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ABSTRACT

Dysarthric speech reconstruction (DSR) systems aim to automati-
cally convert dysarthric speech into normal-sounding speech. The
technology eases communication with speakers affected by the
neuromotor disorder and enhances their social inclusion. NED-
based (Neural Encode-Decoder) systems have significantly im-
proved the intelligibility of the reconstructed speech as compared
with GAN-based (Generative Adversarial Network) approaches,
but the approach is still limited by training inefficiency caused by
the cascaded pipeline and auxiliary tasks of the content encoder,
which may in turn affect the quality of reconstruction. Inspired by
self-supervised speech representation learning and discrete speech
units, we propose a Unit-DSR system, which harnesses the power-
ful domain-adaptation capacity of HuBERT for training efficiency
improvement and utilizes speech units to constrain the dysarthric
content restoration in a discrete linguistic space. Compared with
NED approaches, the Unit-DSR system only consists of a speech
unit normalizer and a Unit HiFi-GAN vocoder, which is consider-
ably simpler without cascaded sub-modules or auxiliary tasks. The
results on the UASpeech corpus indicate that Unit-DSR outperforms
competitive baselines in terms of content restoration, reaching a
28.2% relative average word error rate reduction when compared
to original dysarthric speech, and shows robustness against speed
perturbation and noise1.

Index Terms— dysarthric speech reconstruction, speech units,
speech normalization, speech representation learning

1. INTRODUCTION

Dysarthric speech with abnormal acoustic characteristics [1] can
lead to the deterioration of the speech-motor control system, which
engenders communication barriers for dysarthria patients. This
study introduces an innovative approach to the dysarthric speech
reconstruction (DSR) task, aiming to transform dysarthric speech
into a more natural and intelligible form.

Existing DSR systems are primarily based on voice conversion
(VC), which can be divided into two popular frameworks: genera-
tive adversarial network (GAN) and neural encoder-decoder (NED).
GAN regards DSR as a cross-domain shift problem by directly map-
ping dysarthric speech features to their normal counterparts, and dif-
ferent variants have been investigated, e.g., CycleGAN [2], MaskCy-
cleGAN [3] and DiscoGAN [4]; NED designs separate encoders for
content restoration, prosody correction, and speaker identity preser-
vation, respectively, followed by a decoder and vocoder for normal

1Demo page: https://wyj1996.github.io/Unit-DSR-demo/index.html

speech generation [5, 6]. The drawback of GAN-based DSR sys-
tems is that the linguistic and prosody aspects of speech are modeled
implicitly, which makes the reconstruction errors difficult to trace.
However, NED explicitly reconstructs different speech components
through encoders, offering higher interpretability and controllability.

Cascaded NED-based DSR systems typically employ a content
encoder to extract linguistic representations required for healthy
speech generation. To ensure precise extraction of linguistic content
from dysarthric speech, various auxiliary tasks have been investi-
gated: E2E-DSR [5] force-aligns its content encoder with the text
encoder of a text-to-speech (TTS) model using cross-modal knowl-
edge distillation; ASA-DSR [6] fine-tunes a well-trained automatic
speech recognition (ASR) model as the content encoder to extract
phonetic posteriorgrams as linguistic representations; a series of
Parrotron systems [7, 8, 9] convert dysarthric spectrograms to their
normal version, with phoneme recognition added as an auxiliary task
to constrict the content encoder output within the linguistic content
space. Given the limited dysarthric speech data and intra-patient
variance in dysarthria symptoms, these systems are often trained
with multiple objectives on large-scale normal speech to constrain
content encoder outputs within the linguistic space and then adapted
to dysarthric subjects with limited utterances.

However, the cascaded pipeline of NED-based systems en-
counter several issues: 1) Training inefficiency: the modules within
the pipeline necessitate training from scratch across multiple phases,
followed by fine-tuning towards dysarthric subjects, which is com-
plicated and inefficient; 2) Sub-optimal performance: the content
restoration heavily relies on the content encoder that is simultane-
ously optimized with auxiliary tasks, e.g., ASR [6, 8] and modal
alignment [5]. Although guiding the encoder to better capture the
linguistic content, the auxiliary tasks distract the optimization from
the ultimate goal of speech reconstruction and lead to sub-optimal
final performance. Consequently, imprecise linguistic information
from the content encoder can be propagated through the decoder and
vocoder, further exacerbating content restoration.

To alleviate these issues, we draw inspiration from self- super-
vised learning (SSL) of speech representations and discrete speech
units, which have achieved success in voice conversion (VC) [10,
11], ASR, and textless speech translation [12, 13]. 1) SSL rep-
resentations reveal powerful few-shot domain adaptation capabili-
ties. SSL speech models, such as HuBERT [14] and Wav2Vec 2.0
[15], have demonstrated effectiveness in discriminative and genera-
tive tasks to tackle domain shift problems [16, 11]. Domain-adapted
Wav2Vec 2.0 representations [17] have also been successfully in-
tegrated into automatic dysarthric speech recognition; 2) Discrete
speech units, clustered from SSL speech representations, are proved
to be highly related with phonemes while weakly correlated with

https://wyj1996.github.io/Unit-DSR-demo/index.html
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Fig. 1. (a) Diagram of the Unit-DSR system. (b) An example of original speech units of different speakers uttering ‘bath’, and the recon-
structed norm units from the speech unit normalizer, which have a high correspondence with the reference speech units.

speaker or gender [18], forming a discrete space with less para-
linguistic information. Therefore, speech units often serve as lin-
guistic representations in VC [10] and offer a shortcut for bypassing
text and mel-spectrogram aspects in speech translation [13].

In this study, we propose a Unit-DSR system based on the Hu-
BERT model and discrete speech units. The system comprises two
modules – a speech unit normalizer and a Unit HiFi-GAN vocoder
– striving to convert diverse dysarthric pronunciation patterns into
their normal versions of a reference speaker, which is the essence
of ‘normalization’. The normalizer, initialized from the HuBERT
model, first transforms dysarthric speech into a healthy speech unit
sequence using the connectionist temporal classification (CTC) loss
and a multi-stage fine-tuning strategy. Subsequently, the Unit HiFi-
GAN vocoder generates waveforms directly from speech units. The
contributions of the work include: 1) We are among the first to in-
troduce speech units as discrete content representations in the DSR
task, which avoids auxiliary tasks and outperforms content encoder
outputs employed in previous works [5, 6]; 2) We propose to uti-
lize the HuBERT backbone with an effective multi-stage fine-tuning
strategy, which showcases its powerful domain adaptation capability
and significantly enhances training efficiency; 3) The overall Unit-
DSR structure is greatly simplified without cascaded sub-modules
or complex training objectives, while still outperforms competitive
baselines on the UASpeech corpus.

2. PROPOSED METHOD

The Unit-DSR system, as shown in Fig. 1(a), is composed of a
speech unit normalizer and a Unit HiFi-GAN vocoder [12]. First,
a pre-trained HuBERT produces the reference speech units and ini-
tializes the speech unit normalizer, followed by a multi-stage fine-
tuning. The Unit HiFi-GAN vocoder is modified from HiFi-GAN
vocoder and enhanced with a unit-duration predictor.

2.1. HuBERT and speech units

HuBERT is a readily available SSL speech representation model that
iteratively optimizes a BERT-like loss based on the K-means clusters
of the model’s intermediate representations. HuBERT comprises a

convolutional encoder, a transformer encoder, a projection layer, and
a code embedding layer. By applying the prediction loss exclusively
to the masked regions, HuBERT learns a unified acoustic and lan-
guage model from continuous inputs [14].

After pre-training, the learned K-means clusters can be utilized
to discretize the input audio’s intermediate representations into a
sequence of cluster indices, represented as [z1, z2, ..., zT ], zi ∈
[0, 1, 2, ...,K − 1], where T and K denote the number of frames
and clusters, respectively. These cluster indices serve as the original
speech units. The speech units are generated at a 20ms frame rate
for audio sampled at 16kHz and contain many repeated units within
the sequence. Analysis reveals a strong correlation between speech
units and phoneme families, while their association with speaker
or gender is weak [18]. Consequently, speech units can effectively
constrain the speech content component in a discrete space, and their
duration can be explicitly controlled by modifying the repetitions.

2.2. Speech unit normalizer

Speech units from audios containing the same content can exhibit
significant variations due to factors such as speaking styles, emo-
tions, silence, and background noise. Additionally, the variance is
aggravated by the severity levels and pathologies of dysarthric pa-
tients. As demonstrated in the example of Fig. 1(b), the speech units
within the utterance boundaries of F02 and CF02 are quite different.

Therefore, to transform inaccurate contents and modify inappro-
priate pauses of dysarthric speech into a normal pattern in the form
of speech units, a speech unit normalizer is built. In Fig. 1(a), the
normalizer is initialized using a pre-trained HuBERT model with a
CTC layer and then fine-tuned in a multi-stage way, using the speech
of various speakers (healthy or dysarthric) as input and norm units
of a healthy reference speaker as the target.

The left branch in Fig. 1(a) depicts the process of the refer-
ence norm units extraction, while the right branch is the fine-tuning
and inference pipeline of the Unit-DSR system. First, pairs of ut-
terances from a healthy reference speaker and a random speaker (ei-
ther healthy or dysarthric, depending on the fine-tuning stage) in the
same content are required. Unvoiced segments on both sides of the



reference utterances are removed. Next, in the left branch, speech
representations of the 11th-layer of HuBERT are extracted from the
reference speech, and the K-means model clusters these representa-
tions into original speech units. To ease the learning burden on the
normalizer and eliminate the duration information, duplicate units in
the original speech units are removed. Therefore, we get the refer-
ence norm units, which serve as the target for the fine-tuning stages.

Simultaneously, in the right branch, the utterance of a random
speaker with the same content is fed into the normalizer. After pass-
ing through the HuBERT and a CTC layer, the waveform is trans-
formed into a reconstructed norm-unit sequence. Specifically, the
transformer encoder and the CTC layer are fine-tuned using the CTC
loss in a multi-stage strategy (details in subsection 2.3). This process
converts the reconstructed norm units into the reference norm units,
thereby normalizing various acoustic patterns, including dysarthric
patterns, into the healthy pattern of the reference speaker. Fig. 1(b)
provides an example of the reconstructed norm units and their strong
correspondence with the reference speech units. Finally, the recon-
structed norm units are put into the Unit HiFi-GAN vocoder to gen-
erate the reconstructed waveform directly (details in subsection 2.4).

2.3. Multi-stage fine-tuning strategy

To effectively adapt the initial speech unit normalizer into a DSR-
oriented normalizer, we propose a multi-stage fine-tuning strategy. It
begins by fine-tuning the normalizer using a small amount of healthy
speech to obtain a typical speech normalizer, which is then adapted
using the dysarthria dataset. Different stages are distinguished by
the variations in the reference-random speaker pairs:

• First stage: we use multiple speakers from the VoxPopuli ASR
dataset [19] as random speakers and the speaker of LJSpeech [20]
as the reference speaker. Since the content of VoxPopuli and
LJSpeech is not parallel, a text-to-unit conversion is performed
using a transformer machine translate model trained on LJSpeech
with characters as input and norm-unit as target (refer to [14] for
more details). It enables us to get utterance-reference norm-unit
pairs. At this stage, the normalizer learns the basic normalization
rules, but can not transfer the ability well to different reference
speakers and corpus, e.g., the noisy UASpeech corpus [21].

• Second stage: a healthy speaker from the dysarthria dataset is
selected as the new reference speaker. The random speakers are
the other healthy speakers within the dysarthria dataset, and all of
their utterances are used for fine-tuning. At this stage, the speech
unit normalizer can better adapt to the patterns of the new refer-
ence speaker and the dysarthria corpus.

• Third stage: a dysarthric patient is chosen as the random
speaker, and the reference speaker remains the same as in the sec-
ond stage. Only utterances of this patient are used for fine-tuning,
allowing the normalizer to remove the dysarthric pattern.

2.4. Unit HiFi-GAN vocoder

Our multi-speaker Unit HiFi-GAN vocoder directly decodes wave-
form from the reconstructed norm units, as shown in Fig. 2. It is
optimized by the generator-discriminator loss and the mean square
error of the predicted duration of each unit in the logarithmic do-
main. First, the norm-unit sequence is converted into representations
zc via look-up tables (LUTs). The representation is then up-sampled
according to the unit duration obtained from the duration predic-
tor. The speaker embedding, zspk, is extracted from a speaker LUT
and concatenated to each frame of the up-sampled zc. Finally, the
generator accepts the up-sampled representations of (zc, zspk) and
converts them into a waveform.

Up-sampled 𝒛𝒄, 𝒛𝒔𝒑𝒌
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Fig. 2. The structure of Unit HiFi-GAN vocoder.

Table 1. The dataset distributions of the multi-stage fine-tuning
strategy in our experimental setup. UA. is the UASpeech corpus.

Stages Dataset of the
reference speaker

Dataset of
random speakers

Total durations
of random speakers

1 LJSpeech VoxPopuli ASR 10.0 h
2 UA. (CF02) UA. (healthy speakers) 11.9 h
3 UA. (CF02) UA. (M05/F04/M07/F02) 1.2 h

3. EXPERIMENTAL SETUP

The Unit-DSR system is evaluated using the UASpeech corpus [21],
one of the largest databases for English dysarthria, which consists of
16 dysarthric speakers and 13 normal speakers. The speakers were
asked to repeat 455 unique words, including 155 common words and
300 uncommon words. These words were divided into three blocks:
B1-B3. In this study, four patients with varying severity levels, M05
(middle), F04 (middle), M07 (low), and F02 (low), are selected for
subjective and objective evaluations.

During the model pre-training, the speech normalizer is initial-
ized by an open-sourced multi-lingual HuBERT-base model, which
is trained by VoxPopuli unlabeled speech with 4.5k hrs of data for
English, Spanish, and French, respectively. Speech units are ex-
tracted via K-means clustering (K=1000) with features from the 11th
layer of the third iteration (follow the setting in [12]). For the multi-
stage fine-tuning, the dataset distributions are outlined in Table 1.
The first stage setting has been explained in subsection 2.3, and an
open-sourced LJSpeech-normalizer for the first stage can be found
in [12]. In the second (or third) stages, only B1 and B3 of healthy
speakers (or the dysarthric speaker) are employed for fine-tuning,
with B2 reserved for testing. We perform 10k updates and use Adam
optimization in all stages. And Detailed HuBERT fine-tuning pa-
rameters can be found in fairseq. The Unit HiFi-GAN is trained us-
ing the LJspeech and UASpeech corpora, taking two days on 2 GTX
A6000 GPUs. The code for the Unit HiFi-GAN is released [10].

Three baseline systems are applied for comparison: one baseline
is the ASR-TTS system, which consists of a multi-lingual HuBERT-
CTC ASR model and an open-sourced TTS model (Tacotron 2 [22]),
with a well-trained HiFi-GAN vocoder. The architecture and the
fine-tuning dataset of its ASR model are identical to those of the
Unit-DSR system; the other two baselines include the E2E-DSR sys-
tem [5] and the ASA-DSR system [6], which both follow the NED
pipeline and have a larger training set than Table 1.

4. RESULTS

4.1. Baselines comparison on content restoration

The 5-scale mean opinion score (MOS) test and ASR are conducted
to evaluate the content restoration accuracy. In the subjective MOS



Table 2. The 5-scale MOS test scores for content similarity with
mean scores and the 95% confidence intervals.

Systems M05 F04 M07 F02

Original 2.86 ± 0.15 2.42 ± 0.14 1.75 ± 0.11 1.95 ± 0.12
ASR-TTS 3.45 ± 0.12 3.21 ± 0.13 3.35 ± 0.13 3.02 ± 0.15
E2E-DSR 3.61 ± 0.14 3.47 ± 0.14 3.72 ± 0.18 3.87 ± 0.16
ASA-DSR 4.19 ± 0.10 3.98 ± 0.11 3.71 ± 0.17 4.26 ± 0.14
Unit-DSR 4.52 ± 0.14 4.65 ± 0.11 4.62 ± 0.11 4.55 ± 0.12

Table 3. WER (%) comparison for UASpeech. ∆ refers to the per-
centage decrease in WER compared to original dysarthric speech.

Systems WER of
M05 / ∆

WER of
F04 / ∆

WER of
M07 / ∆

WER of
F02 / ∆

Original 81.7/ – 81.7/ – 95.6/ – 95.9/ –
ASR-TTS 74.2/ -18.5% 75.4/ -7.7% 70.0/ -26.8% 81.6/ -14.9%
E2E-DSR 69.8/ -23.3% 69.3/ -15.2% 73.1/ -23.5% 72.0/ -24.9%
ASA-DSR 62.5/ -31.1% 65.6/ -19.7% 62.7/ -34.4% 65.8/ -31.4%
Unit-DSR 64.4/ -29.2% 65.5/ -19.8% 62.1/ -35.0% 68.3/ -28.8%

test, 20 listeners are invited to assess 15 random-selected words from
the B2 set, focusing on the content similarity between the recon-
structed speech and the reference speech of CF02, while disregard-
ing speaker identity and background noise. In the objective evalu-
ation, the publicly available ASR system, Jasper [23] with greedy
decoding, is applied to get the word error rate (WER) of the B2 set.

As shown in Table 2, the proposed Unit-DSR achieves higher
content similarity, indicating the effectiveness of speech units in
reconstructing speech with accurate content and pronunciations.
In contrast, the content encoders of other baselines expose more
phoneme errors. Readers are encouraged to refer to the demo page
for further details. The ASR results are summarized in Table 3,
where Unit-DSR achieves the highest relative WER reductions of
19.8% and 35.0% on F04 and M07, respectively. It also demon-
strates comparable WER results with ASA-DSR on M05 and F02.
However, even built upon the same backbone of the Unit-DSR, the
ASR-TTS system still performs the worst. We assume that content
errors at the character level are more easily amplified by the decoder
and vocoder than errors at the unit level (also indicated in Fig. 1(b)).
These results imply that our Unit-DSR system can attain higher
content restoration accuracy using a simplified pipeline, without an
auxiliary task for the content encoder.

Since Jasper is not as robust as humans and can be easily influ-
enced by noise or speaking styles, we further conduct a human lis-
tening test to evaluate the intelligibility of the reconstructed speech
by Unit-DSR. Two listeners are invited to judge whether the utter-
ance corresponds to the word label. And this human listening test
is conducted in the subsequent ablation study and robustness study,
based on 50 common words in the B2 set.

4.2. Ablation study on multi-stage fine-tuning

To evaluate the effectiveness of the multi-stage fine-tuning strategy
and assess the contribution of different stages, we design an ablation
study based on the metric of human listening test accuracy. Four
versions of the Unit-DSR system, each fine-tuned with various com-
binations of stages, are compared in Table 4.

We find that the fine-tuning strategy is essential for adapting the
pre-trained HuBERT model to the DSR task. As surprisingly, the
dysarthric speaker in stage 3 contributes the most (72.0%) to the
average accuracy. However, healthy speakers from UASpeech also
significantly contribute to the perception accuracy: adding stage 2 to
stage 1 lead to a 20.2% increase in average accuracy, and the Unit-

Table 4. Human listening test accuracy (%) for the ablation study
on multi-stage fine-tuning strategy. ∆ refers to the percentage of
accuracy decrease compared with the original Unit-DSR system.

Stages M05 / ∆ F04 / ∆ M07 / ∆ F02 / ∆ Ave. ∆

1 + 2 + 3 82.0/ – 72.0/ – 82.0/ – 76.0/ – –
1 + 3 79.0/ -3.7% 66.0/ -8.3% 66.0/ -19.5% 70.0/ -7.9% -9.9%
1 + 2 14.0/ -82.9% 48.0/ -33.3% 6.0/ -92.7% 16.0/ -78.9% -72.0%
1 8.0/ -90.2% 10.0/ -86.1% 2.0/ -97.6% 4.0/ -94.7% -92.2%

DSR without stage 2 suffers an average accuracy loss of 9.9%. These
effects are particularly obvious for speakers F04 and M07.

4.3. Robustness study

The robustness study examines how the reconstructed norm units are
influenced by the distribution fluctuations of input audios. We con-
duct speed perturbation on dysarthric speech to simulate changes in
the patient’s speaking rate and add Gaussian white noise at different
power levels to represent various record conditions. Their human
listening test results are depicted in Fig. 3.

The Unit-DSR system encodes accurate content with speed per-
turbation ratios ranging from 0.8 to 1.6, except for speaker F04.
When speech is slowed down by a rate of 0.4 or 0.6, many unnat-
ural utterances will be interpolated, causing the normalizer to gener-
ate incorrect norm- units. Speaker F04 is a unique case because her
utterances are quite rushed, often omitting stresses and pauses, and
a higher speed perturbation ratio will lost some crucial pronuncia-
tion cues. Similarly, in Fig. 3(b), when the SNR falls below 10 dB,
important phoneme features cannot be reconstructed due to noise.
However, when the SNR is above 15 dB, the performance of the
model remains relatively stable. In conclusion, Unit-DSR demon-
strates robustness against distribution fluctuations in input audios.
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Fig. 3. Human listening test accuracy of Unit-DSR with (a) different
input speed perturbation ratios and (b) various input SNRs.

5. CONCLUSIONS

The proposed unit-DSR system normalizes the dysarthric speech
into a reference speaker and generates speech directly through
speech units. It omits the cascaded pipeline while improve the
intelligibility significantly. And the pretrained Hubert model and
multi-stage fine-tuning strategy helps to efficiently adapt to various
severity-level patients. Combined with multi-speaker unit-vocoder,
unit-DSR can also generate speech with different timbres. Further-
more, our model has the potential to extend to dysarthria corpus in
other textless languages based on speech units.
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