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Abstract—This paper proposes an any-to-many location-
relative, sequence-to-sequence (seq2seq), non-parallel voice con-
version approach, which utilizes text supervision during train-
ing. In this approach, we combine a bottle-neck feature extrac-
tor (BNE) with a seq2seq synthesis module. During the training
stage, an encoder-decoder-based hybrid connectionist-temporal-
classification-attention (CTC-attention) phoneme recognizer is
trained, whose encoder has a bottle-neck layer. A BNE is obtained
from the phoneme recognizer and is utilized to extract speaker-
independent, dense and rich spoken content representations from
spectral features. Then a multi-speaker location-relative attention
based seq2seq synthesis model is trained to reconstruct spectral
features from the bottle-neck features, conditioning on speaker rep-
resentations for speaker identity control in the generated speech.
To mitigate the difficulties of using seq2seq models to align long se-
quences, we down-sample the input spectral feature along the tem-
poral dimension and equip the synthesis model with a discretized
mixture of logistic (MoL) attention mechanism. Since the phoneme
recognizer is trained with large speech recognition data corpus,
the proposed approach can conduct any-to-many voice conversion.
Objective and subjective evaluations show that the proposed any-
to-many approach has superior voice conversion performance in
terms of both naturalness and speaker similarity. Ablation studies
are conducted to confirm the effectiveness of feature selection and
model design strategies in the proposed approach. The proposed
VC approach can readily be extended to support any-to-any VC
(also known as one/few-shot VC), and achieve high performance
according to objective and subjective evaluations.

Index Terms—Any-to-many, voice conversion, location relative
attention, sequence-to-sequence modeling.

1. INTRODUCTION

OICE conversion (VC) aims to convert the non-linguistic
information of a speech utterance while keeping the lin-
guistic content unchanged. The non-linguistic information may
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refer to speaker identity, emotion, accent or pronunciation, to
name a few. In this paper, we focus on the problem of speaker
identity conversion. Potential applications of VC techniques in-
clude entertainment, personalized text-to-speech, pronunciation
or accent correction, etc.

Based on the number of source speakers and target speakers
that a single VC system can support, we can categorize current
VC approaches into one-to-one VC, many-to-one VC, many-to-
many VC, any-to-many VC and any-to-any VC. Conventional
VC approaches focus on one-to-one VC, which requires parallel
training data between a pair of source-target speakers. At the
training stage of the conventional VC pipeline, acoustic fea-
tures are first extracted from the source and target utterances.
The acoustic features of parallel utterances are then aligned
frame-by-frame using alignment algorithms, such as dynamic
time warping (DTW) [1]. A conversion model is trained to
learn the mapping function between time-aligned source and
target acoustic features, which can be Gaussian mixture models
(GMMs) [2], [3], artificial neural networks (ANNSs) [4]-[7], etc.
These approaches perform frame-wise conversion on spectral
features, i.e., the converted speech has the same duration as
the source speech. This restricts the modeling of the speaking
rate and duration. Recent studies show that the alignment phase
can be surpassed through using sequence-to-sequence (seq2seq)
model [8], [9] for direct source-target acoustic modeling, and this
approach can achieve better VC performance. Since one-to-one
VCis limited to supporting only one particular pair of source and
target speakers, VC researchers have explored many-to-one VC
approaches to extend the versatility of VC approaches. Among
these approaches, the one based on phonetic posteriorgrams
(PPGs) is widely used [10]-[12]. PPGs are computed from
an ASR acoustic model and are often assumed to be speaker-
independent content representations. The many-to-one VC ap-
proaches concatenate a PPG extractor with a target-speaker
dependent PPG-to-acoustic synthesis model. Many approaches
have been proposed to further extend VC approaches to support
many-to-many conversion. These techniques can be classified
into two categories. The first category requires text supervision
during training stage. This includes the PPG-based methods
and the non-parallel seq2seq methods [13], [14]. The second
category does not require text supervision. This includes the
model using auto-encoders [15], variational auto-encoders [16],
generative adversarial networks [17]-[20] and their combina-
tions [21]-[23].
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Fig. 1. Schematic diagram of (a) the PPG-based and (b) non-parallel seq2seq
VC approaches.

This paper focuses on developing an any-to-many VC ap-
proach, which is expected to convert a source speech signal from
an arbitrary speaker to a target speaker appearing in the training
set. Few any-to-many VC approaches have been reported in
the literature. Specific many-to-many VC approaches, which
can directly be adopted for any-to-many conversion with text
supervision during training stage, include the many-to-many
PPG-based approaches and the non-parallel seq2seq approaches.
These approaches have the presumption that the spoken content
feature extractor/encoder in the many-to-many VC approaches
can generalize well to source speakers that are unseen during
training process.

The use of PPGs in any-to-many VC concatenates the speaker-
independent PPG extractor and a multi-speaker framewise feed-
forward conversion model, as shown in Fig. 1 (a). Such an ap-
proach has several deficiencies: First, the PPG model is usually
trained with the HMM-GMM/DNN-based phonetic alignments
with acoustic features. Since posterior probability values in
PPGs are usually bimodal (with highest values close to one and
other values close to zero), if the alignments are inaccurate, mis-
pronunciations will often occur downstream in the VC pipeline.
Second, the conversion model usually adopts a feed-forward
neural network (e.g., a bidirectional LSTM model) which maps
PPGs framewise to acoustic features. Conditioned on the input
PPGs, these conversion models predict each acoustic frame
independently. This is unfavorable in terms of VC performance
(especially for scenarios where training data is sparse), because
acoustic frames in an utterance are highly correlated.

To address the aforementioned deficiencies of PPG-based
any-to-many VC approaches, this paper proposes the use of a
different content feature extractor from the PPG model and a
seq2seq auto-regressive synthesis model. We first train an end-
to-end hybrid connectionist-temporal-classification-attention
(CTC-attention) phoneme recognizer, where the encoder has
a bottle-neck layer. A bottle-neck feature extractor (BNE) is
obtained from the phoneme recognizer and is used to extract
bottle-neck features (BNF) as spoken content representations of
speech signals. To mitigate the difficulties of using a seq2seq
model to align the content features and spectral features, we
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down-sample the input speech features along the temporal di-
mension by a factor of four. We then train a multi-speaker
seq2seq BNF-to-spectral synthesis model, where each speaker
is represented as an one-hot vector. To facilitate seq2seq model-
ing, the synthesis model is equipped with a mixture-of-logistic
(MoL) location-relative attention module. We term this VC
approach as BNE-Seq2seqMoL below and details are presented
in Section IV.

The synthesis module in the BNE-Seq2seqMoL. apporach
uses one-hot vectors to represent speaker identities. This pa-
per also explores extending this any-to-many VC approach to
support any-to-any conversion. The main idea is to incorporate
speaker representations into the synthesis module with speaker
embedding vectors which can generalize to unseen speakers.
To achieve this, a speaker encoder is utilized to generate a
fixed-dimensional speaker vector from a speech signal.

The contributions of this paper include: (1) We propose a
novel MoL attention-based seq2seq model for any-to-many
voice conversion. The proposed model can achieve high VC
performance in terms of the naturalness of the generated speech,
as well as its speaker similarity; but the model has a shorter
system pipeline and a simpler training procedure than other anal-
ogous systems. (2) We present a straight-forward methodology
to extend the any-to-many VC approach to support any-to-any
conversion.

The rest of this paper is organized as follows: Section II
reviews related work. Section Il and IV present a baseline model
and the BNE-Seq2seqMoL approach, respectively. Experiments
are described in Section V and Section VI concludes this paper.

II. RELATED WORK

A. Attention Mechanisms in Seq2seq Models

Sequence-to-sequence models equipped with attention mech-
anism have been very popular in VC and TTS tasks. The
BNE-Seq2seqMoL approach proposed in this paper uses a
location-relative attention mechanism, which is first introduced
by Graves [24]. Inspired by [25], we incorporate a discretized
mixture of logsitics (MoL) distribution [26] to model the atten-
tion weights in each decoding step in the BNE-Seq2seqMoL
approach. Modifications are applied to make the alignment pro-
cess strictly monotonic. Details are presented in Section IV-B.

B. A Seq2seq Baseline Model

Asdescribed in Section I, the non-parallel seq2seq approaches
are another class of solutions for any-to-many VC. They usually
cascade a seq2seq ASR model and a multi-speaker seq2seq
synthesis model, as shown in Fig. 1(b). These approaches also
have several drawbacks despite their strong sequence modeling
ability: First, the pipeline is very long, which means that the
model contains many parameters, resulting in a complicated and
slow training process. Second, the ASR module usually adopts
beam search algorithms to reduce recognition errors during
inference. This slows down the conversion process. Third, the
multi-speaker seq2seq synthesis model usually uses an attention
module to align the hidden states of the encoder and decoder.
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There has been evidence of instability in this attention-based
alignment procedure, as it may introduce missing or repeating
words, incomplete synthesis, or an inability to generalize to
longer utterances [27]. To make the synthesis more robust, our
prior work [28] incorporates a rhythm model, which guides
the explicit temporal expansion process of the hidden represen-
tations output from the encoder. The auto-regressive decoder
adopts a local attention mechanism within a small window,
which further corrects possible alignment errors for high-fidelity
synthesis. The prior work focuses on maintaining source speak-
ing styles in the converted speech. The any-to-many conversion
performance of this approach, however, needs to be thoroughly
examined. In this paper, we present proper modifications in
the prior approach [28] and re-design a robust, non-parallel,
seq2seq any-to-many VC approach. This pipeline concatenates
aseq2seq phoneme recognizer (Seq2seqPR) and a multi-speaker
duration informed attention network (DurlAN) for systhesis.
This technique is referred to as Seq2seqPR-DurlAN below.
Details are presented in Section III.

C. Recognition-Synthesis VC Approaches

Both the Seq2seqPR-DurlAN and BNE-Seq2seqMoL VC
approaches proposed in this paper belong to the class of
recognition-synthesis-based approaches, where an ASR mod-
ule is built to extract spoken content representations and the
synthesis module is used to predict acoustic features from the
spoken content representations. Compared with the non-parallel
seq2seq VC approach proposed in [13], the Seq2seqPR-DurlAN
approach utilizes a more robust synthesis module to mitigate
possible attention alignment errors, where a duration model
is incorporated to provide explicit phoneme-level alignment
information. Besides, the Seq2seqPR-DurlAN approach has a
simpler and more direct training procedure, whereas the ap-
proach in [13] uses complicated loss function and the training
procedure alternates between a generation step and an adver-
sarial step. Specifically, the loss objective in [13] contains a
phoneme sequence classification loss, an embedding contrastive
loss, an adversarial speaker classification loss, an adversarial
speaker mean squared error loss, a speaker encoder loss and an
acoustic feature prediction loss.

A recent study, which is related to the BNE-Seq2seqMoL
proposed in this paper, uses a pre-trained ASR encoder and a
pre-trained TTS decoder to initialize parameters of the ultimate
encoder-decoder-based VC model [29]. The ASR and TTS mod-
els are pre-trained with large-scale corpora with a multi-stage
process, e.g., the ASR pre-training process contains TTS de-
coder pre-training, ASR encoder pre-training and ASR decoder
pre-training. Then the VC model is fine-tuned on the pre-trained
parameters with a small number of parallel utterances between
a specific pair of source and target speakers. In comparison,
the proposed BNE-Seq2seqMoL adopts a simplified two-stage
training scheme, i.e., a seq2seq phoneme recognizer training
stage and a multi-speaker MoL attention based seq2seq syn-
thesis model training stage. After this two-stage training, the
BNE-Seq2seqMoL approach can directly support any-to-many
voice conversion.
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Fig. 2. Hybrid CTC-attention model structure [30] for phoneme recognition.

III. SEQ2SEQPR-DURIAN-BASED VOICE CONVERSION

The Seq2seqPR-DurlAN approach concatenates a seq2seq
phoneme recognizer (Seq2seqPR) and a multi-speaker dura-
tion informed attention network (DurlAN). The Seq2seqPR
model is adopted to predict an L-length phoneme sequence
Y ={y €U|l =1,..., L} from spectral feature vectors X of
a speech signal, where U is a set of distinct phonemes. The
DurlAN model is utilized to generate spectral feature vectors X
from an input phoneme sequence Y, conditioned on the speaker
representations s to achieve multi-speaker synthesis.

A. Seq2seq Phoneme Recognizer

We adopt the hybrid CTC-attention model structure for the
seq2seq phoneme recognizer, which has similar network struc-
ture to [30], as shown in Fig. 2.

1) CTC and Attention-Based Modeling: CTC is alatent vari-
able model that monotonically maps an input sequence to an
output sequence of shorter length [31]. An additional “blank”
symbol is introduced into frame-wise phoneme sequence Z =
{z e U Ublank|t = 1,..., T}, where T is the number of spec-
tral frames. By using conditional independence assumptions, the
posterior distribution p(Y'| X) is factorized as follows:

ZHP Zt|Zt LY

Epere(Y]X)

P(Y|X) = (2| X)p(Y) (D

We define p.t.(Y|X) as the CTC objective function, where
the frame-wise posterior distribution p(z¢|X) is conditioned on
all inputs X, and it is quite natural to be modeled with a deep
neural network (e.g., LSTM model). The summation over Z in
Eq. I can be efficiently computed using a dynamic programming
algorithm.

The attention-based approach directly estimates the posterior
p(Y'|X) based on the probability chain rule as:

Y|X Hp yl‘ylw'wyl 15 )7 (2)

épatt(Y‘X)
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where we define p,++ (Y| X') as an attention-based objective func-
tion, which can be conveniently modeled with an attention-based
encoder-decoder model.

2) Model Structure and Training Objective: Following [30],
we regard the CTC objective as an auxiliary task to train the
attention model encoder, which contains a VGG-Prenet and a
bidirectional LSTM (BiLSTM) encoder, as shown in Fig. 2.

The input spectral features X are 80-dimensional log mel-
spectrograms, on which we conduct utterance-level mean-
variance normalization before feeding into the recognizer model.
The VGG-Prenet sub-samples the input features by a factor
of 4 in time scale using two VGG-like max pooling layers.
Then the hidden feature maps from the VGG-Prenet are fed
into the BiLSTM encoder, which contains 4 BiLSTM layers
with 512 hidden units per direction. The CTC module has one
fully-connected (FC) layer. The attention decoder uses location-
sensitive attention and has one decoder LSTM layer with hidden
size of 1024.

The training objective to be maximized is a logarithmic linear
combination of the CTC and attention objectives, i.e., pete (Y] X)
in Eq. 1 and p,4 (Y| X) in Eq. 2:

jSeq2seqPR =A IOg Pctc(Y‘X) + (1 - )") IOg Patt(le)
3)
where A € [0, 1] is a hyper-parameter weighting the CTC ob-
jective and the attention objective. In this paper, we set A to be
0.5.

B. DurlAN Synthesis Model

The DurlAN synthesis model used in this paper is inspired
by [32], which is trained to predict the mel-spectrogram X from
an input phoneme sequence Y, as shown in Fig. 3. Attention-
based seq2seq TTS models such as Tacotron are error prone
in the alignment procedure, which leads to missing or repeat-
ing words, incomplete synthesis or an inability to generalize
to longer utterances. To address this issue, we incorporate a
duration module into the synthesis model. A similar idea has
been used in [33].

A CBHG encoder [34] is adopted to transform phoneme
sequences into hidden representations. In the state expansion
procedure, the hidden representations are expanded by repeating
along the temporal axis according to the provided phoneme-level
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durational information, such that the expanded representations
have the same number of frames as the spectral features. An
auto-regressive RNN-based TTS decoder is used to generate
mel-spectrograms from the expanded spectral features, condi-
tioned on the speaker representations (e.g., one-hot vectors)
to support multi-speaker generation. In the any-to-many VC
setting, the speaker identity is represented with one-hot vec-
tors. A speaker embedding table is jointly optimized with the
remaining parts of the DurlAN model. Speaker embedding
vectors are appended to every frames of the expanded encoder
hidden representations. Note that in the any-to-any VC setting,
speaker vectors generated from a pre-trained speaker encoder
are used to represent speaker identity. The details are presented
in Section III D. The TTS decoder has similar network structure
as the one in Tacotron 1 [34]. The only difference is that the
attention context concatenated with the decoder prenet output is
replaced with the corresponding encoder state in the expanded
hidden representations. Similar to Tacotron 1, we make the
decoder generate r non-overlapped mel-spectrogram frames at
each decoding step to accelerate the training and synthesis.

The duration module employs an RNN-based model which
consists of three BiLSTM layers. The input to the duration
module contains the un-expanded hidden states from the CBHG
encoder and speaker identity representation. As in the TTS
decoder, in the any-to-many VC setting, speakers are presented
with one-hot vectors and a speaker embedding table is jointly
learned with the duration module. In the any-to-any tasks,
speaker vectors from the same speaker encoder are adopted to
represent speaker identity. Speaker vectors are appended to all
frames of the CBHG encoder output.

C. Extension to Support Any-to-Any Conversion

To extend the Seq2seqPR-DurlAN to support any-to-any
conversion, we use an additional speaker encoder model to
generate the speaker vector, which is used to condition the
DurIAN synthesis module to generate speech with the identity of
an arbitrary target speaker. The speaker encoder takes acoustic
vector sequence with various number of frames computed from
a speech signal and outputs a fixed-dimensional speaker embed-
ding vector. The DurlAN model uses the speaker embedding
vector computed from a desired target speaker as auxiliary con-
ditioning to control the vocal identity of the generated speech.
As in [35], [36], we train the speaker encoder to optimize a
generalized end-to-end (GE2E) speaker verification loss. Em-
beddings of utterances from the same speaker are expected to
have high cosine similarity, while those from different speakers
are distant. The speaker encoder adopts an LSTM-based model
structure, which has 3 layers with 256 hidden nodes, followed
by a projection layer of 256 units. L2-normalized hidden state
of the last layer is regarded as the speaker embedding vector.

IV. BNE-SEQ2SEQMOL-BASED VOICE CONVERSION

The proposed BNE-Seq2seqMoL approach combines a
bottle-neck feature extractor (BNE) with a multi-speaker mix-
ture of logistic (MoL) attention-based seq2seq synthesis model.
The BNE is used to compute dense and rich content features
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from mel-spectrograms, while the MoL attention-based seq2seq
model (Seq2seqMoL) is adopted to generate mel-spectrograms
auto-regressively. Details of the BNE and the Seq2seqMoL
model are presented in Section IV-A and IV-B respectively.
The conversion procedure and extension to any-to-any VC are
presented in the later parts of this section.

A. Bottle-Neck Feature Extractor

We obtain a bottle-neck feature extractor from an end-to-
end hybrid CTC-attention phoneme recognizer. The phoneme
recognizer has the same network structure as the one intro-
duced in Section III-A, except that we incorporate an additional
bottle-neck layer into the recognizer, as illustrated in Fig. 4.
The bottle-neck layer is a fully-connected layer with hidden
size of 256. The training objective is the same as that used in
Section III-A (See Eq. 3). After training, we drop the CTC
module and attention decoder from the phoneme recognizer
and use the remaining part as the bottle-neck feature extractor.
The bottle-neck features computed from speech signals are
regarded as spoken content representations and are presumed
to be speaker-invariant [37].

B. Seq2seqMoL Synthesis

The training procedure of the seq2seq based synthesis model
is depicted in Fig. 5. A well-trained BNF extractor presented in
Section IV-A is adopted as an off-line content feature extractor.
The synthesis model can be regarded as an encoder-decoder
model, where the encoder contains two simple networks, i.e., a
bottle-neck feature prenet and a pitch encoder.

1) Bottle-Neck Feature Prenet and Pitch Encoder: The
bottle-neck feature prenet contains two bidirectional GRU lay-
ers, which have 256 hidden units per direction. The pitch
encoder employs convolution network structure, which
takes continuously interpolated logarithmic FO (Log-F0) and
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unvoiced-voiced flags (UV) features as input. Log-FOs and UVs
are computed with the same frame-shift as the one used to extract
mel-spectrograms. Since the bottle-neck feature extractor down-
samples the mel-spectrograms by a factor of 4 along the time
axis, the bottle-neck features only have a quarter of the frames
in the corresponding Log-FOs or UVs. To make BNFs, Log-FOs
and UVs have the same time resolution, we also down-sample
Log-F0 and UVs by a factor of 4 along time axis. This is achieved
by using two 1-dimensional convolution layers with a stride of 2,
where the hidden-dimension is 256. To remove possible speaker
information, we add an instance normalization layer without
affine transformation after each convolution layer in the pitch
encoder.

The outputs of the pitch encoder and the bottle-neck feature
prenet are added element-wise. In any-to-many conversion,
one-hot vectors are used as the speaker representation, and an
additional speaker embedding table is jointly trained with the
whole synthesis network. Speaker vectors are concatenated to
every frame of the encoder output.

2) MoL Attention-Based Decoder: Decoder of the synthesis
model adopts a similar auto-regressive network structure as the
one used in Tacotron 2, except that a location-relative discretized
mixture of logistics (MoL) attention mechanism is used.

Let us denote the encoder outputs as {h;}]_,, where T =
%T and 7T is the number of frames in the mel-spectrograms.
An attention RNN (Eq. 4) produces hidden state s; at decoder
step <. Then the attention mechanism consumes s; to produce
the alignment «; € RT (Eq. 5). The context vector, c¢;, which
is fed to the decoder RNN, is computed using the alignment
«; to produce a weighted average of encoder states {h; };“le
(Eq. 6). The decoder RNN takes s; and c; as input, whose output
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d; is used together with the context vector ¢; to produce mel-
spectrogram frames at the current decoder step by a linear layer
(Eq. 7 and 8).

s; = RNNag([zi1,¢i-1], si-1) 4
Attention(s;) 5)

Qg

Il
&Mﬁ’

C; ai,j h]‘ (6)
=1

d; = RNNpec([cs, 53], di—1) @)

x; = Linearoy (d;, ¢;) 8)

The attention mechanism is similar to the one used in [25], which
is a location-relative extension from a purely location-based
mechanism proposed in [24]. The attention alignment weights
correspond to a learned attention distribution ¢(+; ~y; ), where ~; is
the distribution parameters computed using a simple multi-layer
perception (MLP) network from the attention RNN state s;.
We use a discretized MoL [26] for the attention distribution
&:(+;7vi). At each decoder step, a set of distribution parameters
v; = {wk, pk, ok K | is computed, corresponding to K mix-
ture coefficients, means and scales. In this paper, the number of
mixtures are set to be 5. The computation procedure is shown
as below and also illustrated in Fig. 6.

(i, Ai, 6;) = MLP(s;) )
w; = SM(w;), A; =SP(A;), o=SP&;) (10)
Wi = i1+ A an

where SM(-) represents the softmax function and SP(+) repre-
sents the softplus function. Note that in 11, we add a positive
shift to the component mean in the previous decoding step,
which makes the center of each component logistic distribution
moving towards to the end of the input sequence in a monotonic
way. Given the computed MoL distribution parameters -y;, the
attention weight cv; ; is obtained from the discretized attention
distribution ¢; (-; ;) at decoder step ¢ as:

a; ;= ¢i(J; i)
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K . .
=S ut[o J+0.5—pk . j—0.5—puk
= i i
(12)

where o denotes the sigmoid function.

Following Tacotron 1 and 2, a decoder prenet containing two
linear layers and a residual convolution based postnet are added
to the synthesis decoder. We also let the decoder predict stop
tokens, which are used to stop the decoding procedure when the
stopping probability reach a threshold 0.5.

The training objective is to minimize the MSE loss between
the ground truth mel-spectrogram X and the predicted X, in
combination with a binary cross-entropy loss on the stop token
predictions.

C. Conversion Procedure

Given a speech utterance from an arbitrary source speaker,
the approach first computes the mel-spectrogram, continuous
Log-FOs and UV flags. Then the BNF extractor is used to
extract content features from the mel-spectrogram. Log-FOs are
converted linearly in log-scale from the source to target using
log-scaled FO statistics of the source and target speakers, as:

Otarget

Log'Fovc = (LOg_FOsource - #SOUTW) + frarget (13)

Osource

where 1’s and o’s represent the mean and standard deviation of
the log-scaled FO.

The bottle-neck features, Log-FO,, and UV flags are added
element-wise after going through the bottle-neck features prenet
and the pitch encoder respectively. The output is concatenated
with the target speaker embedding vector to form the encoder
outputs. The MoL attention decoder then generates the converted
mel-spectrogram from the encoder outputs in an auto-regressive
manner. A neural vocoder is finally used to generate waveform
from the converted mel-spectrogram.

D. Extension to Any-to-Any Conversion

We use the same speaker encoder model introduced in Sec-
tion III-C to generate the speaker vector for an arbitrary tar-
get speaker. We replace the one-hot speaker representation
with the speaker-encoder-generated speaker vector in the BNE-
Seq2seqMol any-to-many approach, such that it supports any-
to-any conversion. Details of the speaker encoder are the same
as that presented in Section III-C.

V. EXPERIMENTS
A. Datasets

The datasets used in this paper are all publicly available. Lib-
riSpeech (960 hours) [38] is used to train the phoneme recognizer
introduced in section ITI-A and IV-A.The LibriSpeech lexicon '
is used to obtain phoneme sequences from text transcripts.

In any-to-many voice conversion, we use the VCTK cor-
pus [39] and the CMU ARCTIC database [40]. The VCTK

Thttp://www.openslr.org/11/
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corpus contains 44 hours of clean speech from 109 speakers.
In this paper, we only use data from 105 VTCK speakers.
We choose 600 utterances for validation set and another 600
utterances for test set, while the remaining utterances are for
train set. The CMU ARCTIC database contains 1132 parallel
recordings of English speakers. Data from four speakers are
used: two female (clb and slt) and two male (bdl and rms). We
choose 50 utterances for validation and another 50 utterances
for testing. We randomly choose non-overlapped 250 utterances
from the remaining utterances for each of the four speakers
respectively, such that they do not have parallel utterances during
training.

For any-to-any voice conversion, we use LibriSpeech (train-
other-500), VoxCeleb1 [41] and VoxCeleb2 [42] datasets to train
the speaker encoder introduced in Section III-C and Seciton I'V-
D. In total, there are more than 8 K speakers, such that we
expect the speaker encoder can generalize to any unseen speaker.
LibriTTS (train-clean-100 and train-clean-360) dataset [43] to-
gether with the training set of VCTK corpus is used to train
the synthesis models of the Seq2seqPR-DurlAN and BNE-
Seq2seqMoL approaches. The CMU ARCTIC database is used
only for the conversion stage in this setting. That is, the four
speakers (bdl, clb, rms and slt) are all unseen during the training
procedure. This simulates voice conversion from an arbitrary
source speaker to an arbitrary target speaker, which forms a
pilot version of any-to-any conversion.

B. Features and Neural Vocoder Model

Speech signals used in this paper are all re-sampled to 16 kHz
if the original sampling rate is different. Spectral features are all
80-dimensional log mel-spectrograms except that the speaker
encoder takes 40-dimensional log mel-spectrograms as input.
The 80-dimensional log mel-spectrograms are computed us-
ing 50 ms Hanning window and 10 ms frame shift, while
the 40-dimensional ones are computed using 25 ms Hanning
window and 10 ms frame shift. We use the PyWorld toolkit
to extract FOs from speech signals and Log-FOs are obtained
by taking logarithm on the linearly interpolated FOs. We use
the open-source Montreal-forced-aligner (MFA) [44] to obtain
the phoneme-level durational information when training the
synthesis model in the Seq2seqPR-Durl AN approach.

In this paper, the WaveRNN network [45] is used as the
neural vocoder. The speech waveform is p-law quantized into
512-way categorical distributions. The open-sourced Pytorch
implementation is used.? Since the mel-spectrograms capture all
of the relevant details needed for high quality speech synthesis,
we simply use ground-truth mel-spectrograms from multiple
speakers to train the WaveRNN, without adding any speaker
identity representations. We only use the VCTK training set to
train the WaveRNN model.

Zhttps://github.com/JeremyCCHsu/Python- Wrapper-for- World- Vocoder
3https://github.com/fatchord/WaveRNN
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C. Comparisons

Four VC approaches are compared with experiments for any-
to-many conversion, as well as extending to any-to-any conver-
sion. We compare the proposed Seq2seqPR-DurlAN and BNE-
Seq2seqMoL approaches with another two recently proposed
approaches, namely, the PPG-based VC and the non-parallel
seq2seq VC, as introduced in Section I. The details of their
implementation are presented below.

PPG-VC: This baseline approach has a network architecture
similar to the N10 system [46] in VCC2018 [47]. As shown in
Fig. 1 a, this approach consists of a PPG extractor and a multi-
speaker conversion model. The PPG extractor adopts an RNN-
based model structure, which contains 5 bidirectional gated
recurrent unit (GRU) layers with 512 hidden units per direction.
The multi-speaker conversion model also has an RNN structure,
which consists of 4 bidirectional LSTM layers with 256 hidden
units per direction. In any-to-many conversion, the speaker
identity is presented as an one-hot vector and an additional
speaker embedding table is learned together with other parts
of the conversion model. The speaker embedding vector has a
size of 256, and is concatenated with PPGs frame-by-frame.
The conversion model is trained with the VCTK and CMU
ARCTIC training splits mentioned in Section V-A. In any-to-any
conversion, the same speaker encoder introduced in Section III-
C is used to generate speaker vectors from mel-spectrograms.
This setting is similar to the one in our prior work [48], except
that the i-vectors and learned speaker embedding vectors are
used as speaker identity representations there. We use LibriTTS
(train-clean-100 and train-clean-360) dataset together with the
training set of VCTK corpus to train the conversion model.

The PPG extractor is obtained from a frame-wise phoneme
recognizer, which is trained with the LibriSpeech dataset (960
hours). We first use the MFA to align the audio and transcripts at
the phoneme level. Then the audio-text alignment information is
used to obtain the frame-to-phoneme correspondence between
mel-spectorgrams and phoneme sequences, with which it is pos-
sible to train a frame-wise phoneme recognizer. We regard the
probability vectors after the last softmax layer as PPG features
for one utterance.

NonParaSeq2seq-VC: This baseline approach is proposed
by [13], where disentangled content and speaker representations
are extracted from acoustic features, and voice conversion is
achieved by preserving the content representations of source
utterances while replacing the speaker representations with the
target ones. Since there is a speaker encoder which is jointly
trained with the whole model, this approach can be trivially
extended from any-to-many conversion to support any-to-any
conversion. We use the VCTK and CMU ARCTIC training splits
to train the model for the any-to-many conversion setting and
use the LibriTTS (train-clean-100 and train-clean-360) dataset
together with the training set of VCTK corpus to train the
model for the any-to-any conversion setting. We use the official
implementation released by the authors* in this study.

“https://github.com/jxzhanggg/nonparaSeq2seqVC_code
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TABLE I
OBJECTIVE EVALUATION RESULTS FOR ANY-TO-MANY VOICE CONVERSION
Conversion PPG-VC NonParaSeq2seq-VC Seq2seqPR-DurlAN BNE-Seq2seqMoL
pair FO FO FO FO
MCD RMSE CER | WER || MCD RMSE CER | WER | MCD RMSE CER | WER || MCD RMSE CER | WER
F-M 6.90 | 4822 | 575 | 8.93 7.37 | 4994 | 17.78 | 26.54 || 7.03 | 52.60 | 7.03 | 9.89 6.87 | 44.55 | 3.00 | 4.29
F-F 7.03 | 4822 | 5.54 | 8.46 736 | 4543 | 8.14 | 1346 || 7.04 | 4725 | 876 | 1339 || 6.99 | 4544 | 512 | 6.97
M-M 6.96 514 | 519 | 7.50 7.36 | 53.86 | 24.78 | 39.80 || 7.14 | 51.89 | 7.33 | 14.16 || 6.94 | 50.37 | 4.72 | 7.22
M-F 7.25 | 5636 | 532 | 7.80 7.39 | 5037 | 19.05 | 25.71 || 7.09 | 45.09 | 832 | 14.72 || 7.18 | 56.31 | 3.61 | 5.76
Average 7.04 | 51.05 | 545 | 8.17 7.37 | 4990 | 17.44 | 2638 || 7.08 | 49.21 | 7.86 | 13.04 || 6.99 | 49.17 | 4.11 | 6.06

D. Objective Evaluations

In our experiments, we find that the attention alignment
matrices of the MoL attention are nearly diagonal, meaning
that the proposed BNE-Seq2seqMoL system has little modeling
capacity to effectively transform the duration and speaking rate.
Therefore, we only use mel-cepstrum distortion (MCD), root
mean squared errors (FO-RMSE) and character/word error rate
(CER/WER) from an ASR system as the metrics for objective
evaluation. The MCD is used for evaluating spectral conversion,
which is computed as:

10 K .
MCD[dB] = 1og1o\/ 2 Zdzl(MCCd —MCCH)2  (14)

where MCC represents mel-cepstral coefficient, K is the di-
mension of the MCCs, and MCC§ and MCC), represent the
d-th dimensional coefficient of the converted MCCs and the
target MCCs, respectively. The Pyworld toolkit is used to extract
MCC:s in this paper, where we set K = 24.

The FO-RMSE is used to evaluate the FO conversion, which
is computed as:

1 N c t\2
FO-RMSE[Hz] = — \/ > (Fo; —Foj) (15)

where N is number of frames, FO$ and FO! are FO value at the i-th
frame of the converted speech and target speech respectively.

We use a transformer-based end-to-end ASR engine’ to com-
pute CER and WER of the converted speech to evaluate its
intelligibility. The ASR model is trained using the LibriSpeech
(960 hours) dataset. The CER and WER for the CMU ARCTIC
test set are 2.71% and 4.30%, respectively.

The objective evaluation results in the any-to-many voice con-
version setting are shown in Table 1. We can see that the proposed
BNE-Seq2seqMoL approach achieves the best performance for
all the four objective metrics on average. The PPG-VC approach
has the worst FO-RMSE among the four approaches, which
verifies that conversion by frame-wise mapping has constrained
capability to model prosody during the conversion. Compar-
ing the NonParaSeq2seq-VC and the Seq2seqPR-DurlAN ap-
proaches, which have similar model architectures, we can see
that the re-designed Seq2seqPR-DurlAN has superior results
for all four metrics on average. The NonParaSeq2seq-VC has
significantly worse CER and WER among the approaches, and
preliminary listening test finds that there exists repeating, skip-
ping and truncation phenomena in the converted speech. This

Shttps://github.com/espnet/espnet_model_zoo

implies that injecting a duration model, which provides explicit
phone-level durational information, makes the conversion more
robust. Comparing the results from PPG-VC with those from
BNE-Seq2seqMoL shows that the auto-regressive property of
the latter can boost VC performance across the four objective
metrics.

The objective evaluation results in the any-to-any voice con-
version setting are presented in Table 2. We can see that the
PPG-VC approach has the best results in terms of MFC, CER
and WER. The proposed BNE-Seq2seqMoL gave lowest FO-
RMSE among the four approaches and obtains good results for
MCD, CER and WER. Note that the models are trained using a
combination of the VCTK training set and the large LibriTTS
(train-clean-100, train-clean-360) dataset, which contains much
more training data than in the any-to-many setting. This indicates
that using more training data can overcome the deficiency of
independent prediction across frames in the PPG-VC approach.

E. Subjective Evaluations

Subjective evaluation in terms of both the naturalness and
speaker similarity of converted speech are conducted®. We use
the 5 point Likert scale for testing with mean opinion score
(MOS) (1-bad, 2-poor, 3-fair, 4-good, 5-excellent) regarding
both naturalness and speaker similarity evaluations. In the MOS
tests for evaluating naturalness, each group of stimuli contains
recording samples from the target speakers, which are randomly
shuffled with the samples generated by the four comparative
approaches, before they are presented to listeners. In the MOS
similarity tests, converted speech samples are directly compared
with the recording samples of the target speakers. 10 utterances
from the CMU ARCTIC test set are presented for each conver-
sion pair (i.e., F-M, F-F, M-M and M-F). We invited 35 raters
who are proficient in English to participate in the evaluations
in a quiet room and they were asked to use headphones during
the tests. The raters were allowed to replay each sample as many
times as necessary and change their ratings of any sample before
submitting their results.

The subjective MOS evaluation results for the any-to-many
voice conversion setting are shown in Table 3. We can see
that the proposed BNE-Seq2seqMoL approach achieves the
best average results in terms of both naturalness and speaker
similarity. More specifically, for the pairs of F-F, M-M, F-M,
the proposed model achieve better performance. While for the
pair of M-F, Seq2seqPR-DurlAN provides better result. The

6 Audio demo and source codes can be found in https://liusongxiang.github.
i0/BNE-Seq2SeqMoL-VC/
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TABLE IT
OBJECTIVE EVALUATION RESULTS FOR ANY-TO-ANY VOICE CONVERSION
Conversion PPG-VC NonParaSeq2seq-VC Seq2seqPR-DurlAN BNE-Seq2seqMoL
pair FO FO FO FO
MCD RMSE CER | WER || MCD RMSE CER | WER || MCD RMSE CER | WER || MCD RMSE CER | WER
F-M 751 48.8 | 4.21 | 6.99 8.01 672 | 574 | 8.6 7.51 | 5844 | 545 | 8.08 744 | 44.57 | 574 | 742
F-F 7.52 | 4986 | 4.67 | 7.22 7.58 | 47.01 | 456 | 6.32 7.83 | 63.00 | 9.79 | 6.40 771 | 4845 | 3.98 | 7.03
M-M 7.64 | 5837 | 5.05 | 6.73 8.16 | 59.13 | 5.72 | 8.80 7.50 | 5834 | 597 | 11.89 || 7.53 | 50.07 | 528 | 7.86
M-F 780 | 69.76 | 442 | 6.27 846 | 58.38 | 6.55 | 9.95 7.86 | 68.65 | 6.08 | 1042 || 793 | 61.50 | 6.05 | 8.11
Average 7.62 | 56.70 | 4.59 | 6.80 8.05 | 5793 | 5.64 | 842 7.68 | 62.11 | 6.82 | 9.20 7.65 | 5115 | 526 | 7.60
TABLE III

SUBJECTIVE EVALUATION RESULTS FOR FOUR VC APPROACHES: PPG-VC, NONPARASEQ2SEQ-VC, SEQ2SEQPR-DURIAN AND BNE-SEQ2SEQMOL
(95% CONFIDENCE INTERVALS)

Conversion PPG-VC NonParaSeq2seq-VC Seq2seqPR-DurlAN BNE-Seq2seqMoL
pair Naturalness Similarity Naturalness Similarity Naturalness Similarity Naturalness Similarity
F-M 2.23 £ 0.07 | 2.57 £ 0.06 || 2.95 + 0.05 | 3.40 £ 0.06 || 3.43 = 0.08 | 3.78 £ 0.06 || 3.72 &+ 0.06 | 3.88 £ 0.05
F-F 2.78 £ 0.04 | 3.16 + 0.07 || 3.17 £ 0.06 | 3.42 £ 0.08 || 3.53 + 0.07 | 3.74 £ 0.09 || 3.76 + 0.10 | 4.20 £+ 0.11
M-M 235 £0.09 | 2.83 £ 0.10 || 2.86 &£ 0.07 | 3.22 £ 0.08 || 3.27 £ 0.07 | 3.52 £ 0.08 || 3.84 &+ 0.09 | 4.14 + 0.08
M-F 2.56 £ 0.09 | 2.52 £ 0.09 || 3.34 £ 0.06 | 3.69 £ 0.09 || 3.72 £ 0.05 | 3.82 £ 0.04 || 3.66 = 0.08 | 3.04 & 0.09

Average 2.48 + 0.08 | 2.78 + 0.08 || 3.08 + 0.06 | 3.43 £ 0.08 || 3.49 £+ 0.07 | 3.72 £ 0.07 || 3.75 &+ 0.08 | 3.82 £ 0.09

Recording || 4.78 + 0.07 - - - - - - -

TABLE IV

SUBJECTIVE EVALUATION RESULTS OF THE PROPOSED BNE-SEQ2SEQMOL APPROACH FOR ANY-TO-ANY VOICE CONVERSION (95% CONFIDENCE INTERVALS)

ConI\)/aeirrsmn F-M M-M F-F M-F Average
Naturalness | 3.42 £ 0.06 | 3.61 £ 0.09 | 3.70 &£ 0.07 | 3.44 £ 0.05 | 3.54 £ 0.07
Similarity | 3.53 + 0.08 | 3.57 £ 0.06 | 3.75 £ 0.09 | 2.85 & 0.10 | 3.43 £ 0.08

possible reason might be that the simple linear transformation
in logarithm scale used by the BNE-Seq2seqMoL approach (see
Eq. (13)) can not adequately model the actual male-to-female
pitch conversion; and this can also be reflected by the high FO
RMSE (i.e., 7.18) between the converted and reference speech
as shown in Table I. In any-to-any conversion, we only conduct
MOS tests for the proposed BNE-Seq2seqMoL approach. The
results are presented in Table 4. According to the absolute MOS
values, we can see that the proposed approach also achieves
good VC performance in the one-shot/few-shot voice conversion
setting.

F. Cross-Speaker Property of Bottle-Neck Features

To explore the property of the bottle-neck features extracted
by the BNE in the BNE-Seq2seqMoL approach, t-distributed
Stochastic Neighbor Embedding (t-SNE) [49] is used to visual-
ize bottle-neck features. t-SNE is a non-linear dimensionality re-
duction technique that is widely used to embed high-dimensional
data into a space of two or three dimensions. The goal is to
find a faithful representation of those high-dimensional data in
a low-dimensional space.

Fig. 7(a) is the 2-dimensional t-SNE visualization of the
bottle-neck features of the utterance “arctic-a0001” of the four
speakers (bdl, rms, slt and clb). The 256-dimensional bottle-neck
features are fed into t-SNE and then the result is obtained after
five thousand iterations. In the figure, each bottle-neck feature
frame is represented by a dot. The four colors represent the four

speakers. We can see a strong degree of clustering effect of the
bottle-neck features across different speakers. The details of the
red dashed box in Fig. 7(a) are depicted in Fig. 7(b), where the
numerical indices represent sequential frame order of the first
several frames in the bottle-neck features. A similar manifold
pattern can be observed across the four examined speakers,
which shows the goodness of cross-speaker property of the
bottle-neck features used in the proposed BNE-Seq2seqMoL
approach. This can also be a reasonable explanation of the
superior VC performance of the BNE-Seq2seqMoL approach
since obtaining speaker-agnostic content representations from
the source speech makes the synthesis module focus more on
generating the target voice.

G. Ablation Studies

In this section, ablation studies are conducted to validate
the effectiveness of the feature selection and model design
strategies in the proposed BNE-Seq2seqMoL approach. Specif-
ically, three ablation studies are conducted: 1) dropping the
Log-FO and UV features and only use bottle-neck features as
input to the synthesis module; 2) dropping the instance nor-
malization layers in the pitch encoder; 3) using the location-
sensitive attention (LSA) instead of the location-relative MoL
attention.

The objective evaluation of the ablation studies are shown
in Table 5. We observe that the proposed feature selection and
model design for the BNE-Seq2seqMoL approach obtains the
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TABLE V
ABLATION STUDIES FOR THE PROPOSED BNE-SEQ2SEQMOL APPROACH. “IN” REPRESENTS INSTANCE NORMALIZATION AND “LSA”
REPRESENTS LOCATION-SENSITIVE ATTENTION

Conversion BNE-Seq2seqMoL Without Log-FO&UV Without IN Use LSA
pair mcp | PO fcer | wer | mep | PO cer | wer | Mep | O | cEr | wER | Mcp | PO | cER | wER
RMSE RMSE RMSE RMSE
F-M 6.87 | 44.55 | 3.00 | 4.29 6.91 4992 | 2.23 | 5.14 6.85 41.65 | 3.94 | 6.46 6.81 | 46.64 | 431 | 7.19
F-F 6.99 | 4544 | 5.12 | 6.97 7.05 | 47.24 | 3.97 | 6.12 6.93 | 4577 | 490 | 6.96 7.00 | 44.03 | 428 | 7.20
M-M 6.94 | 5037 | 472 | 7.22 7.00 | 54.20 | 3.93 | 6.80 7.04 | 52.81 | 5.52 | 851 6.90 | 49.71 | 453 | 6.44
M-F 7.18 56.31 | 3.61 | 5.76 713 | 47.80 | 5.09 | 7.25 7.23 60.56 | 545 | 7.75 7.15 58.65 | 4.89 | 6.84
Average 6.99 | 49.17 | 4.11 | 6.06 7.02 | 49.79 | 3.81 | 632 7.01 50.20 | 495 | 7.42 6.97 | 49.76 | 4.50 | 6.92
TABLE VI
s ! +  bdl INFERENCE SPEED INFORMATION. PYTORCH IMPLEMENTATION WITHOUT
601 : : e rms HARDWARE OPTIMIZATION FOR AN NVIDIA TESLA M40 GPU AND INTEL(R)
I I . st XEON(R) E5-2680(v4) CPU @ 2.40 GHz
: | . b
it IR l System RTF (GPU)
PPG-VC 0.039
e . NonParaSeq2seq-VC 0.117
20 . *
L Jes, Seq2seqPR-DurlAN 3.329
P $f & BNE-Seq2seqMoL 0.245
o o o
of . e
- PR TABLE VII
LI Rth a0 INFERENCE SPEED INFORMATION OF THE BNE-SEQ2SEQMOL APPROACH
K # " fu USING DIFFERENT FOLDING RATE. WE USE A PYTORCH IMPLEMENTATION
-2 ~ G e eedd 3 . WITHOUT HARDWARE OPTIMIZATION FOR AN NVIDIA TESLA M40 GPU AND
o SOy e w PPN INTEL(R) XEON(R) E5-2680(v4) CPU @ 2.40 GHZ
%, 3. S wtie
40 . . Different folding rate RTF (GPU)
—-40 =20 0 20 40 - .
@) Without folding 0.245
Folding x2 0.221
1 Folding x4 0.224
102 ® " bl Folding x8 0.228
5,93 o rms olding x .
. .
* s "% o sit Folding x16 0.242
] ®
60 % ; % e <cbb
® 3. H. Training and Inference Speed
554 . .. .
§ 6 In all experiments, training processes are stopped early if the
5: validation losses do not decrease for five epochs. We use Pytorch
504 1 toolkit to implement all models without any hard-ware optimiza-
° » 4 tion. The computation platform information is: NVIDIA Tesla
6 & % M40 GPU and Intel(R) Xeon(R) CPU E5-2680(v4) @ 2.40 GHz.
1 ? ®; 19 We measure training time of the Seq2seq-Durl AN and the BNE-
§.9. e Seq2seqMoL approaches in the any-to-many setting. Training
w0l gog 10 epochs of the phoneme recognizer takes about 40 hours using
® % 8 GPUs. The synthesis module in the Seq2seq-DurlAN system
is trained 200 epochs on 1 GPU, taking 44 hours. The synthesis
- = = ®) _25 - o module in the BNE-Seq2seqMoL apporoach is trained 56 epochs

Fig. 7. (a) Visualization of bottle-neck features extracted by the BNE in the
proposed BNE-Seq2seqMoL VC approach from the utterance “arctic-a0001”
in the CMU ARCTIC dataset with t-SNE. (b) Details of the dashed red box in
(a), where the number represent sequential order of a frame in the bottle-neck
features.

best FO-RMSE and WER results, and achieve near-the-best
MCD and CER results. This validates the effectiveness of the
feature selection and model design in the BNE-Seq2seqMoL
approach.

on 1 GPU, taking 28 hours.

The inference speed on GPUs for all the compared four
systems for any-to-many VC is also measured using 50 sam-
ples from the testing set. Since we use an open-sourced auto-
regressive WaveRNN model as the vocoder to generate wave-
form, we exclude the WaveRNN inference time to prevent it
from dominating the computation. Inference real-time factors
(RTF) are presented in Table VI. The beam size is 10 for the
Seq2seq-DurlAN and NonParaSeq2seq-VC systems.

The bottle-neck feature extractor in the BNE-Seq2seqMoL
approach has several BILSTM layers, which compute input
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frames recurrently. To explore the possibility of accelerating the
inference speed for the BNE-Seq2seqMoL approach, we parti-
tion the input mel spectrograms evenly into N € [2,4, 6,8, 16]
segments along the temporal axis and compute the bottle-neck
features in a batch mode. The bottle-neck features of the N
segments are then concatenated temporally before being fed into
the remaining parts of the system. The RTF results are presented
in Table VII, where “Folding X/’ refers to partitioning into [V
segments. We can see that partitioning a mel spectrogram into
2 segments can get the greatest inference speed gain; and our
preliminary listening test shows that this partitioning operation
(i.e., “folding x2”’) does not hurt the conversion performance.

VI. CONCLUSION

In this paper, we re-design a prior approach [28] to achieve
a robust non-parallel seq2seq any-to-many VC approach. The
novel approach concatenates a seq2seq phoneme recognizer
(Seq2seqPR) and a multi-speaker duration informed attention
network (DurlAN) for synthesis. Extension is also made on
this approach to enable support of any-to-any voice conversion.
Thorough examinations including objective and subjective eval-
uations are conducted for this model in any-to-many, as well as
any-to-any settings.

To overcome the deficiencies of the PPG-based and non-
parallel seq2seq any-to-many VC approaches, we further pro-
posed a new any-to-many VC approach, which combines a
bottle-neck feature extractor (BNE) with an MoL attention-
based seq2seq synthesis model. This approach can easily be
extended to any-to-any VC. Objective and subjective evaluation
results show its superior VC performance in both any-to-many
and any-to-any VC settings. Ablation studies have been con-
ducted to confirm the effectiveness of feature selection and
model design strategies in the proposed approach. The pro-
posed BNE-Seq2seqMoL approach has successfully shortened
the sequence-to-sequence VC pipeline to contain only an ASR
encoder and a synthesis decoder. However, it still uses spectral
features (i.e., mel spectrograms) as intermediate representations
and relies on an independently trained neural vocoder to generate
the waveform. This may reduce the synthesis quality, which
be avoided by jointly training the whole VC pipeline in an
end-to-end manner (i.e., waveform-to-waveform training). In the
future, we will also explore the proposed approach in terms of
source style transfer and emotion conversion.
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