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ABSTRACT

Early diagnosis of Neurocognitive Disorder (NCD) is crucial in
facilitating preventive care and timely treatment to delay further pro-
gression. This paper presents the development of a state-of-the-art
automatic speech recognition (ASR) system built on the Dementia-
Bank Pitt corpus for automatic NCD detection. Speed perturbation
based audio data augmentation expanded the limited elderly speech
data by four times. Large quantities of out-of-domain, non-aged
adult speech were exploited by cross-domain adapting a 1000-hour
LibriSpeech corpus trained LF-MMI factored TDNN system to De-
mentiaBank. The variability among elderly speakers was modeled
using i-Vector and learning hidden unit contributions (LHUC) based
speaker adaptive training. Robust Bayesian estimation of TDNN
systems and LHUC transforms were used in both cross-domain and
speaker adaptation. A Transformer language model was also built to
improve the final system performance. A word error rate (WER) re-
duction of 11.72% absolute (26.11% relative) was obtained over the
baseline i-Vector adapted LF-MMI TDNN system on the evaluation
data of 48 elderly speakers. The best NCD detection accuracy of
88%, comparable to that using the ground truth speech transcripts,
was obtained using the textual features extracted from the final ASR
system outputs.

Index Terms— Automatic Speech Recognition, Elderly Speech,
Neurocognitive Disorder Detection, Dementia

1. INTRODUCTION
Ageing presents enormous challenges to health care worldwide.
Neurocognitive disorders (NCDs), such as Alzheimer’s disease
(AD), are often found among older adults [1]. Mild Cognitive Im-
pairment (MCI) is an insidious and preclinical phase of AD and
other forms of NCD. It is followed by a gradual progression of
neurocognitive decline leading to an irreversible deterioration in
memory, communication, orientation, and learning. Early diag-
nosis of NCD is crucial in facilitating preventive care and timely
treatment to delay further progression and the occurrence of new
symptoms [2]. NCDs like MCI often manifest themselves in speech
and language impairments including weakened neuro-motor control
in speech production and imprecise articulation, diminishing abil-
ity in using and comprehension of language, reduced vocabulary
coverage, grammatical structure, as well as increasing difficulty
in listening, reading and writing. Compared with other screening
techniques based on brain scans or blood tests, speech and language
based NCD diagnosis provides a non-intrusive alternative.

Traditionally such early screening tests are conducted manually
by clinical professionals via neuropsychological tests. Large scale

manual NCD screening among the elderly is difficult due to the rela-
tive shortage of clinical professionals and inter-rater variability in the
assessment. One solution to this problem is to use fully automated
machine learning based spoken language analytic approaches to im-
prove the scalability of NCD screening for large population groups
[3, 4]. In this process, a rich set of acoustic, articulatory, phonetic,
prosodic, lexical, syntactic, and semantic level features encoding vi-
tal cues on speech and language deficiencies need to be extracted for
NCD diagnosis [5, 6, 7, 8, 9, 10, 11]. As manually transcribing the
conversation with the elderly subject and extracting these features
is impractical on a large scale, automatic speech recognition (ASR)
technologies tailed designed for elderly speech can be used.

Older adult speech exhibits a wide spectrum of new challenges
for ASR system development. First, increased voice perturbations,
articulatory imprecision, reduced speaking rates, increasing dysflu-
encies and decreasing intensities create a large mismatch between
non-aged adult and elderly speech. The progression of NCDs such
as Alzheimer’s disease and other forms of dementia further aggre-
gate speech and language deficiencies and diversities among the el-
derly people. State-of-the-art off-shelf commercial speech recog-
nition systems designed for non-aged adult speech often produce
high recognition error rates when directly used on elderly speech
[9, 10, 12, 13, 14]. Second, it is also difficult to collect large amounts
of speech recordings from face-to-face neuropsychological tests. For
data-intensive deep learning technologies that are the staple model-
ing choice in current ASR systems [15, 16], large quantities of such
well-matched, in-domain speech data are essential for system de-
velopment. For these reasons, there has been limited research con-
ducted on speech recognition system development for NCD screen-
ing. In order to address the data scarcity issue, in-house collected
data was previously exploited in system development [4, 17]. How-
ever, compared with the rapid progress of speech recognition perfor-
mance on non-aged adult speech, there is a notable lack of systems
purposefully developed for elderly speech data targeting NCD diag-
nosis [4, 17, 18, 19, 20]. In particular, very limited speech recogni-
tion research [4, 19] has been conducted on the DementiaBank data
[21], the largest publicly available speech corpus for NCD research.

In order to address these issues, this paper presents an initial
attempt at the Chinese University of Hong Kong to design ASR
system using a 33-hour DementiaBank Pitt corpus. Speech seg-
mentation extracted from the original transcripts was first refined
by removing excessive silence from each utterance. Speed pertur-
bation based data augmentation methods [22] were used to expand
the limited elderly training data by a factor of 4 times. State-of-the-
art hybrid DNN-HMM systems featuring lattice-free maximum mu-
tual information (LF-MMI) criterion [23] based sequence discrim-



Table 1: Statistics of the training, development, evaluation sets of the Pitt corpus used in this paper for ASR system development in
terms of the number of elderly participants (PAR) and the number of hours of the speech recorded for both the participant and the
investigator (INV), before (Column 3-5) and after (Column 6-8) audio re-segmentation was performed

#PAR Before Audio Re-segmentation After Audio Re-segmentation
PAR INV Total PAR INV Total

Train 244 17.65h 9.51h 27.16h 9.71h 6.03h 15.74h
Dev. 43 2.96h 1.79h 4.75h 1.40h 1.12h 2.52h
Eval. 48 0.88h 0.19h 1.07h 0.53h 0.09h 0.62h

inatively trained time delay neural network (TDNN) [15] acoustic
models were developed. In order to further exploit out-of-domain,
non-aged adult speech available in large quantities, a 1000-hour Lib-
riSpeech corpus trained LF-MMI TDNN system is rapidly cross-
domain adapted to the in-domain DementiaBank data. The vari-
ability among elderly speakers in both the original and augmented
data was modeled using learning hidden unit contributions (LHUC)
[24, 25] based speaker adaptive training. In order to account for the
model uncertainty resulting from insufficient elderly speech data in
the cross-domain and speaker adaptation stages, Bayesian estimation
of the LF-MMI TDNN system parameters [16] and the speaker de-
pendent LHUC transforms [26] were further exploited. Transformer
language model [27, 28] was also used to improve the final system
performance. An word error rate (WER) reduction of 11.72% abso-
lute (26.11% relative) was obtained on the evaluation data consist-
ing of 48 elderly speakers. The resulting systems’ recognition out-
puts were then used to extract textual features for downstream NCD
detection task [29]. An analysis of the correlation between speech
recognition accuracy and NCD detection performance is presented.

The main contributions of this paper are summarized here. To
the best of our knowledge, this is the first work to design state-of-the-
art deep learning based ASR systems on the DementiaBank corpus
for automatic NCD screening. In contrast, the previous research used
either off-shelf commercial speech recognition systems [9, 10, 14],
or more traditional GMM-HMM models in system development [4,
17, 18, 19] using a mix of publicly available and in-house datasets.

The rest of this paper is organized as follows. Section 2 intro-
duces the data and the baseline system used. Section 3 describes the
detailed development of the recognition system. Section 4 shows the
NCD detection system performance using ASR outputs. Finally, the
conclusions are drawn and future works are discussed in Section 5.

2. TASK DESCRIPTION
This section describes the audio and text data used in this paper and
the baseline system structure.
Audio Data: In this paper, the Pitt corpus1 [21] from Dementia-
Bank was used in ASR system training. The Pitt corpus contains
about 33-hour audios recorded over interviews between the 292 el-
derly participants and the clinical investigators. The word-level tran-
scripts with approximate utterance-level segmentation are provided
and all the elderly participants are labeled as either control, AD, or
MCI, etc. The Pitt corpus was further split into the training, de-
velopment and evaluation sets for building the ASR systems. The
details regarding each of the three sets, in terms of the number of
the participants and the total number of hours recorded for the par-
ticipants and the investigators, are shown from Column 2-5 in Table
1. It should be noted that the evaluation set is exactly based on the
same 48 speakers’ Cookie section recordings as the ADReSS2 [30]
test set, while the development set contains the remaining recordings
of the same speakers in other task sections if available.

1https://dementia.talkbank.org/access/English/Pitt.html
2http://www.homepages.ed.ac.uk/sluzfil/ADReSS/

Text Data: For language model, a mixture of text corpora was
used, including the English transcripts (167k words) of Dementia-
Bank (Pitt [21], Holland [31], Kempler [32], Lanzi [33]), the LDC
Switchboard3 and Fisher (LDC2004T19,LDC2005T19) telephone
conversation transcripts (23.7m words) [34, 35], the New York
Times Newswire Service (137.8m words) and Los Angeles Times/
Washington Post Newswire Service (254.6m words) portions from
the LDC 5th edition Gigaword corpus (LDC2011T07) [36]. Two
4-gram language models with modified Kneser-Ney smoothing were
constructed using the SRILM toolkit [37]. The first ”small” 4-gram
LM was built using the Pitt data only, while the other ”large” 4-gram
LM was constructed using the probability level linear interpola-
tion over component models trained on each of the text sources
mentioned above separately before being combined. These two
language models were used in most of the experiments in Table 2. A
3.6k word recognition vocabulary covering all the words in the Pitt
corpus with standard American phonetic pronunciation was used.
Baseline System: LF-MMI sequence trained hybrid TDNN mod-
els were built [15, 23]. Following the Kaldi recipe4, a GMM-HMM
system was first built with 1800 tied tri-phone states with 32 Gaus-
sians each, using Maximum Likelihood Linear Transform (MLLT)
[38, 39] on the Linear Discriminant Analysis (LDA) transformed
39-dim Perceptual Linear Prediction (PLP) coefficients, including
differential parameters up to the second order. Speaker adaptive
training (SAT) [40] system was used to generate the alignments and
the finite-state transducer (FST) lattices for LF-MMI training. A
14-layer TDNN was then trained using one thread only on a sin-
gle NVIDIA V100 GPU with 40-dim filterbank input features. Sta-
tistical significance test was conducted at level α = 0.5 based on
matched pairs sentence-segment word error (MAPSSWE) for recog-
nition performance analysis.

3. SPEECH RECOGNITION SYSTEM DEVELOPMENT
This section presents the performance of the baseline TDNN sys-
tems before introducing a series of techniques to further improve the
recognition accuracy. The overall architecture is shown in Figure 1.

3.1. Baseline System Performance
The performances of the TDNN systems using the original segmen-
tation of the Pitt corpus with or without i-Vector [41] and option-
ally using small or large language models described in Section 2 are
shown in Table 2. It was found that using i-Vector provided marginal
improvement. For example, from Sys. 3 to Sys. 4, the word error
rate (WER) was reduced by 0.19% absolute only. The large language
model further improved the system performance. For example, the
WER was reduced by 0.69% absolute (1.07% absolute for partici-
pants in the evaluation set) from Sys. 2 to Sys. 4. The best result of
the baseline systems was obtained by incorporating i-Vector adapta-
tion and the large language model (Sys. 4).

3http://www.isip.piconepress.com/projects/switchboard/releases/
switchboard word alignments.tar.gz

4Kaldi: egs/swbd/s5c/local/chain/tuning/run tdnn 7q.sh



Table 2: Word error rate (WER%) of DementiaBank Pitt development and evaluation sets obtained using the baseline systems with
or without i-Vector and optionally using the small or large language models (Sys. 1-4); the performance of the TDNN systems
improved through different stages: A. audio re-segmentation (Sys. 5); B. speed perturbation based data augmentation (Sys. 6); C.
domain adaptation (Sys. 7); D. speaker adaptation (Sys. 8-9); E. transformer language model re-scoring (Sys. 10), with ”PAR” for
participant and ”INV” for investigator. The ”small 4-gram” was trained with the Pitt data only while the ”large 4-gram” incorporated
other corpora. † denotes statistical significant difference in result is obtained compared with the baseline system (Sys. 4)

Sys. I-Vector Audio Speed Bayesian TDNN Adaptation Language Dev. Eval. AllRe-segment perturb Domain Speaker Model PAR INV PAR INV
1 ×

× × × ×

small 4-gram 53.48 22.65 43.54 29.06 38.53
2

√
small 4-gram 52.93 23.16 45.96 27.62 38.87

3 × large 4-gram 52.87 23.15 43.00 28.18 38.37
4

√
large 4-gram 51.70 23.13 44.89 26.85 38.18

5
√ √

× × × large 4-gram 51.51 21.57 39.01 20.64 36.31†

6
√ √ √

× × large 4-gram 46.76 19.97 37.01 18.20 33.37†

7 √ √ √
√

×
large 4-gram

45.56 19.19 35.31 19.31 32.33†

8 × BLHUC-SAT 42.95 18.24 34.12 17.87 30.67†

9
√

BLHUC-SAT 43.74 18.06 33.82 16.65 30.82†

10
√ √ √ √

BLHUC-SAT large 4-gram 42.12 17.61 33.17 17.20 29.90†
+ Transformer

3.2. Audio Re-segmentation
In order to improve the original audio segmentation provided by the
Pitt corpus, a GMM-HMM system with 2k tied tri-phone states and
32 Gaussians per state was trained with HTK toolkit [42] to force
align the training, development and evaluation sets. During the re-
segmentation stage, excessive silences longer than 200ms at the start
or the end of each utterance were removed. Long utterances contain-
ing sentence internal pauses longer than 1 second were further split
into multiple shorter utterances. Compared with the quantity of data
using the original transcripts, the re-segmentation stage reduced the
training set from 27.16 hours to 15.74 hours as shown in Table 1.
Similar reduction ratios of duration were also observed in the devel-
opment and evaluation sets. Using the refined audio segmentation,
the resulting TDNN system (Sys. 5) outperformed the baseline sys-
tem (Sys. 4) with a statistically significant WER reduction of 1.87%
absolute (5.88% absolute for participants in the evaluation set).

3.3. Data Augmentation
In order to expand the limited training data of only 15.74 hours af-
ter re-segmentation, following the previous research on data aug-
mentation for normal speech [43] and disordered speech [22], speed
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Fig. 1: The overall speech recognition system (Sec. 3) and NCD
detection system (Sec. 4) architecture considered in this paper

perturbation based data augmentation was subsequently performed.
First, speaker independent speed perturbation with a fixed perturba-
tion factor set {0.9, 1.0, 1.1} was used to expand the participants’
speech data by a factor of 3 to about 29 hours. Second, the inves-
tigators’ speech were further speed perturbed with a different factor
set {0.84, 0.95, 1.0, 1.08, 1.27}. These were initially computed at
the speaker level for each elderly participant relative to the average
investigator’s speaking rate using phonetic alignment analysis [44],
before K-means clustering was used to group the speaker-level per-
turbation factors into the above set of five values. This transformed
the 6-hour investigators’ speech into approximately 30 hours of the
elderly participant like speech. Combining the augmented data from
the two stages above, the total amount of the training data was in-
creased from 15.75 hours by a factor of 4 to roughly 59 hours. Us-
ing the augmented training data, the resulting system (Sys. 6) outper-
formed the baseline system (Sys. 5) by 2.94% absolute (2% absolute
for participants in the evaluation set) in terms of WER reduction.

3.4. Cross-domain Adaptation
Bayesian learning provides a mathematically well-formulated frame-
work to account for model uncertainty in a wide range of deep learn-
ing systems [16, 45] and has been successfully applied to improve
the generalization performance of the LF-MMI sequence discrim-
inatively trained TDNN acoustic models [16]. In order to exploit
large quantities of out-of-domain, non-aged adult speech, we further
explored the use of a Bayesian TDNN cross-domain adaptation ap-
proach. A 1000-hour LibriSpeech corpus trained LF-MMI TDNN
system with Kaldi recipe5 was rapidly cross-domain adapted to the
59-hour in-domain Pitt data after speed perturbation. During cross-
domain adaptation, the first TDNN hidden layer, where the largest
data diversity was expected compared with the higher layers produc-
ing more invariant features, was Bayesian adapted using a Gaussian
parameter prior distribution centered around the parameters of the
LibriSpeech corpus trained LF-MMI TDNN system fine-tuned to
the Pitt data. The resulting Bayesian cross-domain adapted TDNN
system (Sys. 7) outperformed the system trained on the Pitt data
only (Sys. 6) by 1.04% absolute (1.7% absolute for participants in
the evaluation set) in WER reduction.

5Kaldi: egs/librispeech/s5/{run.sh, local/chain/run tdnn.sh}



3.5. Speaker Adaptation
Individuals experiencing NCD at different stages of progression
exhibit highly diverse voice characteristics. To this end, speaker
adaptation techniques play a central role in reducing the mismatch
between ASR systems and target elderly users. In order to ro-
bustly learn speaker-dependent adaptation parameters, DNN model
based adaptation techniques, like learning hidden unit contributions
(LHUC) [24, 25], often require a significant amount of speaker
level enrollment data. In order to account for the model uncertainty
resulting from the limited speaker-level adaptation data for each
participant, Bayesian LHUC speaker adaptive training (SAT) [26]
was further applied to model the large variability among elderly
participants in both the original and the augmented Pitt training
data. As shown in Table 2, the resulting Bayesian LHUC speaker
adapted LF-MMI TDNN system (Sys. 8) outperformed the compa-
rable speaker independent TDNN system (Sys. 6) by 2.7% absolute
(2.89% absolute for participants in the evaluation set) in WER reduc-
tion. Further WER reductions of 0.3% absolute for participants and
1.22% absolute for investigators in the evaluation set were obtained
by performing both domain and speaker adaptation (Sys. 9)6.

3.6. Transformer Language Model
In order to further improve the generalization of the baseline 4-gram
LMs, a Transformer language model [27, 28, 46] consisting of six
stacked multiple self-attention layers followed by feedforward layers
with residual connection and layer normalization inserted between
them, as well as additional positional encoding layers, was trained
on the combined 2.4m words of the DementiaBank Pitt, Switchboard
and Fisher transcripts. In order to reduce the domain mismatch be-
tween the three text sources, the resulting Transformer was Bayesian
adapted [47] to the Pitt transcripts only while serving as the Prior
model. It was then linearly interpolated using equal weights with the
large 4-gram LM to rescore the n-best lists produced by the domain
and speaker adapted system (Sys. 9) in Table 2. Further absolute
WER reduction of 0.92% absolute (0.65% absolute for participants
in the evaluation set) was obtained over the 4-gram LM.

4. NCD DETECTION PERFORMANCE
In this section, the textual features separately extracted from the
DementiaBank Pitt evaluation set recognition outputs produced by
the baseline ASR system (Sys. 4) and the final recognition system
(Sys. 10) in Table 2 respectively were fed into a Support Vector
Machine (SVM) based NCD detection system, as illustrated in Fig-
ure 1. This detection system was maximum-margin trained on the
ADReSS training set7, a subset of the Cookie session transcripts of
the Pitt corpus of 108 recordings [30]. Textual features based on ei-
ther a) 1035-dim term frequency-inverse document frequency (TD-
IDF) features [48], or b) 768-dim vector embeddings produced by
a BERT model pre-trained on the English BookCorpus [46], were
used with linear kernel, preprocessed with standard scaling and then
Principle Component Analysis (PCA). More details of the detection
system could be found in [29].

The results in Table 3 suggest the NCD detection performance
based on the final ASR system was comparable to that using the
ground truth speech transcripts with both textual features. With
BERT based features, which may capture additional long-range con-
textual information such as syntactic structure complexity compared

6Some degradation on the participant portion of the Dev set may be
caused by the annotation errors found in the corresponding manual reference
transcripts.

7The elderly participants labeled as memory, vascular, possible AD, prob-
able AD are treated as NCD positive while control as NCD negative.

Table 3: ASR WER% and NCD detection performance in terms
of accuracy, precision, recall F1 score and area under curve
(AUC) obtained using the ground truth transcripts, the baseline
or the best ASR outputs (Sys. 4 & 10 in Table 2) for participants
of the evaluation set

Sys. Feature WER Acc. Pre. Rec. F1 AUC
Manual

TF-IDF
N/A 0.71 0.73 0.67 0.70 0.83

4 44.89 0.69 0.74 0.58 0.65 0.85
10 33.17 0.69 0.74 0.58 0.65 0.82

Manual
BERT

N/A 0.88 0.91 0.83 0.87 0.89
4 44.89 0.79 0.72 0.96 0.82 0.87

10 33.17 0.88 0.82 0.96 0.88 0.92

to the TF-IDF features encoding only word-level frequency informa-
tion, the reduction of WER from 44.89% (Sys. 4) to 33.17% (Sys.
10) led to the improvements in NCD detection accuracy from 79% to
88%, F1 score from 0.82 to 0.88 and area under curve (AUC) from
0.87 to 0.92.

5. CONCLUSION
The development of a state-of-the-art ASR system constructed using
the DementiaBank Pitt corpus was presented in this paper. A series
of techniques featuring segmentation refinement, audio augmen-
tation, Bayesian cross-domain and speaker adaptation as well as
Transformer language models were employed to improve the recog-
nition performance of elderly speech. An overall significant WER
reduction of 11.72% absolute (26.11% relative) was obtained over
the baseline i-Vector adapted LF-MMI TDNN system on the Pitt
evaluation set consisting of 48 elderly speakers. The NCD detec-
tion performance using the textual features extracted from our ASR
system outputs was also found comparable to that using the ground
truth speech transcripts. Further analysis of the correlation between
speech recognition accuracy and NCD detection performance was
also presented. Tighter integration between the recognition and
NCD detection components, fusion with paralinguistic features and
further perturbation of the elderly speech with simulated noises and
reverberation will be investigated in future research.
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