
ing the speech of other talkers. This limitation hinders their
applicability in situations where users may also be interested
in obtaining the transcriptions of non-target talkers. Although
speaker-attributed ASR can transcribe multiple speakers in a
speaker-aware manner, it typically necessitates the speaker em-
beddings of all involved individuals [27]. As far as we know,
[25] is the only study attempting to address joint multi-talker
and target-talker ASR; however, it still requires an external
speaker embedding extractor.

Nowadays, speech foundation models have emerged as a
versatile solution for diverse speech tasks [28, 29, 18]. As an
representative in this domain, Whisper [1] has demonstrated its
potential across various tasks beyond ASR [30, 31] which mo-
tivated us to further extend Whisper’s capabilities in tackling
multi- talker and target-talker speech recognition challenges.

In this study, we empower Whisper as a joint multi-talker
and target-talker system in a parameter-efficient style. Specif-
ically, we freeze the weights of Whisper and incorporate a
Sidecar separator into its encoder to endow it with multi-talker
speech recognition capabilities. A Target Talker Identifier (TTI)
module is introduced to distinguish the target speaker’s embed-
ding branch on the fly, requiring only three seconds of the target
talker’s enrollment speech as a cue. Moreover, soft prompt tun-
ing [32] for Whisper decoder is adopted to further adapt to the
tasks. Our major contributions are threefold:
• We propose a pioneering framework to jointly transcrib-

ing multi-talker speech while highlighting the target talker’s
speech, without employing any speaker embedding extractor.

• Leveraging the frozen Whisper as the foundation model, our
framework only involves limited trainable parameters, mak-
ing it a parameter-efficient and loosely-coupled system.

• Extensive experiments reveal that the proposed approach
achieves leading performance on two- and three-talker Lib-
riMix and LibriSpeechMix datasets (English) on both tasks,
and attains satisfactory zero-shot multi-talker ASR perfor-
mance on AishellMix (Mandarin).
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Figure 1: Take two-talker scenario as an example, the proposed system (a) take the concatenation of target enrollment speech and multi-
talker speech as input. The embedding is separated by Sidecar separator. Target Talker Identifier (b) processes the prefix segments of
encoder embeddings to identify the target talker branch. Optionally, non-target branchs can be discarded to accelerate inference.

2. Methods
The proposed method consists of four main components —
Whisper serving as the foundation model, a Sidecar separator to
separate mixed embedding for multiple talkers, a Target Talker
Identifier to identify the embedding flow of the target talker, and
a soft prompt embedding to facilitate task adaptation.

2.1. Whisper as the Speech Foundation Model

Whisper is a speech recognition model featuring an attention-
based encoder-decoder structure, which has been trained on
massive amounts of web-scale labeled speech data [1]. Nowa-
days, it is increasingly being utilized as a speech foundation
model even beyond speech recognition [24, 30, 31]. In this
study, we are inspired to extend its capability to handling joint
multi-talker and target-talker ASR tasks.

Whisper takes log-Mel spectrogram as input, followed by
transformer encoder and decoder modules to decode the output
tokens in an auto-regressive manner. Different from other ASR
models, Whisper adopts several special tokens as the prefix of
input sequences for decoder to specify tasks and condition in-
formation. By default, the prefix tokens are "<|PREV|>, text
prompt, <|SOT|>, <|LANGUAGE|>, <|TRANSCRIBE|>,
<|NO TIMESTAMP|>", where <|PREV|> and text prompt
are optional.

2.2. Empowering Whisper as a Multi-Talker ASR System

Recently, the Sidecar separator (SS) has been introduced as
a parameter-efficient module to convert a well-trained single-
talker ASR model into a multi-talker one [20]. In this work, we
incorporated the Sidecar separator with Whisper to harness its
capability acquired from extensive training data.

The Sidecar separator is a temporal convolutional network
inserted between the early layers of the ASR encoders. It con-
sists of stacked 1-D dilated convolutional blocks inspired by
Conv-TasNet [19]. As the shallower layers of the ASR encoder
are believed to encode more acoustic information rather than the
linguistic ones[17, 20], the Sidecar separator is able to separate
the mixed representation with talker-related masks, producing
disentangled representation of different speakers.

As depicted in Figure 1, the Sidecar separator accompa-
nied by two 1-D convolutional layers is positioned after the
second encoder block. Talker-dependent masks are generated,

which are element-wisely multiplied with the mixed embed-
ding, yielding separated embeddings of each talker. The sub-
sequent encoder blocks and decoder process these branches, ul-
timately transcribing the corresponding text for each talker.

2.3. Target Talker Identifier

We introduce the Target Talker Identifier (TTI) module, which
equips the system with the capability for target-talker ASR.

During the forward process, as illustrated in Figure 1 (b),
the encoder-output embeddings corresponding to different talk-
ers will be segmented into two distinct segments: a prefix
segment aligning with the length of three-second enrollment
speech, and a main segment that corresponds to the duration of
the multi-talker speech. The prefix segments are then fed into
the TTI module, which determines the branch associated with
the target talker, while only the main embedding segments are
sent to the Whisper decoder for transcription.

Specifically, the prefix segments hold a tensor shape of
(B × S, 150, C), where B denotes batch size, S denotes the
number of talkers, C denotes the number of channels, and 150
denotes the number of time frames. Given that each time frame
spans a duration of 20 ms, 150 coincides with the three-second
duration of the enrollment speech. As shown in Figure 1, within
the TTI module, the prefix segments traverse a linear layer fol-
lowed by the ReLU activation function, yielding a tensor with
a shape of (B × S, 150, 1). Upon squeezing and reshaping,
the tensor proceeds through another linear layer and the soft-
max function to produce the probability (B,S) of each branch
being the target talker.

Consequently, the target talker branch is efficiently deter-
mined on the fly, introducing minimal computational overhead.
Underpinned by the superior performance of the separation
module, TTI can be considered as performing target-talker ac-
tivity detection, which is a more economical task compared with
methods necessitating speaker embedding extraction.

2.4. Soft Prompt Tuning

The original Whisper model allows for the inclusion of text
prompt tokens as prefix to the decoder’s input sequences, condi-
tioned on which the model yields improved ASR performance
on ambiguous audios [1]. In this context, by exploiting this
inherent characteristic of Whisper combined with soft prompt
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tuning technique [32], we aim to adapt the model more effi-
ciently to multi-talker and target-talker ASR tasks.

Specifically, as shown in Figure 1 (a), we insert a learnable
embedding as soft prompt between <|PREV|> and <|SOT|>
tokens where hard prompt tokens were originally specified.
Note that we mask the position of the soft prompt when calcu-
lating the training loss, since the model does not require learn-
ing to generate them. The soft prompt embedding will be up-
dated as the model learns to transcribe the multi-talker speech.

2.5. Training objectives
At each training step, there’s an 80% probability of undertak-
ing multi-talker ASR training, while a 20% probability for ap-
pending a three-second enrollment speech for joint multi-talker
and target-talker ASR training. Both ASR loss and TTI’s cross-
entropy loss necessitate a permutation assignment for speaker
order to address the label ambiguity issue [33]. In this study,
the permutation is determined by Permutation Invariant Train-
ing (PIT) based on ASR loss, and is then assigned for TTI’s
cross-entropy loss calculation. The permutation is derived as:

π̂ = argmin
π∈P

S∑
s=1

LossASR(Y
s, Rπ(s)) (1)

where P denotes the set of all permutations on = {1, ..., S},
π(s) denotes the s-th element in a permutation π, Y s is the pre-
dicted token sequences of the s-th branch, and R is the reference
labels for S talkers. At last, the final objective function is the
sum of PIT-ASR loss and corresponding TTI loss multiplied by
a coefficient λ. Therefore we have,

L = LASR + λLTTI (2)

LASR =
∑
s

LossASR(Y
s, Rπ̂(s)) (3)

LTTI = LossCE(Z,D
π̂) (4)

where Z is the probability of each branch is of the target talker,
and Dπ̂ is the ground truth after permutation.

Considering that the original Whisper was not trained using
CTC loss, we refrain from employing an additional CTC loss
for early permutation assignment as done in [5, 6].

3. Experimental Setup
3.1. Datasets
The experiments are conducted on three multi-talker public
datasets, namely LibriMix [34] and LibriSpeechMix [13] in
English, and Aishell1Mix2 in Mandarin. Audio exceeding
Whisper’s maximum handling duration of 30 seconds are time-
stretched to conform to this limit. For target-talker ASR on
LibriMix and LibriSpeechMix, we randomly trim three-second
clips from LibriSpeech as enrollment speech for each talker.
LibriMix. The dataset simulates audio mixtures in a left-
aligned manner, involving two or three speakers from the
LibriSpeech-clean corpus. Thus, the shorter source speech is
entirely overlapped with the longer one from the start, present-
ing significant challenge in separating overlaps. We focus on its
two-speaker-mixed and three-speaker-mixed clean subset, de-
noted as Libri2Mix and Libri3Mix in the following.
LibriSpeechMix. The utterances are simulated from Lib-
riSpeech, comprising mixtures from two or three speakers. Un-
like LibriMix, the delay time for each speaker is randomly sam-
pled, resulting in partially overlapped mixtures. Since only of-
ficial dev and test sets are released, we created our training set

2https://github.com/huangzj421/Aishell1Mix

from the 960-hour LibriSpeech following the same protocol as
in [13], except that the mixtures are kept under 30 seconds.
Aishell1Mix. It is a Mandarin multi-talker speech dataset,
source from Aishell1 corpus. It simulate mixtures with a same
protocol of the LibriMix. We focus on its two-speaker-clean
subset for analysis, denoted as AishellMix in the following.

3.2. Model Settings and Evaluation Metrics
Throughout this study, we employ Whisper-small, -medium,
and -large-v3 as the foundation models, respectively. We freeze
these models and only train the Sidecar separator, Target Talker
Identifier, and soft prompt embedding. The number of trainable
parameters for systems using different foundation models and
for various numbers of talkers are listed in Table 1.

The Conv-TasNet-like Sidecar separator [20] comprises a
series of K temporal convolutional blocks with dilation rates
ranging from 1 to 2K−1, with each block repeats up to R times.
Consistent with the protocol in [20, 21], we use K = 8 and R
= 3 and plug it between the second and third encoder blocks.
The length for soft prompt embeddings are investigated through
ablation experiments (Section 4.4). As a result, we establish a
length of 4, which gives the best performance.

For systems with the TTI module, at each training step,
there’s an 80% probability of undertaking multi-talker ASR
training, while a 20% probability for joint multi-talker and
target-talker ASR training. We set the coefficient of TTI loss
λ to 0.01. The systems are trained and evaluated on two- and
three-talker subsets of LibriMix and LibriSpeechMix, respec-
tively. Each training session lasts for a maximum of 200k steps
on 8 NVIDIA V100 GPUs with a total batch size of 16, em-
ploying AdamW optimizer with an initial learning rate of 2e-4
that decreases linearly to 1e-4.

Permutations with minimum errors are used to compute
word error rate (WER) or character error rate (CER) for multi-
talker ASR as in prior studies [14, 20]. For target-talker ASR,
we use standard WER for evaluation. Both the model’s predic-
tions and the references are normalized following [1].
Table 1: The amount of trainable parameters, with numbers in
parentheses indicating their proportion in the total parameters.

Foundation Model 2-speaker 3-speaker

Whisper-small 8.69 M (3.47%) 8.79 M (3.51%)
Whisper-medium 13.16 M (1.69%) 13.29 M (1.71%)
Whisper-large 18.41 M (1.18%) 18.58 M (1.19%)

4. Results and Discussions
4.1. Multi-Talker ASR Results

We compared the performance of various systems for multi-
talker ASR on the two- and three-talker LibriMix and Lib-
riSpeechMix test sets, as shown in Table 2. Empowered by
Sidecar separator (SS), TTI, and soft prompt, our systems (f)-
(k) consistently illustrated improved performance across both
the two- and three-speaker subsets. Even with Whisper-small-
SS-TTI (g), owing to Whisper’s extensive pre-training, our
method has already surpassed the original Sidecar scheme[21].
As the size of the Whisper model increases, we observed a
steady improvement in performance, which aligns with our ex-
pectations. Ultimately, our systems outperformed previous ap-
proaches across all datasets except for LibriSpeechMix-3spk,
demonstrating the superiority of the proposed approach.

Interestingly, we find that systems with the TTI module (g)
(i) (k) outperform their counterparts without TTI (f) (h) (j) in
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multi-talker ASR task, even though the TTI is specifically de-
signed to support target-talker ASR. This suggests that the train-
ing objective of learning to distinguish the target talker can ben-
efit the Sidecar’s ability to separate embeddings, thereby facili-
tating the task of multi-talker ASR.

4.2. Target-Talker ASR Results
We evaluate target-talker ASR performance on two- and three-
speaker subsets of LibriMix and LbriSpeechMix, as illustrated
in Table 3.3 Our systems outperform previous state-of-the-art
method on LibriMix dataset by a large margin, and we are
the first to perform target-talker ASR task on Libri3Mix. To
guarantee a fair comparison, we further trained three additional
systems with limited training data to ensure consistency with
the data used in [9, 24]. These systems are denoted as ”-
limited”. The results demonstrate that our method still outper-
forms [9, 24] though under this restriction.

For LibriSpeechMix, the speech signals are partially over-
lapped, which means the target talker’s speech can incur a con-
siderable delay before it commences, resulting in a substan-
tial time interval away between it and the enrollment speech.
Nevertheless, despite the existence of delays, our systems still
demonstrate good performance on the LibriSpeechMix dataset,
validating the effectiveness of the proposed method.

4.3. Zero-Shot Multi-Lingual Evaluation
We investigated whether the multi-lingual characteristics of
Whisper are retained after fine-tuning it on an English multi-
talker dataset. Specifically, we conducted evaluations for
systems (g) (i) (k) listed in Table 1 using the two-speaker
AishellMix Mandarin dataset, which is the first time to be used
on multi-talker ASR task. The evaluations are performed using
two schemes: zero-shot and one-batch-tuning. Zero-shot refers
to directly evaluating the system on the AishellMix, while one-
batch-tuning implies conducting an additional training epoch on
the AishellMix training set prior to the evaluation.

As Table 5 illustrates, the medium and large models demon-
strated acceptable CER performance even under zero-shot con-
ditions. With just one batch tuning, these models exhibited sat-
isfactory results. This suggests that our method largely main-
tains the inherent multilingual capabilities of Whisper.

4.4. Ablation Study
We investigated the optimal prompt length by examining the
multi-talker ASR performance on the Libri2Mix dataset with
Whisper-medium and Whisper-large models. As shown in Ta-
ble 5, a soft prompt of length 4 yields the best performance.
However, as the soft prompt length increases to 16, the systems
see a decline in performance. This may be due to overly long se-
quence sequences, making the model difficult to optimize, given
the original Whisper model is frozen.

4.5. Limitations and Future Work
This study has several limitations. Firstly, our method relies
on PIT which requires pre-defining of the maximum number of
speakers. Future efforts will integrate SOT [13] or HEAT [11]
to address this issue and reduce training costs. Secondly, when
the target talker’s speech undergoes excessive delay, there could
be potential degradation in the target-talker ASR’s performance.
We anticipate future work to enable the TTI module synthesize
information across the entire utterance duration rather than only
the three-second enrollment speech.

3We did not include results reported in [26], which delivers better
performance but undergoes about ten times training efforts as ours.

Table 2: Multi-talker ASR on the test sets of LibriMix and Lib-
riSpeechMix. Evaluated by WER (%). “SS” denotes “Sidecar
Separator”, “TTI” denotes “Target Talker Identifier”.

LibriMix LibriSpeechMix

System 2spk 3spk 2spk 3spk

(a) WawLM Base+ PIT [9] 18.45 - - -
(b) C-HuBERT-Large [35] 7.80 - - -
(c) SURT [11] - - 7.20 -
(d) SOT-Conformer [27] - - 4.90† 6.20†

(e) D2V-Sidecar-DB [21] 9.69 33.91 7.49 11.94

(f) Whisper-small-SS 10.04 29.20 5.27 9.85
(g) Whisper-small-SS-TTI 9.39 26.76 5.18 8.61
(h) Whisper-medium-SS 6.95 22.58 4.32 7.80
(i) Whisper-medium-SS-TTI 6.56 21.47 4.01 7.50
(j) Whisper-large-SS 4.98 17.55 3.81 7.13
(k) Whisper-large-SS-TTI 4.66 16.79 3.43 6.80

† with extremely heavier training efforts.

Table 3: Target-talker ASR on LibriMix and LibriSpeechMix.
Evaluated by WER (%). ”-limited” denotes using the same
training data as in [24].

LibriMix LibriSpeechMix

System 2spk 3spk 2spk 3spk

WavLM-Base+-TSE [9] 12.32 - - -
Whisper-TS-ASR [24] 11.98 - - -

Whisper-small-SS-TTI-limited 15.75 - - -
Whisper-medium-SS-TTI-limited 11.39 - - -
Whisper-large-SS-TTI-limited 10.79 - - -
Whisper-small-SS-TTI 11.81 30.52 8.89 15.85
Whisper-medium-SS-TTI 9.14 25.75 7.58 12.4
Whisper-large-SS-TTI 7.97 21.97 6.99 11.4

Table 4: Zero-shot and one-batch-tuning multi-talker ASR on
Aishell1Mix Mandarin dataset. Evaluated by CER (%).

System zero-shot one-batch-tuning

Whisper-small-SS-TTI 55.87 28.95
Whisper-medium-SS-TTI 36.28 19.83
Whisper-large-SS-TTI 28.94 17.81

Table 5: Ablation study on soft prompt, evaluated by WER (%).

Soft Prompt Length

System 0 2 4 8 16

Whisper-medium-SS-TTI 7.21 6.82 6.56 6.84 7.5
Whisper-large-SS-TTI 5.27 4.98 4.66 4.74 5.43

5. Conclusions
In this study, we introduce a novel methodology that harnesses
Whisper, a speech foundation model, to jointly transcribe multi-
talker speech meanwhile highlighting the target talker’s speech,
without employing any speaker embedding extractor. Specif-
ically, we freeze whisper and insert a Sidecar separator into
its encoder to separate mixed embedding for multiple talkers.
Subsequently, a Target Talker Identifier module is introduced to
identify the embedding flow of the target talker on the fly, re-
quiring only three-second enrollment speech as a cue. The soft
prompt tuning is further utilized to facilitate task adaptation.

Extensive experiments reveal that our approach outper-
forms previous methods on LibriMix and LibriSpeechMix on
both tasks. Moreover, it achieves acceptable zero-shot perfor-
mance on multi-talker ASR on AishellMix Mandarin dataset.
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