
SOCODEC: A SEMANTIC-ORDERED MULTI-STREAM SPEECH CODEC FOR
EFFICIENT LANGUAGE MODEL BASED TEXT-TO-SPEECH SYNTHESIS

Haohan Guo∗, Fenglong Xie†, Kun Xie†, Dongchao Yang∗, Dake Guo‡,, Xixin Wu∗, Helen Meng∗

∗The Chinese University of Hong Kong, Hong Kong SAR, China
†Xiaohongshu Inc., Shanghai, China

‡Northwestern Polytechnical University, Xi’an, China
{hguo,dcyang,xxwu,hmmeng}@se.cuhk.edu.hk,

{fenglongxie,weisi}@xiaohongshu.com, guodake@mail.nwpu.edu.cn

ABSTRACT

The long speech sequence has been troubling language
models (LM) based TTS approaches in terms of modeling
complexity and efficiency. This work proposes SoCodec, a
semantic-ordered multi-stream speech codec, to address this
issue. It compresses speech into a shorter, multi-stream dis-
crete semantic sequence with multiple tokens at each frame.
Meanwhile, the ordered product quantization is proposed to
constrain this sequence into an ordered representation. It can
be applied with a multi-stream delayed LM to achieve bet-
ter autoregressive generation along both time and stream axes
in TTS. The experimental result strongly demonstrates the
effectiveness of the proposed approach, achieving superior
performance over baseline systems even if compressing the
frameshift of speech from 20ms to 240ms (12x). The ablation
studies further validate the importance of learning the pro-
posed ordered multi-stream semantic representation in pursu-
ing shorter speech sequences for efficient LM-based TTS.

Index Terms— Speech Codec, Speech Language Model,
Text-to-Speech Synthesis, Vector Quantization, Representa-
tion Learning

1. INTRODUCTION

Large language models (LLMs) have demonstrated powerful
capability in text generation [1, 2, 3]. This breakthrough in-
spires applications of LLMs in speech generation, especially
for zero-shot text-to-speech (TTS) synthesis, e.g., VALL-E
[4], Tortoise [5], BASE-TTS [6], etc. These models treat
TTS as a next-token prediction task by auto-regressively
generating discrete speech tokens (codes). Hence, such a
language-model-based TTS system, i.e. LM-TTS, usually
relies on an audio codec system [7, 8, 9]. It encodes speech
signals into discrete speech tokens and reconstructs them

Work performed during the first author’s internship at Xiaohongshu.
This work is supported by the Centre for Perceptual and Interactive Intel-
ligence (CPII) Ltd under the Innovation and Technology Fund.

back. Then, we train an LM to predict speech tokens from
the text to achieve TTS synthesis. However, unlike the text,
speech signals contain abundant information, including pho-
netics, prosody, speaker identity, acoustic environment, etc.,
making it challenging to compress into a token sequence as
short as the text. The long sequence seriously affects the LM
in terms of modeling complexity and efficiency, hindering its
development in the speech domain.

In this work, we propose SoCodec, a semantic-ordered
multi-stream speech codec, to provide a shorter token se-
quence for efficient LM-TTS. First, SoCodec leverages the
self-supervised-learning-based model [10, 11] to compress
speech signals into a multi-stream semantic sequence con-
taining sufficient phonetic and prosodic information. Then,
an utterance-level acoustic embedding is extracted from the
Mel spectrogram to represent time-invariant acoustic infor-
mation, including speaker identity, acoustic environment, etc.
Meanwhile, we propose ordered product quantization (OPQ)
for SoCodec to quantize speech into an ordered speech rep-
resentation along the stream axis. It can be incorporated
with a multi-stream LLM [12] based on a delayed pattern to
achieve the high-quality and efficient zero-shot TTS, which
is validated in both subjective and objective experiments.

Our contributions are summarized as follows: 1) we
propose a new speech codec, SoCodec, providing a shorter
speech sequence for efficient LM-TTS; 2) we propose ordered
product quantization (OPQ) to learn an ordered multi-stream
sequence to adapt multi-stream LM better; 3) we propose
an LM-TTS system based on SoCodec, achieving higher ef-
ficiency while keeping high synthesis quality in TTS, even
with a frameshift of only 240ms, the shortest sequence across
all LM-TTS approaches to the best of our knowledge.

2. RELATED WORK

To provide a short speech sequence for LMs, the codec is usu-
ally optimized from two aspects: 1) information reduction,
compressing speech signals to represent speech with fewer

ar
X

iv
:2

40
9.

00
93

3v
1 

 [
cs

.S
D

] 
 2

 S
ep

 2
02

4

mailto:hguo@se.cuhk.edu.hk
mailto:fenglongxie@xiaohongshu.com
mailto:guodake@mail.nwpu.edu.cn


tokens, and 2) representing speech with multiple streams,
i.e., each frame consists of multiple tokens to increase the
frameshift of the sequence. The mainstream audio codec, e.g.
Encodec [7], Hifi-Codec [8], DAC [8], usually adopt resid-
ual vector quantization (RQ) based approaches to compress
speech signals into a multi-stream sequence with a frameshift
of around 20ms and more than 8 streams to cover sufficient
acoustic information. However, the sequence is still too long
to adapt LMs well. Hence, TiCodec [13] and SingleCodec
[14] are proposed to represent speech with fewer tokens by
disentangling time-invariant acoustic information out of the
discrete sequence. Meanwhile, some works [15, 16, 17] em-
phasize keeping only semantic information in speech tokens
to compress the sequence further. Based on these works, we
propose SoCodec to compress speech into a shorter multi-
stream semantic representation.

On the other hand, to better generate the multi-stream rep-
resentation, an ordered generation process along the stream
axis is also applied in LM-TTS. For example, VALL-E [18, 4]
predicts the first stream via one AR model, and predicts the
following streams recursively by running one NAR model 7
times. Recently, a multi-stream LLM with a delayed pattern
[12, 19] is proposed to generate tokens along both axes auto-
regressively by only running one AR model once. However,
this autoregressive generation from the low stream to the high
stream makes it easy to deliver accumulated errors to high-
stream prediction, degrading the generation quality. Hence,
we intuitively aim to seek an ordered multi-stream speech
representation to first generate principal speech information
in low streams to ensure a stable generation process. Inspired
by ordered representation learning [20, 21], we propose or-
dered product quantization for SoCodec.

3. SEMANTIC-ORDERED SPEECH CODEC

In this section, we will give a detailed introduction to SoCodec,
including the proposed ordered product quantization, the
model architecture, and the loss function.

3.1. Ordered Product Quantization

Ordered representation learning [20, 21] aims to encode the
input into a PCA-like representation, where the first dimen-
sion represents the most principal information of the input,
and the following dimensions represent the residual informa-
tion recursively. Inspired by it, we propose ordered product
quantization (OPQ) to encode speech into a representation
with this order along the stream axis.

Fig. 1 shows how a vector e is encoded to a four-
stream representation by OPQ in training, consisting of two
parts: grouped product quantization, and stream-wise nested
dropout. First, like the vanilla product quantization [22],
we chunk e into 8 sub-vectors with the same dimension,
and quantize them respectively with different codebooks

Q Q QQ Q Q Q Q

Stream-Wise Nested Dropout (b ~ P(*))

0 0

Fig. 1. An example of the four-stream ordered product quan-
tization.

⊗
denotes the concatenation operation.

c1, c2, ..., c8. Each input sub-vector ei is converted to a quan-
tized sub-vector and the index to its corresponding codebook.
Then, following [23], we combine each two quantized sub-
vectors to form one stream, i.e. a concatenated sub-vector,
z

′

1 = [z1, z2], and a new index, i
′

1 = i1∗|c2|+i2, where |c2| is
the codebook size of c2. In this way, we can easily learn large-
codebook (|c′1| = |c1| ∗ |c2|) representations for LMs while
avoiding codebook collapse. Then, to train these streams to
be ordered, we follow the ordered autoencoder [20], and pro-
pose a stream-wise nested dropout. Given a random number
b in training, we keep only the first b streams and mask the
rest streams with 0 to form the output vector z. In this way,
we explicitly train SoCodec to encode speech into an ordered
multi-stream representation. In this work, we sample b from
a uniform distribution. Notably, nested dropout is disabled at
inference to provide the complete ordered representation.

3.2. Model Architecture

3.2.1. Semantic Encoder

As shown in Fig. 2, we first encode the speech signal into
a semantic token sequence by employing a pre-trained self-
supervised learning (SSL) model, HuBERT [10]. It encodes
speech signals into embedding sequence S with rich semantic
information as the encoder input. The time-variant encoder
based on ResNet blocks further processes this sequence and
uses stridden convolutional layers for down-sampling to ob-
tain a shorter encoding sequence. We then process this se-
quence with OPQ to obtain the ordered quantized sequence
Z.



Fig. 2. The model architecture of SoCodec.

3.2.2. Acoustic Encoder

Meanwhile, we also apply an ECAPA-TDNN-based [24]
time-invariant encoder to extract an utterance-level global
embedding g from speech signals to preserve time-invariant
information, e.g., speaker identity, global speaking style,
acoustic environment, etc. This embedding can be used in
speech reconstruction and imitate the target voice in zero-shot
TTS. To avoid the leakage of content information into this
embedding, we propose a simple pro-processing technique,
“Clip&Shuffle”, on the Mel spectrogram to remove short-
time variant information from it. Specifically, we first sample
a segment with a length of 25% to 75% of the utterance, and
then chunk it into slices with the length of 1 second. Finally,
these slices are shuffled randomly to form a new sequence.
This simple approach effectively reduces content leakage,
and avoids complicated disentangling techniques such as
adversarial learning [6].

3.2.3. Decoder

In the decoder, the global embedding g is duplicated and
added with the quantized sequence Z to form the decoder
input. It is then processed by ResNet blocks with the trans-
posed convolutional layers for up-sampling to reconstruct
both SSL features and acoustic features. The discriminator
proposed in Mega-TTS [25] is applied in training to improve
the generative quality of the Mel spectrogram. Finally. we

employ a pre-trained Mel-spectrogram-based neural vocoder,
BigVGAN [26], to generate the reconstructed audio. Notably,
although the SSL feature is not applied to generate the audio,
the training objective of minimizing the reconstruction loss
of SSL features still matters in learning discrete semantic
representations.

3.2.4. Loss Function

The loss function of SoCodec is written as follows:

Lc = λ1 ∗
∥∥∥Z − Z̃

∥∥∥2
2
+ λ2 ∗

∥∥∥S − Ŝ
∥∥∥2
2

(1)

+ λ3 ∗
∥∥∥A− Â

∥∥∥2
2
+ λ4 ∗

∥∥∥1−D(Â)
∥∥∥2
2

(2)

where λ1, λ2, λ3, λ4 are weight coefficients.
∥∥∥Z − Z̃

∥∥∥2
2

is the
VQ loss between the quantized sequence Z and the encod-

ing sequence Z̃ before the quantization.
∥∥∥S − Ŝ

∥∥∥2
2

is the se-
mantic loss between the SSL features S and the reconstructed
ones Ŝ. Finally, the acoustic loss is composed of two terms:
the L2 loss between the ground-truth Mel spectrogram A and
the reconstructed one Â, and an adversarial loss, where D(∗)
denotes outputs of all discriminators. Meanwhile, discrimi-
nators are trained alternately with codec.

4. MULTI-STREAM LANGUAGE MODEL

4.1. Model Architecture

In this work, we adopt a GPT-2-based [27] decoder-only
Transformer to construct a multi-stream LM, as shown in
Fig. 3. In training, we first extract semantic tokens and global
(reference) embedding from the target speech via the pre-
trained SoCodec. Then, the reference embedding, text, and
speech, are mapped into the embedding space with the same
dimension. All streams of the speech sequence are processed
respectively and then added together. The text sequence and
speech sequence are added with different learnable positional
embeddings. Then, we process this embedding sequence with
a stack of causal Transformer layers, and predict probabilities
of speech tokens with a group of linear layers. The loss func-
tion of multi-stream LM is the averaged cross-entropy loss
across all streams of the speech sequence.

4.2. Delay Prediction

An ideal LM for multi-stream representations is to predict the
joint distribution of all streams in an auto-regressive manner:

P (yt,1:m|y1:t−1,1:m, x) (3)

where m and x are the number of streams and the input, i.e.
the text and the reference embedding in our work. It requires



integrating all tokens at the same frame into one token corre-
sponding to a giant dictionary, which is impossible to achieve.
Hence, we usually adopt the chain rule, i.e.:

m∏
j=1

P (yt,j |yt,1:j−1, y1:t−1,1:m, x) (4)

we can achieve this by flattening all streams into one se-
quence, but it also multiplies the length of the sequence,
going against our intention of using multi-stream representa-
tions. The delayed prediction breaks the dilemma effectively
and has shown superior performance in music and speech
generation [12, 19]. It shifts the j-th stream with d ∗ (j − 1)
frames for all streams, where d is the pre-designed number of
delayed steps. In this way, the objective of LM is changed to:

m∏
j=1

P (yt,j |y1:t−1+d∗(j−1),1, y1:t−1+d∗(j−2),2,

..., y1:t−1+d∗(j−m),m, x)

(5)

This approach allows us to predict multiple tokens in parallel
while keeping chain-rule prediction from low to high streams.
However, this pattern also causes missing high-stream infor-
mation in low-stream prediction and more accumulated errors
in high-stream prediction. Specifically, when generating low-
stream tokens, the model cannot see full information on high
streams from the past. For example, y3,4 is unseen when gen-
erating y4,1. Moreover, the accumulated errors from the auto-
regressive prediction lead to more noise in the high-stream
prediction. Hence, an ordered representation is necessary for
this multi-stream LM to ensure that principal speech infor-
mation is preserved and predicted in low streams for a high-
quality and stable generation.

5. EXPERIMENTAL PROTOCOL

5.1. Datasets & Features

All codecs and LLMs in this work are trained with Wenet-
Speech4TTS (Basic) [28], an open-source large-scale Chi-
nese multi-speaker speech dataset. It contains 7,226 hours
of found data with high diversity in audio quality, speaking
style, acoustic environment, etc., hence putting a huge chal-
lenge to TTS modeling. All audio files are normalized to the
sample rate of 16kHz in our experiments. SoCodec adopts a
pre-trained Chinese HuBERT [29] to extract 1024-dim SSL
features with a frameshift of 20ms, and uses the 80-dim Mel-
spectrogram with a frameshift of 10ms as the acoustic fea-
ture. The BigVGAN-base [26] neural vocoder is pre-trained
on WenetSpeech4TTS to synthesize audio from Mel spectro-
grams. We train all LMs to generate speech tokens from the
normalized text directly. Hence, we train a byte-pair encod-
ing (BPE) based text dictionary with 8192 tokens, and feed
text tokens to our LMs.

GPT-2

Reference
Embedding

Text

Embedding

Linear

Linears

EOS

EOS

EOS

EOS

BOS

BOS

BOSPADPAD

PAD

PAD PAD PAD

PAD PAD

PAD

PE PE

Embeddings

Fig. 3. The model structure of the multi-stream LM. “PE”
denotes the learnable positional embedding layer.

5.2. Models

In SoCodec1, the time-variant encoder and the decoder are ap-
plied with 1024-dim ResNet blocks, each consisting of 4 con-
volutional layers. We apply the time-invariant encoder with
a 256-dim ECAPA-TDNN based on a smaller ResNet block
with only 2 convolutional layers. In OPQ, we fix the number
of codewords of each codebook to 128, and set the dimension
of input vectors of the OPQ module to the total number of
codewords, e.g. 1024 for 8 codebooks. Two codebooks form
a larger codebook with 16,384 codewords for LLM training
and inference. In training, we set λ1 = 1, λ2 = 103, λ3 =
10, λ4 = 1 to balance these loss terms, and use EMA to up-
date codebooks with the decay rate of 0.99.

LMs use the GPT-2 module consisting of 12 Transformer
layers with a feature dimension of 1024 to predict probability
distributions with the dimension of 16386 (the extra two in-
dices are for BOS and EOS tokens) for each stream. SoCodec
and LMs are trained using AdamW [30] for 100,000 itera-
tions. By default, we train models with a batch size of 1600
seconds and run LM inference using a sampling strategy with
a temperature of 0.8, a top-p of 0.8, a top-k of 10, and a rep-
etition penalty of 2.0 for a stable generation process. In 6.1,
we increase the batch size to 3.5 hours in training to keep a
similar training configuration with baseline systems.

5.3. Evaluation Metrics

In codec evaluation, we sample 860 utterances from the
WenetSpeech [31] test set, with high diversity in speak-

1The implementation is available at https://github.com/hhguo/
SoCodec

https://github.com/hhguo/SoCodec
https://github.com/hhguo/SoCodec


ing style and audio quality, to evaluate the performance of
codecs. We adopt the following objective metrics2: Mel-
cepstrum distortion (MCD, dB), character error rate (CER,
%), and speaker similarity (SIM, ×10−2) to measure recon-
struction quality, intelligibility, and speaker similarity.

In TTS evaluation, we create a test set with 860 utter-
ances, where each utterance is paired with a different out-
of-training-set audio file as the reference audio for zero-shot
TTS. In 6.1, we use the subset with 100 utterances to con-
duct objective and subjective tests, i.e. the MOS tests. There
are 10 native speakers invited to the test and asked to give
scores ranging from 1 to 5 in terms of naturalness (NMOS)
and speaker/style similarity (SMOS), respectively. We also
calculate the real-time factor (RTF) to measure the efficiency
of TTS systems.

NMOS SMOS CER SIM RTF

X-TTS 3.51 2.83 4.39 76.89 0.47
VALL-E 3.40 2.73 10.69 72.45 0.95
SoCodec-40 3.83 3.91 2.37 85.17 0.46
SoCodec-120 3.98 3.78 2.57 83.14 0.22
SoCodec-240 3.77 3.47 3.01 79.02 0.16

Table 1. The comparison of different LM-TTS systems.

6. RESULTS

6.1. TTS System Comparison

First, we use both subjective and objective metrics to compare
different TTS systems3: X-TTS, an industrial zero-short base-
line LM-TTS system; VALL-E trained on the same datasets;
and SoCodec-based TTS systems. We propose three versions
of SoCodec-based TTS: SoCodec-40 is a single-stream codec
with a frameshift of 40ms; SoCodec-120 is a four-stream
codec with a frameshift of 120ms; and SoCodec-240 is an
eight-stream codec with a frameshift of 240ms.

As shown in Fig. 1, the baseline system VALL-E per-
forms poorly on this challenging dataset, showing a worse
quality than the industrial baseline X-TTS. It is based on a
general audio codec with eight streams and a short frameshift
of 20ms. The long speech sequence and the complicated
framework (one AR inference and seven NAR inferences)
cause high modeling complexity and low efficiency with only
an RTF of 0.95. After emphasizing encoding semantic infor-
mation in the codec, the single-stream LM-TTS, SoCodec-40,

2We use FunASR, the open-source ASR tool, for transcribing, available
at https://github.com/modelscope/FunASR. The tool for ex-
tracting speaker embedding is available at https://huggingface.co/
Wespeaker/wespeaker-cnceleb-resnet34

3X-TTS is available at https://huggingface.co/coqui/
XTTS-v2, and VALL-E is available at https://github.com/
dukGuo/valle-audiodec

achieves the best overall quality across all models. By pro-
viding the proposed ordered multi-stream representation, we
shorten the sequence by three times in SoCodec-120, leading
to a higher efficiency with the RTF of 0.22, while keeping a
comparable TTS quality to SoCodec-40. Finally, we try to
further shorten the sequence to the frameshift of 240ms. It
shows a slight degradation in TTS quality but the highest ef-
ficiency, and still significantly outperforms VALL-E based on
the sequence 12 times longer. It strongly demonstrates the
effectiveness of the proposed approach in achieving a high-
quality and efficient LM-TTS.4

Table 2. The objective evaluation of speech audio from
analysis-synthesis and TTS synthesis

System Analysis-Synthesis TTS

MCD CER SIM CER SIM

Codec-1 6.38 24.94 84.64 14.71 81.03
Codec-2 6.36 12.47 81.78 3.86 79.22
SoCodec 6.17 6.41 81.75 2.60 81.12

6.2. Semantic Codec

To evaluate the effect of semantic encoding in LM-TTS, we
compare SoCodec with two codecs: Codec-1, replacing Hu-
BERT with the Mel spectrogram and removing semantic loss,
and Codec-2, only removing the semantic loss of SoCodec.
These codecs are all based on four-stream speech sequences
with a frameshift of 120ms. As shown in Table 2, Codec-
1 preserves rich acoustic information, showing the highest
speaker similarity, but also loses much semantic information,
leading to the highest CER in analysis-synthesis and TTS.
After adopting the HuBERT feature as the input, Codec-2
preserves more semantic information in the token sequence,
improving the intelligibility of the reconstructed and TTS-
synthesized audio with slightly degraded speaker similarity.
Finally, the SoCodec trained with semantic loss further im-
proves intelligibility while keeping a high speaker similarity.
This result demonstrates that the proposed approach encodes
sufficient semantic information to the discrete sequence to
better produce intelligible speech in TTS.

6.3. Ordered Speech Representations

To investigate the impact of OPQ on TTS, we first make an
analysis to see if OPQ can provide the expected ordered rep-
resentation. Fig. 4 shows curves of MCD and CER of speech
reconstructed from the first b streams in RQ-based and OPQ-
based four-stream SoCodec with a frameshift of 120ms. RQ
can also provide an ordered representation approximately by

4Samples are available at https://hhguo.github.io/
DemoSoCodec

https://github.com/modelscope/FunASR
https://huggingface.co/Wespeaker/wespeaker-cnceleb-resnet34
https://huggingface.co/Wespeaker/wespeaker-cnceleb-resnet34
https://huggingface.co/coqui/XTTS-v2
https://huggingface.co/coqui/XTTS-v2
https://github.com/dukGuo/valle-audiodec
https://github.com/dukGuo/valle-audiodec
https://hhguo.github.io/DemoSoCodec
https://hhguo.github.io/DemoSoCodec


Fig. 4. The MCD and CER of speech reconstructed from first
k streams in RQ and OPQ-based codecs.

quantizing the vector recursively in residual spaces. However,
OPQ is shown as a more significant ordered representation.
These two approaches achieve similar reconstruction quality
when all streams are used, but OPQ preserves more principal
information in lower streams, showing lower MCD and CER.
It demonstrates the effectiveness of OPQ in learning the ex-
pected ordered multi-stream representation.

Fig. 5. The CERs of audio from analysis-synthesis, TTS with
the sampling strategy, and TTS without the sampling strategy,
using SoCodec with various VQ approaches and frameshifts.

Then, we investigate the impact of an ordered speech
representation on analysis-synthesis and TTS by comparing
SoCodec based on different VQ approaches, PQ, RQ, and
OPQ, and different frameshifts, 120ms, and 240ms, as shown
in Fig. 5. First, PQ-based SoCodec, without the ordered con-
straint, can fully utilize the embedding space to minimize the
reconstruction loss, showing the lowest CER. RQ and OPQ
bring more reconstruction loss to keep the expected order
along the stream axis. However, ordered speech sequences
benefit TTS significantly. We run TTS in two modes: with
(TTS w/ SS) or without (TTS w/o SS) the sampling strategy
mentioned in 5.2 to evaluate the robustness of the model to
noisy samples. The result shows that both RQ and OPQ
improve TTS quality over the PQ-based system, especially
on the longer frameshift of 240ms, but the OPQ shows the
best performance in both TTS modes by providing a better
ordered representation. Moreover, OPQ with the lowest CER
in TTS w/o SS further validates that it makes the multi-stream
autoregressive generation more robust to accumulated errors.

6.4. Delayed Prediction

We also investigate the impact of delayed prediction of the
multi-stream LLM on TTS quality. Fig. 6 shows CERs and
SIMs of SoCodec-120 with different delayed steps. First,
LMs with different delayed steps show similar performance
in speaker similarity. However, the LM without delayed pre-
diction (d = 0) produces more unintelligible and unnatural
speech, showing the highest CER. It verifies the necessity of
the delayed pattern in multi-stream LM. Moreover, more de-
layed steps bring more computing costs but no further sig-
nificant improvement. We notice that, as indicated in Eq. 5,
more delayed steps make high-stream prediction receive more
information from low streams but also make low-stream pre-
diction lose more information from high streams. This trade-
off makes it harder to gain from more delayed steps. Hence,
we conclude that combining SoCodec with multi-stream LM
with the delayed step of 1 can already achieve a high-quality
and efficient LM-TTS.

Fig. 6. The CERs of synthesized audio from LLMs with dif-
ferent delayed steps.

7. CONCLUSIONS

We propose a new speech codec, SoCodec, to provide a
shorter multi-stream speech sequence for efficient LM-TTS.
Meanwhile, ordered product quantization (OPQ) is proposed
to learn an ordered multi-stream sequence to be better incor-
porated with the multi-stream delayed LM to achieve high-
quality and efficient zero-shot TTS. Finally, the proposed
LM-TTS system based on SoCodec achieves outperform-
ing TTS quality over baseline systems, while keeping much
higher efficiency with shorter speech sequences. In ablation
studies, SoCodec is validated as an effective model in encod-
ing sufficient semantic information into the discrete sequence.
The proposed ordered product quantization shows its signif-
icance in providing the expected ordered multi-stream rep-
resentation, improving the performance of the multi-stream
delayed LM in TTS.



8. REFERENCES

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol.
33, pp. 1877–1901, 2020.

[2] OpenAI, “Gpt-4 technical report,” 2023.

[3] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.,
“Llama 2: Open foundation and fine-tuned chat mod-
els,” arXiv preprint arXiv:2307.09288, 2023.

[4] Ziqiang Zhang, Long Zhou, Chengyi Wang, Sanyuan
Chen, Yu Wu, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and Furu
Wei, “Speak foreign languages with your own voice:
Cross-lingual neural codec language modeling,” CoRR,
vol. abs/2303.03926, 2023.

[5] James Betker, “Better speech synthesis through scal-
ing,” arXiv preprint arXiv:2305.07243, 2023.

[6] Mateusz Lajszczak, Guillermo Cámbara, Yang Li, Fatih
Beyhan, Arent van Korlaar, Fan Yang, Arnaud Joly,
Álvaro Martı́n-Cortinas, Ammar Abbas, Adam Michal-
ski, et al., “Base tts: Lessons from building a billion-
parameter text-to-speech model on 100k hours of data,”
arXiv preprint arXiv:2402.08093, 2024.

[7] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi, “High fidelity neural audio compression,”
arXiv preprint arXiv:2210.13438, 2022.

[8] Dongchao Yang, Songxiang Liu, Rongjie Huang,
Jinchuan Tian, Chao Weng, and Yuexian Zou, “Hifi-
codec: Group-residual vector quantization for high fi-
delity audio codec,” arXiv preprint arXiv:2305.02765,
2023.

[9] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs,
Ishaan Kumar, and Kundan Kumar, “High-fidelity au-
dio compression with improved rvqgan,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[10] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrah-
man Mohamed, “Hubert: Self-supervised speech rep-
resentation learning by masked prediction of hidden
units,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 3451–3460, 2021.

[11] Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki

Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long
Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Michael
Zeng, Xiangzhan Yu, and Furu Wei, “Wavlm: Large-
scale self-supervised pre-training for full stack speech
processing,” IEEE Journal of Selected Topics in Signal
Processing, vol. 16, pp. 1–14, 10 2022.

[12] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez, “Simple and controllable music generation,”
Advances in Neural Information Processing Systems,
vol. 36, 2024.

[13] Yong Ren, Tao Wang, Jiangyan Yi, Le Xu, Jianhua Tao,
Chu Yuan Zhang, and Junzuo Zhou, “Fewer-token neu-
ral speech codec with time-invariant codes,” in ICASSP
2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE,
2024, pp. 12737–12741.

[14] Hanzhao Li, Liumeng Xue, Haohan Guo, Xinfa Zhu,
Yuanjun Lv, Lei Xie, Yunlin Chen, Hao Yin, and Zhifei
Li, “Single-codec: Single-codebook speech codec to-
wards high-performance speech generation,” arXiv
preprint arXiv:2406.07422, 2024.

[15] Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, De-
tai Xin, Dongchao Yang, Yanqing Liu, Yichong Leng,
Kaitao Song, Siliang Tang, et al., “Naturalspeech 3:
Zero-shot speech synthesis with factorized codec and
diffusion models,” arXiv preprint arXiv:2403.03100,
2024.

[16] Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and
Xipeng Qiu, “Speechtokenizer: Unified speech tok-
enizer for speech large language models,” arXiv preprint
arXiv:2308.16692, 2023.

[17] Haohe Liu, Xuenan Xu, Yi Yuan, Mengyue Wu, Wenwu
Wang, and Mark D Plumbley, “Semanticodec: An ul-
tra low bitrate semantic audio codec for general sound,”
arXiv preprint arXiv:2405.00233, 2024.

[18] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, et al., “Neural codec lan-
guage models are zero-shot text to speech synthesizers,”
arXiv preprint arXiv:2301.02111, 2023.

[19] Eugene Kharitonov, Ann Lee, Adam Polyak, Yossi
Adi, Jade Copet, Kushal Lakhotia, Tu-Anh Nguyen,
Morgane Rivière, Abdelrahman Mohamed, Emmanuel
Dupoux, et al., “Text-free prosody-aware generative
spoken language modeling,” in ACL 2022-Association
for Computational Linguistics. MIT Press, 2022, vol. 1,
pp. 8666–8681.



[20] Oren Rippel, Michael Gelbart, and Ryan Adams,
“Learning ordered representations with nested dropout,”
in International Conference on Machine Learning.
PMLR, 2014, pp. 1746–1754.

[21] Yilun Xu, Yang Song, Sahaj Garg, Linyuan Gong, Rui
Shu, Aditya Grover, and Stefano Ermon, “Anytime sam-
pling for autoregressive models via ordered autoencod-
ing,” in International Conference on Learning Repre-
sentations, 2021.

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid,
“Product quantization for nearest neighbor search,”
IEEE transactions on pattern analysis and machine in-
telligence, vol. 33, no. 1, pp. 117–128, 2010.

[23] Haohan Guo, Fenglong Xie, Dongchao Yang, Hui Lu,
Xixin Wu, and Helen Meng, “Addressing index col-
lapse of large-codebook speech tokenizer with dual-
decoding product-quantized variational auto-encoder,”
arXiv preprint arXiv:2406.02940, 2024.

[24] Nauman Dawalatabad, Mirco Ravanelli, François
Grondin, Jenthe Thienpondt, Brecht Desplanques, and
Hwidong Na, “Ecapa-tdnn embeddings for speaker di-
arization,” arXiv preprint arXiv:2104.01466, 2021.

[25] Ziyue Jiang, Jinglin Liu, Yi Ren, Jinzheng He, Chen
Zhang, Zhenhui Ye, Pengfei Wei, Chunfeng Wang, Xi-
ang Yin, Zejun Ma, et al., “Mega-tts 2: Zero-shot text-
to-speech with arbitrary length speech prompts,” arXiv
preprint arXiv:2307.07218, 2023.

[26] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catan-
zaro, and Sungroh Yoon, “BigVGAN: A universal neu-
ral vocoder with large-scale training,” in The Eleventh
International Conference on Learning Representations,
2023.

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAI blog, vol.
1, no. 8, pp. 9, 2019.

[28] Linhan Ma, Dake Guo, Kun Song, Yuepeng Jiang, Shuai
Wang, Liumeng Xue, Weiming Xu, Huan Zhao, Binbin
Zhang, and Lei Xie, “Wenetspeech4tts: A 12,800-hour
mandarin tts corpus for large speech generation model
benchmark,” 2024.

[29] Pengcheng Guo and Shixing Liu, “chinese speech pre-
train,” 2022.

[30] Ilya Loshchilov and Frank Hutter, “Decoupled
weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[31] Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao,
Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu Chen,
Chenchen Zeng, et al., “Wenetspeech: A 10000+ hours
multi-domain mandarin corpus for speech recognition,”
in ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 6182–6186.


	 Introduction
	 Related Work
	 Semantic-Ordered Speech Codec
	 Ordered Product Quantization
	 Model Architecture
	 Semantic Encoder
	 Acoustic Encoder
	 Decoder
	 Loss Function


	 Multi-Stream Language Model
	 Model Architecture
	 Delay Prediction

	 Experimental Protocol
	 Datasets & Features
	 Models
	 Evaluation Metrics

	 Results
	 TTS System Comparison
	 Semantic Codec
	 Ordered Speech Representations
	 Delayed Prediction

	 Conclusions
	 References

