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Abstract

Dialog systems enriched with external knowledge can han-
dle user queries that are outside the scope of the support-
ing databases/APIs. In this paper, we follow the baseline
provided in DSTC9 Track 1 and propose three subsystems,
KDEAK, KnowleDgEFactor, and Ens-GPT, which form the
pipeline for a task-oriented dialog system capable of access-
ing unstructured knowledge. Specifically, KDEAK performs
knowledge-seeking turn detection by formulating the prob-
lem as natural language inference using knowledge from di-
alogs, databases and FAQs. KnowleDgEFactor accomplishes
the knowledge selection task by formulating a factorized
knowledge/document retrieval problem with three modules
performing domain, entity and knowledge level analyses.
Ens-GPT generates a response by first processing multi-
ple knowledge snippets, followed by an ensemble algorithm
that decides if the response should be solely derived from
a GPT2-XL model, or regenerated in combination with the
top-ranking knowledge snippet. Experimental results demon-
strate that the proposed pipeline system outperforms the base-
line and generates high-quality responses, achieving at least
58.77% improvement on BLEU-4 score.

1 Introduction
By incorporating the external knowledge sources available
on webpages, task-oriented dialog systems can be empow-
ered to handle various user requests that are outside the cov-
erage of their APIs or databases. Therefore, we set out to cre-
ate a dialog system that outperforms the Ninth Dialog Sys-
tem Technology Challenge (DSTC9) Track 1 baseline (Kim
et al. 2020; Gunasekara et al. 2020). The baseline method
is a pipeline composed of three tasks: the first task recog-
nizes if a dialog response requires knowledge outside of a
provided MultiWOZ 2.1 database (Eric et al. 2019). If so,
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Domain Entity Snippet

Train – T: Is there a charge for using WiFi?
B: Wifi is available free of charge.

Hotel Avalon T: Are pets allowed on site?
B: Pets are not allowed at avalon.

Table 1: Example of a domain-wide (line-1) and an entity-
specific knowledge snippet (line-2). T,B represent the title
and the body.

the second task then retrieves the most relevant knowledge
snippets from an external knowledge base, which are sub-
sequently used together with the dialog context to gener-
ate a response in the third task. Specifically, all the three
tasks are handled by the variants of pre-trained GPT2 mod-
els (Vaswani et al. 2017; Wolf et al. 2019).

Formally, the external knowledge base K is composed
of knowledge snippets k1, . . . , kn. D is the set of all
domains. For the DSTC9 Track 1 Training Set, D =
{hotel, restaurant, train, taxi}. Table 1 shows examples of
the two types of knowledge, namely a domain-wide knowl-
edge snippet directly under a specific domain di = train, and
an entity-specific knowledge snippet of entity ei = Avalon,
which belongs to the domain hotel. Dw and De refer to
the domains that contain only domain-wide and only entity-
specific knowledge snippets respectively, Dw ∪ De = D
and Dw ∩De = ∅. A snippet ki consists of a title (question)
and a body (answer). A knowledge snippet ki is considered
in-domain (ID) if its domain di was seen during the train-
ing of the models; otherwise, it is considered out-of-domain
(OOD). The dialog history Ut = {ut−w+1, . . . , ut−1, ut}
contains utterances ui where t is the time step of the current
user utterance and w is the size of dialog context window.
Responses to this dialog are found in the ground truth rt+1

or they can be generated by our system r̃t+1.
We created a transparent, factorized, generalisable and
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Figure 1: KDEAK pipeline

knowledge-grounded task-oriented conversational system
with code available at http://bit.ly/2ISy3KW. Multiple in-
formation retrieval hypotheses are considered when con-
structing the response and this significantly improves results.
When the three tasks are integrated they significantly outper-
form the baseline in terms of automated metrics.

2 Methodology
2.1 Task 1 – Knowledge-seeking Turn Detection
As mentioned earlier, Task 1 classifies whether information
from the database or external knowledge is required to an-
swer a user’s query.

We introduce KDEAK (Knowledge-seeking turn detec-
tion using Domain, Entity, API/DB and Knowledge) shown
in Figure 1. The domain classifier helps the entity classifier
determine the dialog’s relevant entity. We generate candidate
information snippets from the selected entity’s database and
knowledge. The knowledge classifier ranks and classifies
the candidate information snippets to determine whether the
database or knowledge answers the user’s query. In the sub-
sequent sections, we illustrate our KDEAK’s modules using
the example from Table 2. What differentiates KDEAK from
Task 2 is that its Domain Classifier can identify domains in
the non-knowledge-seeking turns and the Knowledge Clas-
sifier’s ability to select the relevant API/DB information.

NLI Problem Formulation. We formulate Task 1’s do-
main classification, and knowledge classification problems
as a Natural Language Inference (NLI) problem (Dagan,
Glickman, and Magnini 2005). The NLI problem deals
with a pair of statements – hypothesis and premise. Given
the premise, it determines whether the hypothesis is True
(i.e., an entailment), False (i.e., a contradiction), or Unde-
termined. For example, if “I want to book a hotel” is the
premise, the hypotheses “The user wants to book a hotel” is
True and “The user wants to book a taxi” is False. We lever-
age a pre-trained NLI model (Lewis et al. 2019) for classi-
fication in Task 1. We use the last Ndialog turns for premise
generation. We pair each premise with a set of generated
candidate hypotheses using domain and knowledge labels.
We find the NLI approach more robust against unseen do-
mains as compared to the baseline.

Module 1 - Domain Classifier. This module classifies the
dialog turn’s relevant domain. We generate the premise us-

ing the following premise template – “Assistant says $sys-
tem response. User says $user response” in each dialog turn
to distinguish between user and system response (Ndialog =
2). Based on the example in Table 2, the premise will be
“Assistant says The SW ... book? User says Yes ... there?”
We pair the premise with a candidate hypothesis for each
domain di ∈ D using the hypothesis template – “The user
is asking about di.”. We feed these pairs into the NLI model
to find the most probable domain by performing a softmax
on each candidate hypothesis’ output entailment probability.
The domain di with the maximum entailment probability is
selected for the dialog turn.

We use Bidirectional and Auto-Regressive Transform-
ers (BART) model (Lewis et al. 2019) initially fine-tuned
on MultiNLI (Williams, Nangia, and Bowman 2018). We
further fine-tune our model on MultiWOZ2.2 (Zang et al.
2020) and DSTC9 Track 1 Training Set on all eight domains
of MultiWOZ2.2. For training, we generate the premise
and hypotheses using the templates mentioned above. Each
premise with ground-truth domain di is paired with the hy-
pothesis corresponding to di and marked as entailment. We
also pair the same premise with the remaining |D| − 1 hy-
potheses and mark them as contradiction. For inference, we
use Huggingface’s (Wolf et al. 2019) ‘classification-as-NLI’
based zero-shot-classification pipeline.

Module 2 - Entity Classifier. The Entity Classifier uses
the selected domain from the Domain Classifier to further
process the dialog turn in focus. We devise a Surface Match-
ing Algorithm (SMA) to match the possible entities within
the dialog history with carefully designed heuristics, based
on the intuition that the later the entity appears in the di-
alog history, the more likely it is the target. Approximate
string matching is also incorporated into the algorithm to
enhance its robustness to alias matching and misspelling.
For instance, SMA is capable of retrieving the entities A &
B Guest House from seeing ‘A and B’, Avalon from seeing
‘Avolon.’ The selected domain label helps reduce the entity
search space. Following on with our example (see Table 2),
the entities corresponding to the hotel domain are searched
to see if they occur in the dialog turn. Consequently, the
matching algorithm identifies SW Hotel as the entity.

Module 3 - Candidate Information Generator (CIG).
Given the identified entity from the Entity Classifier, this
module consolidates the relevant database snippets and
knowledge snippets for the entity and places them into an
information candidate pool Centity which will be used by
the Knowledge Classifier in the subsequent step. As we ob-
serve in Table 2, database snippets are not natural sound-
ing like knowledge-snippets, so we pre-process them using
suitable formatting templates before adding them to Centity.
Based on Table 2’s example, the database snippet – {name:
SW Hotel, postcode: 94133} becomes “Postcode for SW Ho-
tel is 94133.” We also add pseudo-candidates to Centity to
deal with cases where information is not present in either
database or knowledge, e.g., “Goodbye”, “I want to book a
hotel”, “Thanks”, etc. Following on with our example, CIG



Speaker Utterance (ut) Knowledge Snippet (ki) Database Entry
Assistant Would you like to book the SW hotel? - name:SW Hotel

address:615 Broadway
User Yes, I can reach SW hotel by taxi. What

breakfast options are available there?
T: Does SW Hotel offer breakfast?
B: No, we don’t offer breakfast.

postcode:94133
type:Hotel

Table 2: Excerpt of last 2 dialog turns from hotel domain with relevant knowledge snippet (T: title, B: body) and database entry.

Method Validation Set Test Set
Accuracy Precision Recall F1 Accuracy Precision Recall F1

GPT2-Baseline 0.995 0.999 0.982 0.991 0.946 0.993 0.892 0.940
KDEAK∧ 0.993 0.980 0.993 0.986 0.924 0.989 0.849 0.914
KDEAK* 0.994 0.993 0.986 0.989 0.971 0.985 0.952 0.968

Table 3: Evaluation results of Task 1 on knowledge-seeking turn detection on DSTC9 Track 1 Validation and Test Sets. ∧
Submitted system using Ndialog = 1 without premise template. * Improved system using Ndialog = 2 and premise template.

consolidates SW Hotel’s database and knowledge snippets
and pseudo-candidates into the candidate pool CSW hotel.

Module 4 - Knowledge Classifier. This module consists
of an NLI-based ranker for the candidates in the candi-
date information pool Centity output by the Candidate In-
formation Generator. The dialog turn in focus is used as
the premise and each information candidate in the pool
ci ∈ Centity is used as the hypothesis to form |Centity|
premise-hypothesis pairs. The candidates are ranked accord-
ing to the entailment probabilities. The final classification
rule classifies the turn as knowledge-seeking or not:

label =

{
False if ctopi /∈ K

True otherwise
(1)

where ctopi is the top-ranking candidate and K is the set of
knowledge-snippets. Following on with the example (See
Table 2), the latest user turn “Yes, I ... available there?” is
used as the premise (Ndialog = 1) and it is paired with
each candidate ci ∈ CSW hotel. The pairs are fed into the
fine-tuned NLI-model to rank the snippets. The top-ranking
candidate – “No, we don’t offer breakfast.” is a knowledge
snippet. Hence, the example user’s dialog turn is finally clas-
sified as knowledge-seeking.

As regards implementation, we use the previously men-
tioned BART model as the base model for the Candi-
date Information Ranker. As the DSTC9 Track 1 Train-
ing Set provides database labels for non-knowledge-seeking
turns, we generate pseudo-database-labels for the non-
knowledge-seeking turns using an NLI BART model fine-
tuned on MultiWoz 2.1. We fine-tune our ranker model on
the DSTC9 Track 1 Training Set using these pseudo-labels
and knowledge-seeking examples. We follow the same train-
ing example sampling, and inference processes as adopted
for the Domain Classifier, but without the hypothesis and
premise templates.

2.2 Task 2 – Knowledge Selection
Once a user turn is determined to be knowledge-seeking by
Task1, Task 2 selects the relevant knowledge snippets ki
from the external knowledge base K = {k1, . . . , kn} based
on a dialog history Ut. While one or more knowledge snip-
pet(s) may be fitting for an answer, only one is considered
most relevant and correct in the DSTC9 Track 1 challenge
(Kim et al. 2020).

A Factorized Approach We model Task 2 as a knowledge
retrieval (or more specifically, document retrieval) prob-
lem, i.e., given the query dialog history Ut, we retrieve
the most relevant knowledge snippet ki ∈ K from the
set of all knowledge snippets K ranked by a function f .
In this context, the function f is the probability of select-
ing a knowledge snippet ki ∈d di where di ∈ Dw, or
ki ∈e ei where ei ∈d di, di ∈ De (∈e and ∈d denote the
relations ‘belongs to the domain’ and ‘belongs to the en-
tity’ respectively). Therefore, the selected knowledge snip-
pet ki ∈d di is given by:

argmax
ki

f(ki | Ut) = argmax
ki∈ddi

P (di, ki | Ut) (2)

We propose that we first recognize the possible target do-
mains di ∈ Dw and entities ei ∈d di where di ∈ De and
estimate the relevance of the domains to the dialog history
before choosing the appropriate knowledge snippet, since it
can drastically narrow the search space for knowledge snip-
pets. In other words, factorization reduces the problem of
Task 2 into three sub-tasks, for each of which models can be
trained for target discrimination. Consequently, we have:

argmax
ki∈d{di:di∈D′}

P (di | Ut)P (ki | di, Ut) (3)

where D′ = {di : di ∈ Dw, di ∈ ODE} ∪ {di : ei ∈d
di, di ∈ De, ei ∈ ODE} (ODE refers to the output of Mod-
ule 1, which is the set of extracted domains and entity can-
didates). P (di | Ut) and P (ki | di, Ut) are estimated using
Modules 2 and 3 respectively. The three modules are de-
scribed in the following sections.



BERT Backbone The computation of the factored prob-
abilities P (ki | di, Ut) and P (di | Ut) naturally resorts
to natural language understanding (NLU) models. We em-
ploy BERT (Devlin et al. 2018) as the NLU backbone
and propose KnowleDgEFactor (A Factorized Approach
to Domain, Entity and Knowledge Selection). Three neu-
ral models are developed – the BERT for Domain & Entity
Model (BERT-DE) in Module 1, BERT for Domain Model
(BERT-D) in Module 2 and BERT for Knowledge Model
(BERT-K) in Module 3.

Module 1 - Domain and Entity Selection. We use
the heuristics-based surface matching algorithm SMA (de-
scribed in Section 2.1) to match the possible domains di ∈
Dw and entities ei ∈d di where di ∈ De.

In view of the high generalization power of neural models,
we propose a domain-entity classifier (BERT-DE) to refine
the results obtained by SMA.

A dialog history Ut is concatenated with a domain di (and
an entity ei ∈d di if di ∈ De) as the input to the BERT-DE.
For example, train (∈ Dw ) and hotel (∈ De ) concatenated
with Autumn House (∈e ‘hotel’) are the two kinds of input.
BERT-DE computes the probability that the dialog history
Ut is relevant to each domain (∈ Dw ) or entity (∈e di
where di ∈ De) and outputs the top-1 result with the highest
probability, which is then added to the candidates if it has a
different domain than that of the top-1 retrieved by SMA. In
the end, we keep at most one entity per domain and finally
output ODE for Module 3.

Module 2 - Domain Probability Estimation. BERT-D is
a multi-class domain classifier. Given the concatenation of
a dialog history Ut and a domain di (e.g., hotel, train, etc.)
as input, it estimates and outputs P (di | Ut), the probability
that Ut is relevant to di.

We combine the DSTC9 Track 1 Training Set with the
MultiWOZ2.2 Data Set (Zang et al. 2020) to fine-tune the
BERT-D on eight domains, i.e., hotel, restaurant, train, taxi,
attraction, hospital, police and bus, to make the model more
generalized and robust.

The BERT-D differs from the domain classifier in Task 1
since we only focus on knowledge-seeking turns whereas
Task 1’s model needs to be applied to both knowledge-
seeking and non-knowledge-seeking turns. Examples for the
two cases are as follow:

Case 1 - Non-knowledge-seeking Turn
User: I am looking for an expensive indian restaurant
in the area of centre.
Task 1 Domain Classifier: restaurant.
Task 2 Domain Classifier: N/A (ignore the turn).

Case 2 - Knowledge-seeking Turn
User: Does this hotel offer its guests wifi services?
Task 1 Domain Classifier: hotel.
Task 2 Domain Classifier: hotel.

Module 3 - Knowledge Probability Estimation. The
BERT-K is designed to estimate P (ki | di, Ut) for all knowl-
edge snippets ki of the domains and entities selected in Mod-
ule 1. As most of the users’ queries are embedded in the

current user turn, the input to the BERT-K is the concate-
nation of the current user utterance ut, a domain di and a
knowledge snippet ki (title & body). For both the current
user utterance and the knowledge snippet, any matched en-
tity name is replaced by its domain so that the model only
focuses on the semantics of the query but not any informa-
tion about the entity, which has already been processed by
previous modules.

2.3 Task 3 – Knowledge-grounded Response
Generation

Task 3 takes a knowledge-integrative approach to generate
a system response based on the dialog history Ut and the
top-k ranking knowledge snippets ki based on their con-
fidence values pi, which are provided by Task 2. We de-
velop an ensemble system Ens-GPT that incorporates two
different approaches to deal with the two scenarios (ID and
OOD). If the domain of the top knowledge snippet was seen
in training then response generation will be conducted as ID
and otherwise as OOD. For ID cases with available training
data, we adopt a Neural Response Generation approach. For
OOD cases, we adopt a retrieval-based approach referred to
as Neural-Enhanced Response Reconstruction.

Neural Response Generation. Our neural response gen-
eration approach GPT2-XL with multi-knowledge snippets
(GPT2-XL for short) follows the DSTC9 Track 1 baseline
neural generation model in (Kim et al. 2020) to leverage
the large pre-trained language model GPT2. The baseline
neural generation model uses the ground truth knowledge
snippet and dialog history Ut as input for fine-tuning GPT2
small, and the ground truth response rt+1 as target. During
testing, the baseline model uses knowledge from the top-
ranking snippet output by Task 2.

As GPT2 XL has a greater number of parameters to cap-
ture more information, we adopt the much larger pre-trained
model GPT2 XL other than the GPT2 small used in the base-
line model. We should note that the actual correct knowledge
snippet may not always rank top in the shortlisted snippets
from Task 2, but most of the time they lie within the top 5
retrieved snippets. Hence, we use multiple knowledge snip-
pets in the input, n in total. For model fine-tuning, besides
the ground truth snippet, we also randomly select n− 1 ad-
ditional snippets that have the same domain and entity with
the ground truth snippet and append them to the input. Cor-
respondingly, we use top-n snippets from the retrieved top-
ranking snippet list from Task 2 in the input for evaluation.

Neural-Enhanced Response Reconstruction. Typical
responses may consist of two parts – (i) an informative body
which answers to the user’s query; and (ii) a prompt to move
the dialog forward. For example:

User: “Does this hotel allow children to stay there?”
Ground Truth Response: “Kids of all ages are welcome
as guests of this establishment. Do you want to proceed
with the booking?”
Since the knowledge snippets made available are derived

from FAQs, the top snippet is used as the body in the re-
sponse. Therefore, the GPT2-XL Response Reconstruction



Model MRR@5 R@1 R@5
Reproduced Baseline 0.830 0.731 0.957
KnowleDgEFactor 0.973 0.964 0.984

Table 4: Evaluation results of knowledge selection task
on DSTC9 Track 1 Validation Set for all true knowledge-
seeking turns. Line-1 is the reproduced GPT2-Baseline and
line-2 is the performance of KnowleDgEFactor.

(GPT2-XL-RR) method forms an informative and accurate
response by replacing the body of the neural generated re-
sponse with the top-ranking snippet, while preserving the
prompt in the generated response. For example, given:

Top-ranking knowledge snippet: “Children of any age are
welcome at The Lensfield Hotel.”
GPT2-XL generated response: “Yes, The Lensfield Hotel
welcomes children to stay. Should I make the reservation
now?”

The GPT2-XL-RR constructs the response as “Children of
any age are welcome at The Lensfield Hotel. Should I make
the reservation now?”

Ensemble System. To utilize the two approaches above,
a decision tree is designed for the ensemble system Ens-
GPT. The system first checks if the user query is ID or OOD,
which is detected by Task 2 and indicated by the domain of
the top-ranking retrieved snippet. For ID cases with avail-
able training data, the neural model GPT2-XL is generally
well-trained, so it can generate relevant responses to the di-
alog even when the correct retrieved snippet is not retrieved.
Therefore, given ID user queries, GPT2-XL is used for re-
sponse generation.

On the other hand, if the current user query is OOD, the
ensemble’s heuristic will check if the top-ranking knowl-
edge snippet has a sufficiently high confidence value p
(which is empirically set as 5x of the confidence of the sec-
ond highest ranking knowledge snippet). If this condition
is met, implying that the top-ranking snippet is very likely
correct, then GPT2-XL-RR is used for response generation.
Otherwise, the ensemble method falls back to GPT2-XL,
which can extract information from all top-k snippets, rather
than only utilizing the single top snippet.

3 Experiments
3.1 Task 1 – Knowledge-seeking Turn Detection
Evaluation Metrics. We use precision, recall and F-
Measure as the metrics to evaluate the knowledge-seeking
turn detection task (Gunasekara et al. 2020).

Experimental Settings. We use HuggingFace’s imple-
mentation (Wolf et al. 2019) of BART (large) model for the
Domain and Knowledge Classifier. The models were trained
independently with a batch size of 120 and 3704 warmup
steps. The models were trained for 4 epochs and the epoch
with best performance on validation set was chosen. In our
submitted system, we use Ndialog = 2 with premise and hy-
pothesis templates, i.e., both the system and user response

for the Domain Classifier, and Ndialog = 1 without any tem-
plates, i.e., only user response for the Knowledge Classifier.
In a later improved knowledge classifier, we use Ndialog = 2
with premise template. To test the generalizability on OOD
user queries, we train and test the baseline and KDEAK on
4 versions of 2 disjoint sets of domains, with 2 domains in
each, respectively.

3.2 Task 2 – Knowledge Selection
Evaluation Metrics. The performance of KnowleDgE-
Factor is measured in terms of standard information re-
trieval evaluation metrics, including recall and mean recip-
rocal rank (Kim et al. 2020).

Experiment Settings. The PyTorch implementation of the
BERT base model (uncased) in HuggingFace Transform-
ers (Wolf et al. 2019) is utilized. All three models (BERT-
DE, BERT-D, BERT-K) are fine-tuned independently with
10 epochs. The number of negative candidates is set as 4, 3
and 8 for BERT-DE, BERT-D and BERT-K. The maximum
token lengths of dialogue and knowledge are 256 and 128
for BERT-DE and BERT-D; 128 and 128 for BERT-K.

3.3 Task 3 – Knowledge-grounded Response
Generation

Evaluation Metrics. Standard objective evaluation met-
rics are used for the system-generated response in compar-
ison with the ground truth – BLEU (Papineni et al. 2002),
METEOR (Lavie and Agarwal 2007) and ROUGE (Lin and
Och 2004) (Lin and Hovy 2003).

Experiment Settings. We fine-tuned the pre-trained
GPT2 XL on DSTC9 training set, and the loss function is
the standard language modeling objective: cross-entropy be-
tween the generated response and the ground truth response.
We set the input length limit as 128 tokens (i.e., words) for
the dialog history and 256 tokens for the knowledge snip-
pets. This means that we can typically fine-tune with 9 dia-
log turns and 4 snippets. The model is trained for 3 epochs
with a size of 4. The gradient accumulation and gradient
clipping with a max norm of 1.0 were performed at every
step. The optimizer was Adam and the learning rate was e−6.

To achieve better performance with the generation model,
we also compare different numbers of snippets to find the
best setting that can provide enough information without in-
troducing too much noise. Table 10 presents the result on
validation set with 1 to 5 snippets. GPT2-XL and GPT2-XL-
RR are evaluated on the Test Set in isolation and in combi-
nation in the ensemble system in Table 8.

4 Results and Analysis
4.1 Task 1 – Knowledge-seeking Turn Detection
Table 3 summarizes the results of Task 1. KDEAK outper-
forms the baseline on 3 out of 4 versions of the OOD F1-
Score evaluations. The Domain Classifier shows 98.7% ac-
curacy on the DSTC9 Track 1 Val Set. Exploiting the pre-
trained knowledge and rich hypothesis of the NLI model,
KDEAK is more robust against unseen domains compared
to non-NLI based GPT-2 baseline. It offers a transparent



Model Source of Task 1 Predictions MRR@5 R@1 R@5
Official GPT2-Baseline Official GPT2-Baseline 0.726 0.620 0.877
KnowleDgEFactor Task 1 Reproduced GPT2-Baseline 0.853 0.827 0.896
KnowleDgEFactor Ground Truth 0.903 0.867 0.960

Table 5: Evaluation results of knowledge selection task on the DSTC9 Track 1 Test Set. The 1st row is the released results on
official GPT2-Baseline and the 2nd row shows KnowleDgEFactor’s performance. The 3rd row shows the results operated on
the ground-truth Task 1 prediction to evaluate our system independently.

#Candidates Percentage
Validation Set Test Set

1 84.1 74.0
2 13.8 23.7
3 1.5 2.2
4 0 0.1
5 - 0

Table 6: Percentage of the true knowledge-seeking turns
with different number of domain and entity candidates re-
trieved by Module 1.

True Domain #Correct (%Correct)
Domain Entity Knowledge

Hotel 567 (98.8) 545 (96.1) 513 (94.1)
Restaurant 599 (98.0) 577 (96.3) 554 (96.0)
Taxi 183 (98.9) - 138 (75.4)
Train 346 (99.7) - 283 (81.8)
Attraction 256 (97.0) 243 (94.9) 230 (94.7)

Table 7: Performance of domain, entity and knowledge se-
lection for top-1 knowledge snippet by KnowleDgEFactor
on true knowledge-seeking turns of DSTC9 Track 1 Test Set.
A turn is considered for entity accuracy calculation only if
the predicted domain is correct and for knowledge accuracy
calculation only if both domain and entity are correct.

decision-making process at the domain, entity and informa-
tion levels through its modular design. After the challenge,
we improved the Knowledge Classifier which outperforms
the baseline on DSTC9 Track 1 test set, by using both user
and system response (Ndialog = 2) as the premise.

4.2 Task 2 – Knowledge Selection
Strength of a Factorized Approach. The performance
improvements on both DSTC9 Track 1 Validation (Table 4)
and Test (Table 5) Sets over the baseline model demonstrate
the advantage of a factorized approach to knowledge selec-
tion. One possible advantage of dividing the computation
could be that the domain, entity and knowledge information
from the dialogs is disentangled, and consequently the mod-
els of the three modules can respectively capture the traits
about the three sub-tasks more easily. 84% and 74% of the
true knowledge-seeking turns have only one entity or one
domain di ∈ Dw retrieved by Module 1 from each dialog of
the Validation and Test Sets respectively (Table 6), and over

Figure 2: Case study for error analysis

93% of the top-1 retrieved entity is correct on both data sets,
demonstrating the robustness and precision brought by the
SMA and the BERT-DE.

Error Analysis. Despite the improved performance over
the baseline, there is a noticeable decline of accuracy on the
DSTC9 Track 1 Test Set as compared to that on the Val-
idation Set. The drop can be attributed to the inability of
Module 3 to recover the correspondence between the cur-
rent user utterance and the knowledge snippets that are un-
seen during training. Table 7 records the domain-, entity-
and knowledge-level accuracies of the top-1 selected knowl-
edge snippet for all true knowledge-seeking turns. Although
most of the selections are over 94% accurate, it is shown that
the errors mainly originate from the incorrect knowledge se-
lection on the train and taxi domains, where we find that
KnowleDgEFactor sometimes fails to distinguish between
similar knowledge snippets. For example, 19 similar errors
are found when the user asks about payment under the do-
main taxi. Figure 2 shows an example of such erroneous in-
stances where the correct knowledge snippet is ranked third.
In this example, KnowleDgEFactor associates ‘pay’ in the
user query and ‘payments’ in the title of the selected knowl-
edge snippet without attending to the signaling word ‘tip’.

4.3 Task 3 – Knowledge-grounded Response
Generation

Empirical results in Table 10 indicate that the use of an
appropriate number of additional knowledge snippets (i.e.,
n = 4 in total) tends to result in improved performance com-
pared to exclusive use of the top-ranking snippet. However,
when n 6= 4 performance degrades.

Table 8 shows that all the methods, namely GPT2-XL
and GPT2-XL-RR, as well as their ensemble, outperform
the baseline (GPT2-small with a single knowledge snippet).



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L
Baseline 0.3031 0.1732 0.1005 0.0655 0.2983 0.3386 0.1364 0.3039
GPT2-XL 0.3550 0.2297 0.1536 0.1048 0.3593 0.3972 0.1904 0.3571
GPT2-XL-RR 0.3521 0.2336 0.1542 0.1042 0.3780 0.3957 0.1943 0.3507
Ens-GPT 0.3550 0.2300 0.1532 0.1040 0.3594 0.3976 0.1907 0.3570

Table 8: Evaluation results of the ensemble system and its components on the DSTC9 Track 1 Test Set.

BLEU-1 BLEU-4 METEOR ROUGE-L
T 0.3550 0.1040 0.3594 0.3570
1 0.3909 0.1192 0.3974 0.3922
2 0.3066 0.0664 0.2911 0.3157
3 0.2526 0.0257 0.2527 0.2586

Table 9: Error analysis of the Ens-GPT’s performance with
rows T = Test set, 1 = Case 1, 2 = Case 2 and 3 = Case 3.

N BLEU-1 BLEU-4 METEOR ROUGE-L
1 0.4184 0.1341 0.4220 0.4126
2 0.4111 0.1194 0.4148 0.4034
3 0.4133 0.1240 0.4173 0.4065
4 0.4212 0.1292 0.4270 0.4134
5 0.4156 0.1266 0.4200 0.4075

Table 10: Evaluation results with varying number of knowl-
edge snippets n ∈ {1..5} on the DSTC9 Track 1 Val Set.

Also, the ensemble system outperforms GPT2-XL in 5/8
metrics. However, comparison also shows that the ensemble
method only outperforms GPT2-XL-RR in 3/8 evaluation
metrics. This is the reverse of what was observed in the Val-
idation Set and invites further investigation in future work.

4.4 Integrated System Analysis.
Misprediction in Task 1 directly affects Task 2’s scores.
Among the 1,981 true knowledge-seeking turns on the
DSTC9 Track 1 Test data, 1,767 are correctly predicted by
Task 1 and then processed by Task 2. There are 129 turns
where Task 2 selects the wrong knowledge snippet, which
together with the 214 errors in Task 1, account for recall@1
loss.

We also analyzed how the output of Task 2 output may
influence performance in Task 3. We categorize the output
into 3 cases: Case 1: ground truth knowledge snippet re-
trieved as the top snippet; Case 2: ground truth knowledge
snippet appearing in the top-4 snippet list but not as the top-
ranking snippet; Case 3: ground truth knowledge snippet not
retrieved. Table 9 presents the performance of Ens-GPT on
the Test Set under these three cases, which indicates that the
quality of output from Task 2 greatly influences performance
in Task 3. Also, adopting multi-knowledge snippets as input
shows great importance as the model performs much bet-
ter under Case 2 than Case 3. As the example in Figure 2
shows, if the ground truth is retrieved as the third snippet,
then the system Ens-GPT can still prevent the error propa-
gation from Task 2 to 3 and answered the question correctly.

We note that the approaches to Tasks 1 and 2 evolved to
become convergent with some overlapping goals, but they
are still different in certain fundamental aspects. In the fu-
ture, we would like to develop a more streamlined approach,
possibly combining Tasks 1 and 2 into a single sub-system.

5 Conclusion
We presented a pipeline of KDEAK, KnowleDgEFactor,
and Ens-GPT, which achieves task-oriented dialog model-
ing with unstructured knowledge access, that can respond to
users’ request for information lying outside the database but
in an external knowledge repository of FAQ-like snippets.

Task 1 (knowledge-seeking turn detection) is accom-
plished by a subsystem named KDEAK. It formulates the
problem as natural language inference and fully utilizes
three information sources – dialog history, database, and ex-
ternal knowledge. Domain and entity information determine
the candidate pool of information snippets which are ranked
based upon relevance to the user’s query. Final classification
is based on the source of most relevant information snippet.

Task 2 (knowledge selection) resorts to a 3-module
KnowleDgEFactor subsystem formulated as a knowl-
edge/document retrieval problem. It is factorized into the
sub-problems of domain and entity selection, domain prob-
ability estimation and knowledge probability estimation,
which are handled by three modules. Knowledge snippets
are ranked using the probabilities computed by the estimates
of the modules.

Finally, Task 3 (knowledge-grounded response genera-
tion) is performed by Ens-GPT, in which multiple retrieved
knowledge snippets are integrated to enrich knowledge and
improve robustness of the generated response. The domain
of the user query and the confidence of the retrieved snippets
are used to determine which way to generate the response.

Automatic evaluation metrics show that the final re-
sponses generated from integration of the three subsystems
outperform the baseline significantly.

Possible future directions may include extension to-
wards open-domain knowledge-grounded conversations
(Gopalakrishnan et al. 2019), enhancing robustness towards
recognition errors for speech inputs (Gopalakrishnan et al.
2020) and creating an engaging user experience.
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