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Abstract—We develop a framework pertaining to automatic
semantic interpretation of multimodal user interactions using
speech and pen gestures. The two input modalities abstract the
user’s intended message differently into input events, e.g., key
terms/phrases in speech or different types of gestures in the pen
modality. The proposed framework begins by generating partial
interpretations for each input event as a ranked list of hypothe-
sized semantics. We devise a cross-modality semantic integration
procedure to align the pair of hypothesis lists between every
speech input event and every pen input event in a multimodal
expression. This is achieved by the Viterbi alignment algorithm
that enforces the temporal ordering of the input events as well
as the semantic compatibility of aligned events. The alignment
enables generation of a unimodal, verbalized paraphrase that is
semantically equivalent to the original multimodal expression.
Our experiments are based on a multimodal corpus in the domain
of city navigation. Application of the cross-modality integration
procedure to near-perfect (manual) transcripts of the speech
and pen modalities show that correct unimodal paraphrases are
generated for over 97% of the training and test sets. However, if
we replace with automatic speech and pen recognition transcripts,
the performance drops to 53.7% and 54.8% for the training and
test sets, respectively. In order to address this issue, we devised
the hypothesis rescoring procedure that evaluates all candidates of
cross-modality integration derived from multiple recognition hy-
potheses from each modality. The rescoring function incorporates
the integration score, -best purity of recognized spoken locative
expressions, as well as distances between coordinates of recognized
pen gestures and their interpreted icons on the map. Application
of cross-modality hypothesis rescoring improved the performance
to 67.5% and 69.9% for the training and test sets, respectively.

Index Terms—Joint integration, human–computer interaction,
hypothesis rescoring, multimodal input, pen gesture, perplexity,
robust interpretation, spoken input.

I. INTRODUCTION

W E develop a framework pertaining to automatic se-
mantic interpretation of multimodal user interactions

using speech and pen gestures. These two input modalities
are gaining increasing importance in our information society,
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along with rapid growth in the penetration of handheld mobile
devices. The coordinated use of speech and pen gestures of-
fers ease in direct retrieval and manipulation of information.
As discussed in [1], users tend to migrate from unimodal to
multimodal interactions when tackling tasks with increasing
difficulty and communicative complexity. Coordinated use of
both modalities enhances expressive power, especially in the
communication of complex semantics in succinct form [2]. For
example, the unimodal spoken inquiry:

What is the name of the street that is five blocks south of
the Yonghegong and lies to the east of the China National
Museum of Fine Arts?

may be paraphrased multimodally with substantial simplication,
to become:

What street is this? <draw a stroke on the map>

Each modality in the multimodal user input presents a different
abstraction of the user’s informational or communicative goal
as one or more input events. An input event may be a spoken
deictic term/phrase or a pen action. The semantics of an input
event may be imprecise (e.g., a pen stroke on a map may denote
a street or demarcation), incomplete (e.g., use of anaphora in
“how about the previous one”?) or erroneous due to misrecog-
nitions (e.g., speech or pen gesture recognition errors). These
problems motivate us to investigate 1) how we may charac-
terize individual input events in a multimodal input expression
to derive their possible (incomplete) semantics, 2) how we may
combine such partial semantics across modalities to derive the
holistic semantic meaning of the original multimodal expres-
sion, and 3) how we may leverage the mutual reinforcements
and mutual disambiguation across modalities [3] to achieve ro-
bustness towards misrecognitions and imperfectly captured in-
puts.

Previous approaches towards semantic interpretation of mul-
timodal input include frame-based heuristic integration, unifi-
cation parsing, hybrid symbolic-statistical approach, weighted
finite-state transducers, probabilistic graph matching and the
salience-driven approach. Frame-based heuristic integration [4],
[5] uses an attribute-value data structure that incorporates tem-
poral difference and contextual information for semantic inte-
gration with a set of rules. Unification parsing [6], [7] combines
temporally and semantically compatible speech/gesture recog-
nition hypotheses that are represented as typed feature struc-
tures with multimodal grammars rules. Hybrid symbolic-statis-
tical approach [8], [9] aims to statistically refine unification-
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based parsing with probabilities and confidence scoring of the
features structures in order to account for corelations between
modalities. Weighted finite-state transducers (FSTs) [10] en-
code syntactic and semantic information to offer tight coupling
across modalities, with FST weights as trained from data. Prob-
abilistic graph matching [11], [12] incorporates semantic, tem-
poral, and contextual constraints to combine information from
multiple input modalities, where the information is represented
as attribute relational graphs (ARGs). Integration includes max-
imizing the node match probabilities between ARG from speech
and the ARG from pen input. The salience-driven approach [13]
is an -gram language model that incorporates a salience distri-
bution based on the pen gesture to constraint the bigram proba-
bility for spoken language understanding.

We aim to devise a cross-modality (speech and pen) semantic
integration framework that draws from previous experiences but
is extended with several desirable features.

1) Ability to leverage the multiple recognition hypotheses
generated from speech and pen recognition—we devise a
score-based integration process that considers the ranked
confidence of multiple recognition hypotheses in both
modalities, as well as the semantic and temporal compati-
bilities across various cross-modal hypothesis pairs during
joint interpretation.

2) Ability to handle multiple multimodal input events in a
complex input expression (e.g., a navigational inquiry that
involves a composition of singular, plural, and aggregated
locative references).

3) Avoidance from writing grammar rules as these require a
high level of expertise.

4) Low demand on the amount training data since data col-
lection is a costly process.

5) Ease of cross-modal integration as a front-end preprocess
of an existing spoken dialog system, thereby enabling it
to handle bimodal (speech and pen) inputs, as well as uni-
modal (speech-only or text-only) inputs.

6) Ease of portability to different information domains.
To further elaborate on the above, our approach is based on a
Viterbi algorithm that enforces semantic and temporal ordering
compatibilities in terms of two cost functions. Furthermore,
we designed a robust interpretation framework with an inte-
grative cost function that incorporates a weighted combination
of ranked confidence scores from speech recognition, pen
recognition, together with a cross-modal compatibility score.
The semantic compatibility can be derived by a simple process
of exploratory data analysis of a training set; hence, our ap-
proach does not involve grammar writing. The requirement on
training data is relatively small, because the training data set
is used only for reference and in tuning weights in the cost
function. This alleviates the problem of overtraining due to
insufficient training data. The cross-modality integration com-
ponent identifies matched pairings between one or more spoken
references with pen gestures in a multimodal expression, based
on temporal and semantic compatibility. Hence, cross-modality
integration can generate a unimodal (verbalized) paraphrase
that is self-contained and semantically equivalent to the multi-
modal expression. Alternatively, cross-modality integration can
also generate a verbalized paraphrase that contains meta-tags

(derived from recognized pen gestures) which represent con-
ceptual abstractions in the place of parsed spoken locative
references (e.g., the spoken reference, “this,” in the earlier
example can be replaced with <street:South Dongzhimen Back
Street> (i.e., in Chinese), as identified from
the recognized pen stroke). Both types of paraphrase can be
easily integrated with our existing spoken dialog system (SDS)
[14]–[16]. The former type of paraphrase can be fed as input to
the SDS but may engender redundant effort in spoken language
parsing. However, this type of paraphrase eases the process
of analytical comparison between unimodal and multimodal
expressions, in the current investigation, e.g., analyzing re-
lationships such as complementarity and redundancy across
modalities. The latter type of paraphrase enables the carrier
phrase to be interpreted by the spoken language understanding
component in the SDS, while the meta-tag of <street:South
Dongzhimen Back Street> can be directly inserted in the
semantic frame as one of the key-value pairs as described in
[16].1 Thereafter, we can leverage the existing modules in the
SDS for discourse inheritance, dialog modeling and response
generation, which are performed based on the semantic frame.
As regards portability of the proposed framework, migrating to
a new information domain requires only a new domain-specific
language model for the speech recognizer, as well as a set of
domain-specific features list. Hence, the framework is largely
domain independent. Details will be provided later.

The following presents our work in the design and collec-
tion of a multimodal corpus, characterizing speech and pen ges-
tures for unimodal interpretation, cross-modality semantic inte-
gration, hypothesis rescoring, as well as empirical performance
evaluation.

II. DESIGN AND COLLECTION OF A MULTIMODAL CORPUS

A. Information Domain

The current investigation is cast in the information domain
of navigation around Beijing. Inquiries involving locative in-
formation often induce multimodal user input. We downloaded
six maps from the Internet, covering five districts in Beijing.
We identified about 930 locations associated with icons and
labels on the maps. For each icon, we annotated their positional
coordinates, corresponding to the four corners of the icon.
We also categorized the icons according to “location types”
and “sub-types.” There are seven location types in all, e.g.,
TRANSPORT, SCHOOLS_AND_LIBRARIES, etc. Each location type
is further organized into 2 to 12 “subtypes.” For example, the
location type TRANSPORT contains the subtypes road, street,
train_station, railway_station, railroads, bus_stop, bridge,
intersection, highways, elevated_highway, elevated_road and
road_under_construction; while SCHOOLS_AND_LIBRARIES

consists of universities, institutes and libraries. For a given
location type and subtype, there can be multiple instances of
domain-specific data entries. For example, the location type
of TRANSPORT and subtype of street will include all the street
names on the map.

1If we follow the syntax in [16], the key-value is expressed in the form of
<street>South Dongzhimen Back Street</street>.
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TABLE I
AN ILLUSTRATIVE EXAMPLE FOR MULTIMODAL DATA COLLECTION WITH

SPEECH ����� AND PEN GESTURES �����. TRANSLATIONS ARE ITALICIZED

Fig. 1. Data collection interface of the Pocket PC, augmented with soft buttons
for logging functions (START/STOP) and loading the NEXT map. The numbers
highlight some examples of location icons: 1) subject’s current location (i.e.,
the red cross); 2) a university; 3) a road; and 4) a hospital.

We also conducted a quick survey involving ten people re-
garding typical inquiries from users who are trying to navi-
gate around Beijing. These inquiries generally target nine infor-
mation categories including BUS INFORMATION, TRAVEL TIME,
TRANSPORTATION COSTS, ROUTE FINDING, MAP COMMANDS, etc.
Based on these information categories, we designed specific
tasks (31 tasks covering seven location types) such that each in-
duces a subject to compose multimodal inquiries. Table I shows
an example task and a multimodal input composed by a subject
during data collection.

B. Data Collection Procedures

We invited 23 Mandarin-speaking subjects to participate in
data collection. In an initial briefing session, each subject is pre-
sented with an instruction sheet listing the set of 31 tasks (as
shown in Appendix B). For each task, the subject is asked to

TABLE II
EXAMPLE OF LOGGED DATA FOR MULTIMODAL INPUT BASED

ON TABLE I. EXPLANATIONS ARE IN ITALICS

formulate a multimodal input that may involve up to loca-
tions.2 The subject may refer to these locations by speech (i.e.,
spoken locative references) or by pen gestures. Both speech and
pen inputs are recorded directly by a Pocket PC (PPC). In some
of the tasks, the PPC provides contextual information “current
location” with a red cross on the map. The subjects are also in-
formed of several possible options:

• that spoken locative references may be deictic (e.g.,
“here”; “these four universities”);

elliptic (e.g., “how long does
it take to walk to this park”) or anaphoric (e.g.,

“how long does it take to
go from my current location to Wangfujing”);

• that pen gestures may be a point, a circle or a stroke (with
a pen-down gesture followed by a pen-up gesture).

Subjects are also allowed to revise and recompose their multi-
modal inquiries during the recording session to clearly express
the intended task semantics and constraints.

C. Data Collection Setup

The recording session is carried out individually for each of
the 23 subjects in an open office. The data collection setup in-
volves a PPC with a system interface (Fig. 1). Speech input is
recorded by the built-in microphone of the PPC. Pen gestures
are input with a stylus. The PPC interface includes several soft
buttons: The START button should be pressed to launch the auto-
matic system logging procedure that records the speech signal,
the pen gestures and the timing information between the modal-
ities. Table II shows the logged data corresponding to the ex-
ample given in Fig. 1. Pressing the NEXT button displays the
map of the next task.

D. Corpus Statistics

We have collected 1518 inputs from 23 subjects in all. Among
these, 1442 are multimodal and 76 are speech-only inquiries.
All speech and pen data have been manually transcribed.
Utterance lengths range from 2 to 54 Chinese characters,
covering a vocabulary of size 521 with domain-specific named
entities and spoken locative references (SLRs). A user input
may consist of zero (i.e., speech only input) to six pen ges-
tures of the types point, circle or stroke. Short inputs are
typically map commands (e.g., “zoom in”). The longest

2
� is constrained to a maximum value of 6.
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TABLE III
EXAMPLES FROM THE MULTIMODAL CORPUS

input in our corpus includes several direct locative references:

We have also manually annotated the cross-modality pair-
ings between an SLR and a pen gesture for the multimodal ex-
pressions for performance analysis. These pairings are based
on human judgment (i.e., our oracle), with the objective of ob-
taining a holistic and coherent semantic interpretation for the
bimodal input. A single SLR may map to multiple pen gestures
and vice versa. For some of the SLRs or pen gestures, a map-
ping to the other modality cannot be found. The annotations also
ignore disfluencies in the speech modality (e.g., filled pauses
and repairs) and spurious gestures in pen modality (e.g., due to
shaking hands). Our corpus has 3421 spoken locative references
and 3590 instances of pen gestures in total. We divided the 1442
multimodal inquiries into two disjoint datasets randomly. The
training set has 999 inputs and the test set has 443 inputs.

III. CHARACTERIZING SPEECH AND PEN GESTURES

FOR UNIMODAL INTERPRETATION

This section describes our findings in an exploratory data
analysis of the collected corpus. Our aim is to understand how
individual modalities encode partial semantics that should
later be conjoined to decode the holistic meaning of the user’s
multimodal input. Results from the analysis are used to devise
unimodal interpretation strategies for individual modalities.
Table III shows some typical examples from our multimodal
corpus.

A. Characterization of Spoken Inputs

The collected data offers over 3421 (count by token) and
177 (count by type) occurrences of spoken locative references
(SLRs) for analysis, from which we derive the following char-
acterizations.

1) Direct references: These involve the use of the full
name of a location (e.g., for Beijing Uni-
versity of Post and Telecommunications), its abbreviated
name (e.g., or BUPT), or a contextual phrase (e.g.,

, my current location). Recall that the
subject’s “current location” is indicated by a red cross
on the map. There are 1529 occurrences of direct refer-
ences involving 76 unique tokens/phrases in our corpus.

2) Indirect references: The user may also refer to a lo-
cation through deixis or anaphora, e.g., “here”,

“that center”, “these three shop-
ping centers”, etc. Hence, indirect references may con-
tain numeric features (as indicated with a numeric ex-
pression, e.g., “three”, “few”, “some”, etc.)
and/or location type features (e.g., “park”,
“university”). Both attributes may also be left unspec-
ified in the SLR (e.g., “place”, “location”).
The location type feature may also be ambiguous (e.g.,

“station/stop”). There are 1892 occurrences of indi-
rect references involving 101 unique SLR expressions in
our corpus.

In comparison with previous work, the SLRs corresponds to
the Givenness Hierarchy with four cognition statuses as men-
tioned in [17], where the direct references are the uniquely iden-
tifiable referents and the indirect references are the activated or
familiar referents.

B. Procedure for Interpreting Spoken Locative References

Based on the above observations, we devise a three-step
strategy for interpreting transcribed spoken inputs. These can
be applied on manual as well as automatic transcriptions of
speech.
Step 1) Chinese word tokenization: The Chinese language

does not have an explicit word delimiter. We per-
form word tokenization using a greedy algorithm
with a homegrown Chinese lexicon with 43 K en-
tries, covering nouns, verbs, phrases and SLR ex-
pressions. Should speech recognition transcripts be
used, the SLR should already be tokenized based on
the recognizer’s vocabulary, but may be retokenized
by the current procedure.

Step 2) SLR Extraction: We extract the SLR expressions
by referring to our lexicon, which includes 177
unique SLR expressions. The extraction algorithm
can accommodate arbitrary numeric expressions
parsed from the transcribed speech. The parsed
numeric expression is used to fill in the numeric
feature attribute of the SLR.

Step 3) Hypotheses generation: This step generates a hy-
pothesized list of locations corresponding to a given
SLR. A single location is typically generated for di-
rect references, based on the name of the location
or the current location from context. The list of hy-
pothesized locations generated for an indirect ref-
erence typically includes all icons present on the
map. This list may be narrowed down according to
a matching location type, if the feature is specified.
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TABLE IV
ILLUSTRATIONS OF THE USAGES OF DIFFERENT PEN GESTURE TYPES

Furthermore, if the numeric feature is specified, it is
stored along with the generated hypothesis list. Rank
ordering of the hypothesized locations is not consid-
ered for SLRs.

C. Characterization of Pen Inputs

Our corpus contains 3590 pen gestures in total. Analysis of
the corpus also sheds light on the usages of the different pen
gestures as illustrated in Table IV.

1) Pointing: This is mostly used to indicate a single loca-
tion. This occurs 99.8% of the time in our corpus and the
remaining occurrences are map rendering commands.

2) Circling: This includes two possible cases—small cir-
cles indicate a single location (70% of corpus statis-
tics) and large circles indicate multiple locations (30%
of corpus statistics).

3) Strokes: These include three possible cases—a stroke
referring to a street or bridge (45.1% of corpus statis-
tics), the start and end points of a path (32.3%) and mul-
tiple strokes constituting a route (22.6%).

D. Interpreting Pen Inputs

Pen inputs are interpreted based on the gesture type and its co-
ordinates, which are compared with the positional coordinates
of the icons on the map. Interpretation of each gesture type gen-
erates a ranked hypothesis list of locations, according to the fol-
lowing protocol.

1) Point: Icons lying within 50 pixels from the point are
considered possible semantic interpretations of the ges-
ture. These are ranked according to distances away from
the point. Shorter distances give higher ranks.

Fig. 2. Illustration of the procedure for hypothesis lists generation in the speech
and pen modalities, respectively.

2) Circle: The circle’s area is defined by the pair of coor-
dinates corresponding to the pen-down and pen-up ges-
tures. Icons with overlapping areas are considered pos-
sible semantic interpretations and are ranked according
to their distances away from the estimated center of the
circle. Again, shorter distances give higher ranks.

3) Stroke: A hypothesis list is generated for each endpoint
of a stroke, where hypotheses are ranked by distance
from the endpoint. If we compare the hypothesis list of
two adjacent endpoints (from one stroke or two sequen-
tial strokes) and find significant similarity (i.e., either the
top three entries are identical, or the two lists have over
75% overlap), the two hypothesis lists will be merged
into one according to their common entries. Using this
method, we can distinguish between interpreting a single
stroke as one location, from the other alternative of a
connecting stroke between two locations. In the case of
multiple sequential strokes, such as the three strokes in
Table IV, this method enables us to interpret them as a
route connecting four locations.
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Fig. 3. Cross-modality integration procedure. Each input event (a spoken loca-
tive reference or a pen gesture such as point/circle/stroke) in each modality pro-
duces a list of hypothesized locations. There are aligned across modalities by
the Viterbi algorithm while incorporating semantic compatibility and temporal
order.

Fig. 2 illustrates the process of interpreting speech and pen
gestures interpretation procedure is shown in Fig. 2.

IV. CROSS-MODALITY INTEGRATION

As described previously, each of the two (speech and
pen) modalities abstracts the user’s intended message into
a sequence of input events, i.e., in terms of spoken locative
references (SLRs) or pen gestures. Each event carries semantic
meaning but may contain ambiguity. The interpretation proce-
dures for speech and pen inputs presented in (Sections III-B
and III-D) derive partial semantics for each event, represented
as a hypothesized list of locations. This section presents a
cross-modality integration procedure that attempts to integrate
the partial interpretations across modalities in order to generate
a unimodal paraphrase that is semantically equivalent to the
original multimodal user input. Statistics show that 67% of the
multimodal inquiries in the training set have an equal number
of SLR and pen gestures. However, in these cases, there may
not be a one-to-one correspondence between the SLRs and pen
gestures. For example:

:

:

There are two SLRs and two pointing gestures in the inquiry.
However, the first SLR is an anaphora referring to the user’s cur-
rent location, and the two pointing gestures both correspond to
the second SLR. An overly bold assumption of one-to-one cor-
respondence between SLRs and pen gestures can correctly inter-
pret only 58% of the perfectly transcribed multimodal inquiries
in the training set. Therefore, we perform cross-modality inte-
gration by Viterbi alignment [18] with a scoring function that
enforces the temporal ordering between the sequence of SLRs
and the sequence of pen gestures. The scoring function also en-
forces the semantic compatibility in terms of numeric (NUM) and
location type (LOC_TYPE) features (see Fig. 3).

A. Enforcing Temporal Order

Analysis of our training data shows that in a multimodal
input, the spoken locative reference (SLR) and pen gesture
that correspond to the same intended location may not always
overlap in time. In fact, the majority of cases in the training
set show the pen gesture occurring either before or after its
corresponding spoken reference. Hence, in the current work,
we only attempt to maintain the temporal order of locative ref-
erences between the speech and pen inputs. A Viterbi alignment

can easily accommodate for this as we
align the sequence of hypothesis lists in temporal order of the
SLRs with the sequence of hypothesis
lists in temporal order of the pen gestures .
Note that it is possible for a single SLR to align with multiple
pen gestures (e.g., “these three universities” corresponds to
three pointing inputs); as well as vice versa (e.g., “Xueyuan
Road and North Huyuan Road” corresponds to a circle). The
Viterbi alignment algorithm can support this by advancing
the position in one hypothesis sequence (either or ) while
maintaining the position in the other.

B. Enforcing Semantic Compatibility

Cross-modality integration also seeks to enforce semantic
compatibility. If the th SLR is a direct reference expression,
the hypothesis list should contain only one element and the
integration procedure seeks to match the specified location with
hypotheses for the aligned pen gesture in . The matching
cost is defined such that if no match is found, a cost of one
is incurred. If the SLR is an indirect reference expression, the
hypothesis list should contain multiple elements and the
location type (LOC_TYPE) or numeric (NUM) features may be
specified. The integration procedure checks for compatible
LOC_TYPE among the hypotheses for the aligned pen gesture
in . A matching cost of one is incurred if there
is mismatch in LOC_TYPE between and (see (8) in the
Appendix). Enforcing compatibility in NUM is a little more
elaborate, especially when the value of NUM specifies multiple
locations that need to be matched with the hypothesis sequences
from recognized pen gestures. Hence, we use a transition cost

which is set to the deficit in the NUM

value during the transition from to as
shown in (9) (see Appendix), where and .
The matching cost of location type and transition of numeric
feature are determined with the training set. As mentioned, an
SLR may align with one or more pen gestures, corresponding
to one or more and each may contain a different number
of hypotheses. Should we encounter a tie in the conditional
cumulative costs at from dif-
ferent positions during the course of alignment,
we pick the back pointer in the following order of
precedence.

1) Return one step in while maintaining the position in
(i.e., and ).

2) If the above path is not available, return one step in both
and (i.e., and ).

3) If the above path is not available, return one step in while
maintaining the position in (i.e., and ).
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TABLE V
EXAMPLE ILLUSTRATING THE UNIMODAL PARAPHRASES GENERATED FROM

THE MULTIMODAL EXPRESSIONS FROM TWO DIALOG TURNS

This order aims to handle the occurrence of anaphoric reference
to the user’s existing location—i.e., the anaphora does not need
to pair up with a pen gesture. Details of the Viterbi algorithm
are provided in Appendix A.

C. Identifying Intended Locations

This alignment procedure generates the “best” path in at-
tempting to find an alignment between an SLR with a pen ges-
ture in the multimodal input. The cross-modality integration
procedure extracts the common location(s) found in each pair
of hypothesis lists ( and ) derived from the aligned SLR
and pen gesture. The number of locations extracted follows the
value of the NUM feature and the ranking of locations follows
those from the hypothesis list from the pen modality (as de-
scribed in Section III-D). The top ranking location(s) is identi-
fied as the user’s intended location(s). By substituting the iden-
tified locations in place of the SLRs in the speech input, we can
generate a unimodal, verbalized paraphrase that is semantically
equivalent to the original multimodal expression. This will be
described in Section IV-E. For an indirect SLR that does not
have any corresponding aligned pen gesture, it will remain in-
tact in the expression and will be further disambiguated through

context inheritance in the dialog model of the SDS. An illustra-
tive example is given in Table V.

D. Evaluating the Cross-Modality Integration Procedure

We applied the cross-modality integration procedure to both
the training and test sets. Recall that thus far we have been
working with hand-transcribed speech input (with perfect SLR
extraction performance), together with manually annotated ges-
ture types for pen input. The transcriptions for speech and pen
are regarded as perfect. For each multimodal inquiry, we manu-
ally annotate the alignment between an SLR and a pen gesture.
Based on the alignment, the user’s intended location(s) can be
identified. Similarly, the Viterbi alignment is applied to each
multimodal inquiry so as to obtain a system generated align-
ment. If the oracle and system generated alignments completely
agree with each other, the multimodal inquiry is considered as
correct. The cross-modality integration accuracy is defined as
shown in the equation at bottom of page. The cross-modality in-
tegration procedure generated correct alignments between SLRs
and pen gestures for 97.5% of training inquiries and 97.1% of
the testing inquiries that contain SLR(s). The incorrect pairings
shed light on possible future work, including the need to use
timing information across modalities for some multimodal in-
puts; as well as the need to apply pragmatic knowledge to infer
the value of the NUM feature (i.e., in the case ) and to
filter out redundant SLRs in the speech input. Further details are
presented in [19].

E. Analytical Comparison Between Parallel Multimodal and
Unimodal Expressions

In order to investigate the relationships between speech and
pen gestures and their effects in the joint interpretation, we
performed an analytical comparison between collected multi-
modal expressions and their automatically generated unimodal
paraphrases. In order to do so, we ran the cross-modality
integration procedure on the multimodal expressions. For each
pair of aligned SLR and pen gesture, we can identify the user’s
intended location(s). If we replace each of the SLRs with the
full name of the identified location(s), we obtain the unimodal
paraphrase. The correct paraphrases (over 97% of the entire
data set) are extracted and combined with their semantically
equivalent multimodal counterparts to form parallel corpora.
More specifically, we obtain 974 multimodal and unimodal
expression pairs from our training set and 430 pairs from
our testing set. Comparative statistics of the multimodal and
unimodal inputs are shown in Table VI. We see that the spoken
components of multimodal inputs are generally shorter and
cover a smaller vocabulary than their unimodal counterparts.
The difference is less pronounced than expected. One reason,

Cross-modality integration accuracy
Total of multimodal inquiries with perfect match between oracle and system generated alignments

Total of multimodal inquiries with SLRs
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TABLE VI
PARALLEL MULTIMODAL AND UNIMODAL CORPORA STATISTICS

TABLE VII
COMPARISONS IN PERPLEXITIES BETWEEN THE PARALLEL

MULTIMODAL (MM) AND UNIMODAL (UM) INPUTS

based on our observation, is the diversity of spoken deictic
expressions and Chinese measure words. For example, “my
current location” may be verbalized in many ways (such as

etc.).
Chinese measure words relating to location types (including

, etc.) also
contribute towards alternatives in verbalization.

We pooled the multimodal and unimodal spoken expressions
together (1450 in all as presented in [19]) to train a class
trigram language model. We classified the proper names (i.e.,
location names) into 12 equivalences classes, e.g., UNIVERSITY,
HOSPITAL, STREET, etc. We also have four other equivalences
classes including: ARTICLES, NUMBERS (i.e., implicit/explicit
numeric expressions, e.g., “one,” “few,” “some,”
etc.), MEASURE_WORDS and LOCATION_TYPE (e.g., the words
“university,” “parks,” etc.) The language model was developed
using the CMU SLM Toolkit [20]. The resulting model contains
290 unigrams, 1375 bigrams, and 2795 trigrams. The prob-
abilities are smoothed by Katz backoff smoothing [21] with
discount ratios 0.04 for unigrams, 0.36 for bigrams, and 0.38
for trigrams. The discounting thresholds for unigrams, bigrams
and trigrams are 1, 5, and 7, respectively. We computed the
class trigram perplexities for the multimodal and unimodal test
sets, respectively. Results are shown in Table VII.

We observe that for the semantically equivalent, parallel mul-
timodal, and unimodal corpora, the unimodal paraphrases have
significantly higher perplexities. We also observe that the test
set may be divided into two subsets according to comparisons
in per-utterance perplexities between the multimodal
and unimodal inputs .

1) The subset with typically con-
tains direct references in speech that are semantically
redundant with the pen modality. Each pair of co-
ordinates of each pen gesture in the multimodal input

TABLE VIII
EXAMPLES ILLUSTRATING PERPLEXITY REDUCTION IN DIFFERENT CASES.
PERPLEXITIES OF EXAMPLES 1 AND 4 ARE THE SAME BECAUSE WE ARE

USING A CLASS-BASED LANGUAGE MODEL, WHERE FULL AND ABBREVIATED

NAMES OF A UNIVERSITY BELONG TO THE SAME CLASS

matches with the direct reference to a location in the
spoken utterance. Since the class-based language model
gives the same probability values to the direct refer-
ence as well as the full name of the location in the uni-
modal paraphrase, equal per-utterance perplexities are
obtained. Such redundancy is useful in real applications,
where recognized transcripts may be erroneous. Redun-
dancy across modalities motivates the use of mutual dis-
ambiguation techniques [22].

2) The subset with typically contains
indirect references in the speech modality that are com-
plementary with the pen gestures. Either modality alone
is semantically imprecise, but when their semantics are
combined, the overall intended message from the user
is clear. Hence, we can see that part of intended mes-
sage is conveyed via the speech modality, while the re-
maining part is conveyed via the pen modality. The uni-
modal paraphrase, however, captures the full semantics
of the subject’s intended message. Consequently, we ob-
tain inequality in the perplexity values. Such comple-
mentarity offers expressive power, because the user is
free to distribute various parts of the message to different
modalities to ease complex communication in s succinct
form, which can reduce cognitive loading for interpreta-
tion [1].

The example in Table VIII illustrates the advantage of
perplexity reduction by virtue of complementarity across the
speech and pen modalities, through comparison between the
speech components in a multimodal expression with its coun-
terpart in a unimodal expression. In particular, the unimodal
expression in Example 1 has a perplexity of 25.1, which is
reduced to 5.9 in a multimodal expression (see Example 2) with
complementary speech and pen inputs. However, if the speech
and pen inputs are redundant, as shown in Example 3, there is
no perplexity reduction. If there is a mixture of complementary
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and redundant inputs between the two modalities (see Example
4), then there is a smaller reduction in perplexity from 25.1
to 8.8. Further details of redundancy and complementarity
across the speech and pen modalities, as characterized by the
perplexity measure, may be found in [23].

V. HYPOTHESES RESCORING FOR ROBUSTNESS TOWARDS

IMPERFECT TRANSCRIPTIONS

We attempt to extend the cross-modality integration proce-
dure with the use of multiple recognition hypotheses in order to
achieve robustness towards recognition errors. Consider the sce-
nario in which a speech recognizer generates -best hypotheses
based on the speech input, while the pen gesture recognizer
generates -best hypotheses based on the pen input. The hy-
potheses are rank ordered according to their recognition scores
in each individual modality. As such, we will have pos-
sible candidates for cross-modality integration. In designing a
rescoring mechanism for comparing these candidates for inte-
gration, we should consider such elements as the quality of the
recognized spoken locative references, the quality of the inter-
preted pen gestures and the quality of the alignment. We will
elaborate on these points in the following subsections:

A. Pruning and Scoring the Recognized Spoken Inputs

The cross-modality integration procedure has demonstrated
reasonable performance in aligning spoken locative reference
(SLR) expressions with pen gestures in oracle-transcribed
multimodal inputs. These transcriptions are essentially perfect.
However, under practical situations, captured inputs are much
more problematic, due to disfluencies in the speech modality
(e.g., filled pauses and repairs), spurious pen gestures and
recognition errors in both modalities. These imperfections have
adverse effects on cross-modality integration.

1) Transcribing the Spoken Inputs: We transcribed the
speech signals in the multimodal corpus with a Mandarin
speech recognizer [24] that is developed with the HTK toolkit
[25]. This recognizer was originally trained with speech data
from a general open domain. Hence, we replaced the recog-
nizer’s general-domain lexicon with a domain-specific version
of 637 entries that contain names of locations in Beijing as
well as frequent spoken deictic expressions. We also incorpo-
rated a domain-specific bigram language model trained from
manual transcripts of the training data set. The acoustic models
remain unchanged. Speech recognition performance evaluated
based on the top-scoring recognition hypotheses gave overall
character accuracy of 44.6%. In particular, we observe that per-
formance is especially poor for two of the subjects who spoke
Mandarin with an accent, and there was background noise.
Application of the SLR extraction procedure (see Section III-A)
to the top-scoring recognition hypotheses shows substitution,
deletion and insertion errors in the SLRs. SLR deletion and
substitution are the most prominent, frequently caused by
short duration of (meaning “here” and pronounced as
/zher/) and phonetic confusion between (meaning “this” and
pronounced as /zhe/) and (meaning “car” and pronounced
as /che/). Overall, the SLR recognition accuracies (each SLR is

treated as a word)3 for the training and test sets are 38.5% and
39.3%, respectively. In other words, over half of the SLRs have
not been correctly extracted. However, the majority ( 60%) of
the incorrectly recognized SLRs involves confusion with other
SLRs carrying the same semantic meaning4 and hence will
not affect the subsequent cross-modality integration process.
Overall, 50.9% and 51.7% of the recognized SLR in training
and test sets were interpreted with correct semantics.

2) Pruning and Scoring the Spoken Inputs: The speech rec-
ognizer may generate nonsensical hypotheses in the -best hy-
pothesis list. We devise a pruning strategy based on perplexity to
filter out the nonsensical transcriptions. A recognition transcript
with a small value of perplexity is more likely to have a rea-
sonable interpretation. This is because the hypothesized word
sequence generally conforms to the predictions by the -gram
language model. Hence, our pruning strategy targets the oppo-
site cases—hypotheses with large perplexity values exceeding a
preset threshold are filtered.

The speech component of a multimodal input expression may
be transcribed by speech recognition as a hypothesized word
sequence with spoken locative references (SLRs). For a seg-
ment of the speech signal with specific start and end times, we
may observe transcriptions across the -best ( in this
work) speech recognition hypotheses. Let denotes the th
SLR in one of the speech recognition hypotheses, which is also
the transcription of a specific speech signal segment. We may
score the quality of this transcription by defining the normal-
ized cost for the recognized SLR , as shown as
follows:

(1)

where is the number of times the speech segment
is transcribed as across the -best speech recognition hy-
potheses . is known as the -best
purity of the SLR , where purity values range between 0
and 1. The higher the purity, the more preferable the SLR ,
and the lower is the normalized cost of the speech transcription

.5

B. Filtering and Scoring the Recognized Pen Inputs

1) Filtering and Recognizing the Pen Inputs: We find that
subjects tend to repeat a pen gesture in referring to a location
until it is highlighted on screen. We have designed a filtering
mechanism to remove the repetitions. The filtering mechanism
references the time and distance between two gestures. If a pen

3For each spoken input expression, we compare the list of parsed SLR(s) from
its oracle transcription with the list of parsed SLR(s) from its speech recognition
transcription. The SLR recognition accuracy is defined as

SLR Recognition Accuracy�
� �� �� ��

�

where � is the total number of SLRs in the oracle transcriptions; � ,
� and � are the numbers of insertion, substitution, and deletion errors
from the speech recognition transcriptions, respectively.

4The confusion between SLRs during speech recognition may involve only
the measure word and hence does not alter the semantic meaning.

5It is conceivable that should a pen gesture recognizer be used to generate
� -best recognition hypotheses, a similar � -best purity may be incorporated
in the cost function for the pen modality.
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TABLE IX
ILLUSTRATIVE EXAMPLES ON THE RECOGNITION

ERRORS OF CIRCLE AND STROKE

Fig. 4. Illustrative example for the calculation of normalized cost for an inter-
preted pen gesture.

gesture shows the and coordinates within a short amount of
time and a short distance, the later one is filtered out. We have
developed a pen gesture recognizer, based on a simple algorithm
that proceeds through a sequential procedure of recognizing a
point, a circle and a stroke, as follows.

1) Recognizing Points: If the pixel distance between
the pen down and pen up coordinates is fewer than

pixels , the input is considered as a point. Detected
pointing actions with temporal difference less than 0.25
s are considered repetitive and the redundancy will be
discarded. If the pen gesture is not classified as a point,
it will be evaluated as a circle or stroke, described as
follows.

2) Recognizing Circles: A pen gesture is recognized as a
circle if 80% of its and coordinates appears at least
twice and if it contains no more than two convex hulls.
If the pen gesture is not classified as circle, it will be
evaluated as a stroke, described as follows.

3) Recognizing Strokes: Since strokes are directional, a
pen gesture is recognized as stroke if one or both of
the and coordinates shows directional migration to-
wards pen down coordinates, also the radius of curvature
cannot exceed a preset threshold [5]. If the pen gesture
is not classified as stroke, it will be rejected.

This simple pen gesture recognition algorithm can only
generate a single output hypothesis. Further extension can
be made to generate -best pen gesture hypotheses. Overall
pen gesture recognition accuracy is 86.6%. Table IX shows
some pen gesture recognition errors. Among the incorrectly

recognized pen gestures, they contain confusions may carry the
same semantic meaning and here the pen recognition error will
not affect the subsequent integration process. Overall, 91.3%
of the recognized pen gestures can be interpreted with correct
semantic meaning.

2) Rescoring the Pen Inputs: A multimodal input expression
may be transcribed as a sequence of pen gestures with recog-
nized pen gesture type. Each is interpreted as a list of hypothe-
sized locations, i.e., for the th pen gesture in the input ex-
pression. The interpretations are based on locations on the map
that lie within a maximum distance (empirically set at 50
pixels based on training data) from the coordinates of the pen
gesture and are rank ordered based on these distances ,
where indexes the hypothesized locations in and may range
from 1 to ;6 and indexes the number of recognized pen ges-
ture types and in current work. To score a particular in-
terpretation in the hypothesized list, we define the normal-
ized cost of interpretation for the pen modality as
shown in (2). The smaller the distance , the lower the nor-
malized cost and the more preferable the inter-
pretation for the pen gesture. The normalized costs of the
hypothesized locations in will sum to 1. Fig. 4 shows an
illustrative example of the normalized costs of different inter-
pretations of a pointing gesture. Hypothesized locations for the
circle must have their coordinates enclosed by the circle. The
locations are rank ordered based on their distances away from
the circle’s center.

(2)

C. Pruning and Scoring Cross-Modality Integrations

The cross-modality integration procedure described in
Section IV incorporates a simple cost function for the Viterbi
algorithm that penalizes for mismatches in directly referenced
locations, LOC_TYPE and NUM features. High accuracies in
cross-modality alignment were obtained based on near-perfect
multimodal input transcriptions. However, in handling the im-
perfect -best speech recognition and -best pen recognition
outputs, we need to enforce tighter constraints on semantic
compatibility. We have established by the perplexity measure
(in Section IV-E) that direct references should be semantically
redundant with the corresponding pen gestures. Additionally,
indirect references should be semantically compatible with their
corresponding pen gestures. Hence, we propose to incorporate
a pruning mechanism for candidate integrations which involve
mismatches in locations between interpreted pen gestures and
direct references in speech, or mismatches in the LOC_TYPE

and NUM features between interpreted pen gestures and indirect
references in speech. Table X presents an illustrative example.
The top-scoring speech recognition hypothesis contains the
direct reference (BMU, Beijing Medical University) while
the second best contains (BUPT, Beijing University of
Post and Telecommunications) instead. However, since the cor-
responding pen gesture (first gesture) is a point with positional

6� is empirically set at 10 for all �, based on analysis of the training data.
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TABLE X
ILLUSTRATIVE EXAMPLE OF THE PRUNING MECHANISM FOR

CANDIDATES FOR CROSS-MODALITY INTEGRATIONS

coordinates that coincide with the BUPT icon (such that the
distance ), the cross-modality integration between the
top-scoring speech recognition hypothesis and the pen gesture
is pruned.

Candidate integrations that survive the pruning mechanism
will each have a Viterbi alignment cost , which
is computed with alignment and transition costs described in
Section IV based on the pair of hypothesis lists as de-
fined in (9) in Appendix A. is the hypothesized transcription
of the speech input that contains recognized spoken locative
references. is the hypothesized transcription of the pen input
that contains interpreted pen gestures. We define the normal-
ized cost of integration , where the subscript de-
notes “integration,” as shown in (3). is the maximum
possible Viterbi alignment cost that is empirically obtained from
training data

where

(3)

D. Rescoring Cross-Modality Integrations

Recall that in the current work, the speech recognizer is set
to generate -best hypotheses and the pen gesture
recognizer generates only the top-scoring gesture type

. Cross-modality integration begins with a pruning process
(see Section V-C). Surviving candidates (pairs of recognized
speech and recognized pen hypothesis) are rescored with the
following procedures.

1) For each candidate, we apply cross-modality integration to
its pair of hypothesis lists . Should these include
incompatible semantics, the candidate is pruned. If the can-
didate survives, we compute its normalized cost of integra-
tion based on (3).

2) We focus on the hypothesized transcription of the pen input
. For each of the interpreted pen gestures (indexed

by ), we select the interpretation that is semantically
compatible with its aligned SLR and compute the normal-
ized cost of pen interpretation [see (2)]. Should

there be multiple semantically compatible interpretations,
their normalized costs are summed. The overall cost of in-
terpreted pen gestures for is defined as

(4)

3) We focus on the hypothesized transcription of the speech
input . For each of the recognized SLRs (indexed by
), we compute its normalized cost of recognized SLR, i.e.,

[see (1)], which is derived from the -best pu-
rity. The overall cost of recognized SLR for is defined
as

(5)

4) The rescoring function that is used to evaluate each candi-
date for cross-modality integration is a linear combination
of the three normalized cost functions relating to the align-
ment, interpreted pen gestures, and recognized SLRs, i.e.,

where

and

(6)

We select values for the weights , , and , by grid search
to maximize cross-modality alignment accuracies based on the
training data. The values selected are , ,
and . The “optimized” weight of the pen modality is
higher than that of speech modality, possibly due to higher pen
gesture recognition accuracies, as compared with the speech
recognition accuracies. All candidates for cross-modality inte-
gration are rescored according to (6) and reranked in ascending
order of scores. The candidate with minimum overall cost

is identified as the preferred cross-modality
alignment.

E. Evaluating the Rescoring Procedure

The application of the rescoring procedure to the candidate
hypotheses for cross-modality integration has brought some
improvements to the alignment accuracies in the training and
test sets of our multimodal corpus. Table XI summarizes the
results of the percentage of correctly aligned expressions.
These are expressions for which our framework can generate
unimodal verbalized paraphrases that are semantically equiv-
alent with the original multimodal expressions. Improvements
in integration accuracies brought about by cross-modality
hypotheses rescoring is statistically significant from 54.8% to
69.9% in test set results ( , one-tailed -test). Further
analysis of our results (see Table XII) shows that there can be
correct cross-modality integration despite recognition errors in
speech and/or pen modalities. The -best hypothesis rescoring
framework can effectively rerank the hypothesis pairs to obtain
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TABLE XI
PERFORMANCE OF THE CROSS-MODALITY INTEGRATION, MEASURED IN TERMS

OF % OF CORRECTLY ALIGNED EXPRESSIONS IN THE TRAINING AND TEST SETS

TABLE XII
DETAILED PERFORMANCE STATISTICS OF THE test set

correct integration, as illustrated by the examples in Table XIII.

In addition, analysis of the incorrect alignments (after
rescoring and reranking) suggests that the incorporation of finer
cross-modality timing information will be helpful. Such timing
information should be used judiciously since the modalities are
not necessary simultaneous and user’s integration pattern may
vary during the interaction [12]. Furthermore, a good number
of the errors are associated with the SLR “here” having
an unspecified NUM feature and can thus be aligned with an

7Improvements in integration accuracies brought about by cross-modality hy-
potheses rescoring is statistically significant from 35.9% to 59.4% in the pres-
ence of speech recognition errors (� � ����, one-tailed �-test).

8Improvements in integration accuracies brought about by cross-modality hy-
potheses rescoring is statistically insignificant in the presence of pen recognition
errors (� � ����, one-tailed �-test).

9Improvements in integration accuracies brought about by cross-modality hy-
potheses rescoring is statistically significant from 42.4% to 51.5% in the present
of both speech and pen recognition errors (� � ����, one-tailed �-test).

TABLE XIII
EXAMPLES ON THE CORRECT INTEGRATION WITH THE PRESENT

OF SLR AND/OR PEN RECOGNITION ERROR

arbitrary number of pen gestures. Making the assumption of
should be helpful for error recovery.

Analysis of the incorrect interpretations found that deficiency
in the timing information, handling of the unspecified numeric
feature (e.g., “here” has and can be aligned with
any number of pen gesture instances without penalty in the
alignment cost) are the two main causes. Incorporation of the
timing information can help to reduce the association between
the SLR and pen gesture with temporal difference . Gen-
eration of specific numeric feature can provide a more specific
alignment cost.

VI. CONCLUSION AND FUTURE WORK

We present a framework pertaining to automatic semantic in-
terpretation of multimodal user interactions using speech and
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pen gestures. The two input modalities (speech and pen) ab-
stract the user’s intended message differently into input events,
i.e., key terms/phrases in speech and different gestures in the
pen modality. The semantics of an input event may be impre-
cise, incomplete, or erroneous due to misrecognitions. The pro-
posed framework begins by generating (partial) interpretations
for each input event, which are represented as a ranked list of
hypothesized interpretations. We devise a cross-modality se-
mantic integration procedure to align input events in the speech
modality with those in the pen modality using the Viterbi algo-
rithm. Cost functions are designed to enforce the constraints of
temporal ordering of the input events in each modality, as well
as the semantic compatibility between hypothesized interpreta-
tions across modalities. Hence, the alignment integrates across
modalities and disambiguates among possible interpretation al-
ternatives to decode the user’s holistic communicative intent.
We designed and collected a multimodal corpus in domain of
city navigation to support our investigation. This corpus con-
tains many multimodal expressions with frequent locative ref-
erences. The speech and pen modalities have been transcribed
by hand. The overall speech character recognition and pen ges-
ture type recognition accuracies are 44.6% and 89.9%, respec-
tively. Application of cross-modality integration to these near-
perfect transcripts generated correct unimodal paraphrases for
over 97% of the training and testing sets. However, if we replace
with the top-scoring speech and pen recognition transcripts, the
performance drops to 53.7% and 54.8% for the training and test
sets, respectively. In order to achieve robustness towards im-
perfect transcripts, we extend our framework with a hypothesis
rescoring procedure. For each multimodal expression, this pro-
cedure considers all candidates for cross-modality integration
based on the -best speech recognition hypotheses
and the -best pen input recognition hypotheses.
Note that the single recognized pen gesture can generate lo-
cation hypotheses that are fed into the cross-modality hypoth-
esis rescoring procedure [see (2)]. Rescoring combines such el-
ements as the integration scores obtained from the Viterbi al-
gorithm, -best purity for recognized spoken locative refer-
ences, as well as distances between coordinates of recognized
pen gestures and relevant icons on the map. Experiments using
the -best speech recognition hypothesis and top-
scoring pen recognition hypotheses show that the
rescoring and reranking helped improve the performance of cor-
rect cross-modality interpretation to 67.5% and 69.9% for the
training and testing sets, respectively. We expect that further
performance gains will be achieved if we incorporate the use
of a speech recognition lattice in this work,10 as well as ex-
tend our pen recognizer to produce multiple hypotheses. Cor-
rect cross-modality semantic integration enables our framework
to the multimodal input expression to be paraphrased as a uni-
modal (speech-only) input, for subsequent processing of our ex-
isting dialog system with natural language generation and dialog
and discourse modeling components. Hence, the cross-modality
semantic integration framework offers an elegant front-end ex-
tension to our dialog system, to enable it to handle both uni-

10Additional experiments on the test set show that when � � ��, correct
cross-modality integration is 58.3% that compares with 69.9% when� � ���.

modal (speech-only) as well as multimodal (speech and pen)
inputs. Future work includes the investigation of cross-modality
timing information to aid semantic interpretation, the handling
of ellipsis in the speech component of a multimodal expression
and identifying possible cross-modality correlation patterns that
may help improve performance in multimodal semantic inter-
pretation.

APPENDIX A
VITERBI ALIGNMENT ALGORITHM

Notations

List of hypothesis of the th SLR.

List of hypothesis of the th pen
gesture instance.
Matching cost between and .

Transition cost from
to the current position .
It indicates the deficit in the NUM

value for .
Cumulative cost (the best partial
alignment) up to the position of

from .
is the conditional cumulative
cost at from the
position for

, such that

.
Back pointer of the position

determined by the local
minimization of .
Backtracking path obtained from
the back pointer .
Cumulative cost at the final
position .
Total number of SLRs in the
inquiry.
Total number of pen gesture
instances in the inquiry.

Initialization

.

Recursion

(7)

deficit in the value

for (8)
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otherwise

for

Termination:

(9)

for

Path Backtracking:
while , do
for .

APPENDIX B
EXAMPLES OF TASKS, LOCATION TYPES, AND SUBTYPES

OBTAINED FROM DATA COLLECTION

TABLE B.1
INFORMATION CATEGORY: ROUTE_FINDING

TABLE B.2
INFORMATION CATEGORY: TRAVEL_TIME

The full set of tasks, information categories, location
types, and subtypes can be found in our project website:
http://www.se.cuhk.edu.hk/~pyhui/multimodal.htm.
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