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Abstract
Natural Language Understanding (NLU) in task-oriented dialog
systems usually requires annotated data for training the under-
standing module. Annotation of large data sets is a costly pro-
cess. This paper proposes an unsupervised framework based on
Convex Polytopic Model (CPM), which automatically extracts
semantic patterns from a raw dialog corpus using a geomet-
ric approach to assist in generating the semantic frames. We
discover that the semantic patterns extracted are easily inter-
pretable and have a strong correlation with the intent and slots
of the semantic frames and may potentially serve as the basic
units for NLU. This is an initial investigation of the properties
of CPM to explore its semantic interpretability. Experiments
are based on the ATIS (Air Travel Information System) corpora
and show that CPM can generate semantic frames with minimal
supervision.
Index Terms: Semantic Pattern, Convex Polytopic Model, Nat-
ural Language Understanding, Task-oriented Dialog System

1. Introduction
Task-oriented dialog systems aim to assist users in accomplish-
ing a specific task, e.g. restaurant reservations, weather query-
ing, flight reservations, etc.. For a dialog system serving a spe-
cific application domain, there is an underlying knowledge rep-
resentation of the domain. This representation often consists
of the user’s possible intents and related attributes (often re-
ferred as slots with values) [1]. For example, Figure 1 shows
a semantic frame of a given utterance in the ATIS (Air Travel
Information Systems) domain.

The problem of Natural Language Understanding involves
transforming the user’s natural language input (e.g. spoken ut-
terance or typed sentence) into the semantic frame. Conven-
tional approaches include grammar-based parsing [2, 3], ma-
chine learning techniques such as Conditional Random Fields
[4] and neural approaches [5, 6, 7], which consider intent iden-
tification as a multi-class classification problem, and slot-filling
as a sequence classification problem. Grammar-based parsing
calls for the design of grammar rules, and machine learning
techniques call for sizeable annotated data. Both grammar de-
sign and data annotation are laborious processes that are based
upon an underlying knowledge representation. Therefore, it
will be desirable if the knowledge representation can be ob-
tained somewhat automatically and efficiently.

This paper presents a novel, data-driven framework based
on the Convex Polytopic Model (CPM) [8] to extract the key
semantic patterns from the raw conversational data. CPM is
an unsupervised geometric algorithm for automatically extract-
ing the key concepts from texts, e.g. discovering topics from a
document corpus where the documents are assumed to consist

Figure 1: An utterance from ATIS dataset querying flight infor-
mation and its corresponding semantic frame.

of mixtures of topics [8]. Therefore, after projecting all utter-
ances as points onto an affine subspace via Principal Compo-
nent Analysis (PCA) and enclosing all the points by a compact
convex polytope, we can then interpret the vertices (i.e. extreme
points) of the polytope as the representation of key semantic
patterns.

We show that such a geometric representation is inter-
pretable and indicates intent and slot information, and hence
can potentially derive the basic units to support NLU. The basic
units can guide the human to identify key semantic features in
the corpus that relate to the knowledge representation (or on-
tology) of the application domain. The units can also from the
basis for deriving more sophisticated semantic structures, such
as defining grammar rules for parsing.

The contribution of our work is three-fold: 1) we propose an
unsupervised method via CPM to automatically extract key se-
mantic features with high interpretability from raw conversation
data; 2) we investigate the two geometric properties of the out-
put of CPM and extract semantic patterns which indicate intent
and slot information; 3) we demonstrate the possibility of taking
the extracted patterns as basic units for building a higher-level
semantic structure for NLU in task-oriented dialog systems.

This paper is organized as follows: Section 2 introduces
the detailed formulation of CPM. Section 3 presents the exper-
iments on the ATIS corpus and verifies the properties of CPM.
Section 4 concludes the paper and discusses potential future
work.

2. Convex Polytopic Model

This section describes the formulation of the CPM and dis-
cusses the semantic properties of its geometric characteristics
on raw dialog data.
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2.1. Model Description

The CPM consists of two steps. First, all utterances in the cor-
pus are embedded in a low-dimensional affine subspace using
PCA. Second, a compact convex polytope is generated to en-
close all the embedded utterances points. We follow the steps
of implementing CPM in [8].

Step 1: Embed utterances into a low-dimensional affine
subspace using PCA

Define M as the vocabulary size of the corpus, and N as
the number of utterances. The corpus is first transformed into
a sum-normalized term-document matrix X ∈ RM×N , where
the utterance is encoded as a sum-normalized word count vector
of dimension M .

After applying PCA to X, we obtain the basis U ∈ RM×R.
The utterances are projected onto the R-D affine subspace
spanned by the basis U. As the principal components repre-
sent the direction along which the data points have the largest
variance, they can capture the semantic features which can op-
timally distinguish among the points.

Step 2: Generate a compact convex polytope to enclose
the embedded utterances

Note that we sum-normalize the utterance representation in
X. Hence the shorter utterance has fewer non-zero values, and
thus the non-zero values tend to be larger due to the sum-to-one
property and sparsity. Geometrically, the utterance points lie on
a sum-to-one hyperplane, and those with sparser representation
tend to be the extreme points (i.e. lie further away from the
centre of the non-negative region of the hyperplane).

As PCA preserves the distinctive features of the utterance
points, the extreme points remain extreme after PCA projection.
We observe that utterances consist of combinations of seman-
tic patterns, and those with fewer semantic patterns tend to be
shorter. Hence, the utterances with a single semantic pattern
generally form the extreme points (i.e. vertices), though the
converse may not be true. Therefore, we use the vertices of the
convex polytope with minimum volume to enclose all the utter-
ance points and obtain the short utterances with key semantic
patterns.

Note that the minimum volume convex polytope always ex-
ists for a finite point set and is unique, where the vertices are
supported by some of the utterance points. This kind of poly-
tope is referred as the normal (NO)-type polytope [8] and can
be computed by the Quickhull algorithm [9]. The points that
coincide with the vertices correspond to the shorter utterances
that contain fewer semantic patterns than other utterances in the
corpus.

However, our goal is to discover the semantic patterns ex-
hibited by the utterances instead of finding the instances of the
semantic patterns. Moreover, not all semantic patterns appear
individually in the corpus, and hence we seek to find a better
compact polytope that can disentangle and identify the distinc-
tive, key semantic patterns. Furthermore, note that finding the
NO-type convex polytope does not offer control in the num-
ber of semantic patterns. In order to allow pre-specification of
the number of semantic patterns, we adopt the simplex method
and specify the number of patterns to derive a convex polytope
whose vertices can be regarded as the semantic patterns ab-
stracted from the utterances that contain them. To make the sim-
plex compact, we impose the constraint of minimizing the vol-
ume when generating the simplex that encloses all the points us-
ing Minimum Volume Simplex Analysis [10, 11]. Such gener-
ated simplex is referred as Minimum Volume Simplex (MVS)
[8]. Note that vertices of the MVS-type polytope are no longer

Figure 2: NO-type polytope and related utterances. Vertices
are labelled as N1-N12. The scattered dots denote projected
utterance points and the circled points are the vertices of the
polytope.

in the point set (i.e. the set of points representing the utter-
ances). Instead, each utterance point can be uniquely repre-
sented by a convex combination of the vertices which allows
better disentangling capability.

2.2. Model Properties

Based on the model description above, the CPM is expected to
carry the following properties relating to the dialog corpus:

First, the utterances in the dataset are projected to an affine
space and enclosed by a polytope. The utterances with a mix-
ture of multiple semantic patterns tend to be in the interior of
the polytope.

Second, the vertices (extreme points) of the polytope can
capture distinct semantic patterns. Two geometric properties
relate to interpretation of these patterns:

1. The coordinates of the vertices in the original term-
document coordinate system where each dimension cor-
responds to a term. Hence, for each vertex, the top-k
terms with k highest weights (i.e. coordinate values) are
the most frequently observed terms in the corresponding
pattern and hence can be used to interpret that pattern.

2. The Euclidean distances between the vertices and other
data points. The k-nearest neighbouring data points of
each vertex are the utterances that exhibit the corre-
sponding pattern. Therefore, the semantic pattern of the
vertex can be interpreted by observing the common pat-
terns among these k-nearest utterances.

Third, polytopes with a higher dimensionality can preserve
more diversified distinct semantic patterns. The vertices con-
taining mixed patterns in a lower dimensional space may be dis-
entangled into different vertices in a higher dimensional space.

3. Experiments
In this section, we verify the properties of the CPM for auto-
matically extracting semantic patterns from a raw dialog cor-
pus. We implemented the CPM on the same dataset as [12]:
4,978 utterances from the training sets of the ATIS-2 and ATIS-
3 corpora of the air travel domain [13]. After embedding the
utterances of the corpus into the low-dimensional affine sub-
space via PCA, we applied the Quickhull algorithm [9] to gen-
erate the NO-type convex polytope and the algorithm proposed
in [10, 11] for generating the MVS-type convex polytope. The
CPM experiments were implemented in Matlab.
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Figure 3: MVS-type polytope, related nearest 3 utterances and
top 5 words (marked in italics). The region of the NO-type poly-
tope is filled with light grey. MVS-type vertices are labelled
as V1-V3. The scattered dots denote projected utterance points
and the circled points are the vertices of the polytope.

3.1. Experiment 1: Two-dimensional Analyses

3.1.1. NO-type Convex Polytope

The corpus is first transformed into a sum-normalized term-
utterance matrix. Then, we projected all the utterances onto a
Two-dimensional(2-D) affine subspace via PCA, and generated
the NO-type polytope as shown in Figure 2, where 12 vertices
are generated and all of them are within the utterance point set.
The corresponding utterances of the vertices N1-N12 are shown
alongside the plot.

The utterances at the vertices of the polytope are all short
and contain fewer semantic patterns. The complex utterances
that are combinations of multiple patterns are mapped to the in-
terior of the polytope. For example, the utterance: “Show me
the earliest flight on August second from Boston to Denver that
serves a meal.”, which contains multiple patterns and the pat-
terns in italics can be traced to Vertex N11 and N1/N2 respec-
tively, is near the centre of mass of the projected data.

We also note that there is a cluster of vertices: N1-N9 in
Figure 2 as the points are close to each other (considering their
Euclidean distance) and the corresponding utterances of N1-
N9 also show a clear pattern: “from CITY to CITY”. We use
placeholders in the semantic patterns to represent the tokens of
the same semantic type. Here we use “CITY” for city names,
“AIRLINE” for airline names and “CODE” for abbreviations
of airports and airlines in the dataset. Besides, N10, N11 and
N12 show distinct semantic patterns. We expect the vertices to
abstract diversified patterns from the corpus, which should be
distinct from each other. Hence, MVS-type polytope is investi-
gated in the next section for this purpose.

3.1.2. MVS-type Convex Polytope

To extract distinct semantic patterns, we generated the MVS-
type polytope in 2-D subspace, and the result is shown in Figure
3, with three vertices denoted as V1, V2 and V3 respectively.
As V2 and V3 are not in the utterance set, we infer the semantic
pattern of each vertex by its top-k words and k-nearest utter-
ances, which was discussed earlier in Section 2.2. Therefore,
we also list the 3 nearest utterances along with the top-5 words
of each vertex in Figure 3. The nearest utterances of each vertex
are all short texts that have relatively simple semantic structure,
and the top words are words that frequently observed in the re-
lated semantic pattern. The three vertices can be related to clear
semantic patterns (marked as bold in the table shown in Figure

3). The pattern of V1 is the same as N11: “show me the/all
flights” as they are located at the same position. V3 also rep-
resents “what is CODE” as it is closed to N10. If we extend
the line that connects the vertices N8 and N9, as well as the
line that connects N11 and N12, and then examine the intersec-
tion of the two extended lines, we observe V2, which abstracts
“from CITY to CITY” from the repeating patterns N1-N9 and
N12.

To study the properties of CPM further, we also have the
following observations regarding the relationships among the
top words of each vertex. As the PCA embedding preserves the
essential features in the corpus, the corresponding top words
of the three vertices frequently appear in the dataset. Besides,
some of the top words in the corresponding vertex usually co-
exist in the pattern (e.g. show, me, and flights, usually ap-
pear together and form the pattern show me the/all flights).
Also, some of them have similar contexts (i.e. the neighbour-
ing words), which indicates that they have similar meanings and
can be categorized to the same semantic type (e.g. all and the
in V1; Philadelphia and Denver in V2). These observations
are consistent with our discussion about top words in Section
2.2.

The result above shows that the vertices of MVS-type poly-
tope can capture distinctive semantic patterns, the process of
which are interpretable through analyzing the nearest utterances
and top words. However, the actual possible patterns in the cor-
pus should be far more than three. Hence, we continue our work
with MVS-type CPM on higher dimensions.

3.2. Experiment 2: Higher-Dimensional Analyses

To track the change of the patterns captured by the MVS-type
CPM with the increasing number of vertices, we conduct the
experiments from 2-D to 50-D (i.e. MVS-type polytope with 3
to 51 vertices). We observe that the vertices with mixed patterns
in the lower-dimension polytope are split into different vertices
with the dimension increased, and the polytopes with a higher
dimension preserve more distinct semantic patterns. Some of
them can be derived from splitting vertices in lower dimensions,
while the others are newly extracted. Here, we take the 9-D (10-
vertex) MVS-type convex polytope as an illustrative example.
The vertices, their corresponding top-5 words and the inferred
patterns are shown in Table 1.

Table 1: Top-5 words and extracted semantic patterns of the 10
vertices generated by 9-D MVS-type convex polytope

V Top-5 words Semantic patterns
V1 me,show,all,Baltimore,does show me
V2 to,from,Boston,i,Baltimore from CITY to CITY
V3 what,is,does,fare,mean what is, CODE, fare

code, restriction code
V4 the,flight,Boston,in,Atlanta the flight
V5 San,Francisco,from,to,on San Francisco
V6 Boston,and,between,

flights, fly
between CITY and CITY

V7 ground,transportation,in,
Dallas,Baltimore

ground transportation in
CITY

V8 Denver,Pittsburgh,flight,to,
ground

Denver,
Pittsburgh

V9 flights,on,from,are,list flights from CITY,
list all

V10 on, a,flight,i,like a flight,
i would like/need
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Comparing these results with the 2-D (3-vertex) MVS-
type results, the polytope with higher dimensions preserves
the same semantic patterns of V1-V3. Also, it captures
new patterns, e.g. V7: “ground transportation in CITY”
and V4: “the flight”. Some words in the same semantic
category are extracted as a distinct pattern. For example,
San Francisco at V5, and Denver, Pittsburgh at V8 are
all city names. These patterns are extracted due to many ut-
terances containing phrases such as CITY to, from CITY ,
at CITY , etc. in the dataset. There are also vertices con-
sisting of more than one patterns. For example, V9 extracts
flights from CITY and list all; V3 captures not only
what is CODE as in 2-D MVS-type convex polytope, but
also what is fare code and what is restriction; and V10
contains a flight on AIRLINE and I would like/need. To
better illustrate vertices with mixed patterns, we present the dif-
ferent patterns captured by V3 in Table 2 . The utterances con-
taining these patterns and their distances from V3 are also listed
(note that there are repeating utterances in the corpus).

Table 2: Three patterns captured by V3 of 9-D MVS-type poly-
tope. The pattern “what is” is not listed here as all of the utter-
ances contain this pattern.

Patterns in V3 Utterances near V3 Distance

CODE what is ewr 0.2329
what is mco 0.2358

restriction what is restriction ap 57 0.3077
what is restriction ap 80 0.3077

fare code what is fare code h 0.3475
what is fare code h 0.3475

As Table 2 shows, the utterances containing these three
patterns are all close to V3 as they all consist of “what is ...”
and one other pattern. However, with the dimension of the
polytope increased to 33-D (34 vertices), all these mixed pat-
terns are split into different vertices. As shown in Table 3, the
mixed patterns in V3 of the 9-D polytope are split into V3,
V27, and V30 in the new polytope separately. Also, patterns
in V9 of 9-D are split to V9 and V19, while V10 is split into
V10 and V29. We also listed some newly extracted patterns
in Table 3, e.g. patterns indicating T ime information at V26:
“on Wednesday/Sunday/Thursday/...” and V22: “in the morn-
ing/afternoon/evening/...”.

The patterns in Table 3 contain adequate intent and slot in-
formation. Based on these patterns, we can start drafting the
frames, e.g. for frame with intent Flight (V25), the associate
slot set contains Origin and Destination (V2, V9), Time (V22),
Date (V26), etc.. After labelling, these patterns can also be
used for semantic frame parsing. For example, the Intent, Ori-
gin, Destination, and Time information can be extracted from
the utterance in Figure 1 as it contains three patterns in Table
3: V25 “what flights”, V2 “from CITY to CITY”, and V26 “on
Tuesday”.

4. Conclusions
In this paper, we present an unsupervised data-driven frame-
work based on CPM to facilitate the process of generating se-
mantic frames by extracting key semantic features that contain
intent and slot information in the conversational system. Our
experiments also reveal that the geometric properties, including
coordinates, distances and dimensions of the framework, pro-
vide high interpretability to the extracted semantic patterns.

Table 3: Examples of extracted semantic patterns in 33-D (34
vertices) MVS-type convex polytope

Vertex extracted semantic patterns
V1 show me
V2 from CITY to CITY
V3 what is, CODE
V9 flights from CITY
V10 i would like/need
V19 list all
V22 in the morning/afternoon/evening/...
V25 what flights
V26 on Wednesday/Sunday/Thursday/...
V27 what is, restriction code
V29 a flight
V30 what is, fare code
... ...

This work is an initial step in investigating the Convex Poly-
topic Model for unsupervised semantic frame generation in con-
versational systems. As we have identified these patterns in the
utterances, semantic frames and domain ontology can be con-
structed. This can contribute towards the language understand-
ing tasks in the dialog system. We also demonstrate possible
usage of applying extracted patterns to design and fill the se-
mantic frame for NLU in dialog system. Future work will focus
on automating the derivation of semantic patterns based on the
geometric properties, evaluating and refining the extracted pat-
terns, and their extension in semantic parsing to support NLU.
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