
IncSpan: Incremental Mining of Sequential Patterns
in Large Database ∗

Hong Cheng
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana, Illinois 61801

hcheng3@uiuc.edu

Xifeng Yan
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana, Illinois 61801

xyan@uiuc.edu

Jiawei Han
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana, Illinois 61801

hanj@cs.uiuc.edu

ABSTRACT
Many real life sequence databases grow incrementally. It is
undesirable to mine sequential patterns from scratch each
time when a small set of sequences grow, or when some new
sequences are added into the database. Incremental algo-
rithm should be developed for sequential pattern mining so
that mining can be adapted to incremental database up-
dates. However, it is nontrivial to mine sequential patterns
incrementally, especially when the existing sequences grow
incrementally because such growth may lead to the gener-
ation of many new patterns due to the interactions of the
growing subsequences with the original ones. In this study,
we develop an efficient algorithm, IncSpan, for incremental
mining of sequential patterns, by exploring some interesting
properties. Our performance study shows that IncSpan out-
performs some previously proposed incremental algorithms
as well as a non-incremental one with a wide margin.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

General Terms
Algorithms, Performance, Experimentation

Keywords
incremental mining, buffering pattern, reverse pattern match-
ing, shared projection

∗The work was supported in part by U.S. National Science
Foundation NSF IIS-02-09199, University of Illinois, and Mi-
crosoft Research. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of the funding
agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

1. INTRODUCTION
Sequential pattern mining is an important and active re-

search topic in data mining [1, 5, 4, 8, 13, 2], with broad
applications, such as customer shopping transaction analy-
sis, mining web logs, mining DNA sequences, etc.

There have been quite a few sequential pattern or closed
sequential pattern mining algorithms proposed in the previ-
ous work, such as [10, 8, 13, 2, 12, 11], that mine frequent
subsequences from a large sequence database efficiently. These
algorithms work in a one-time fashion: mine the entire
database and obtain the set of results. However, in many
applications, databases are updated incrementally. For ex-
ample, customer shopping transaction database is growing
daily due to the appending of newly purchased items for ex-
isting customers for their subsequent purchases and/or in-
sertion of new shopping sequences for new customers. Other
examples include Weather sequences and patient treatment
sequences which grow incrementally with time. The exist-
ing sequential mining algorithms are not suitable for han-
dling this situation because the result mined from the old
database is no longer valid on the updated database, and it
is intolerably inefficient to mine the updated databases from
scratch.

There are two kinds of database updates in applications:
(1) inserting new sequences (denoted as INSERT), and (2)
appending new itemsets/items to the existing sequences (de-
noted as APPEND). A real application may contain both.

It is easier to handle the first case: INSERT. An im-
portant property of INSERT is that a frequent sequence in
DB′ = DB ∪ ∆db must be frequent in either DB or ∆db
(or both). If a sequence is infrequent in both DB and ∆db,
it cannot be frequent in DB′, as shown in Figure 1. This
property is similar to that of frequent patterns, which has
been used in incremental frequent pattern mining [3, 9, 14].
Such incremental frequent pattern mining algorithms can be
easily extended to handle sequential pattern mining in the
case of INSERT.

It is far trickier to handle the second case, APPEND, than
the first one. This is because not only the appended items
may generate new locally frequent sequences in ∆db, but
also that locally infrequent sequences may contribute their
occurrence count to the same infrequent sequences in the
original database to produce frequent ones. For example,
in the appended database in Figure 1, suppose |DB|=1000
and |∆db|=20, min sup=10%. Suppose a sequence s is in-

��������	��

��������	��

��

�����������	��
���

��

�	�������

������	������

���������	��
���

��

��

������������

����������

Figure 1: Examples in INSERT and APPEND
database

frequent in DB with 99 occurrences (sup = 9.9%). In ad-
dition, it is also infrequent in ∆db with only 1 occurrence
(sup = 5%). Although s is infrequent in both DB and
∆db, it becomes frequent in DB′ with 100 occurrences. This
problem complicates the incremental mining since one can-
not ignore the infrequent sequences in ∆db, but there are
an exponential number of infrequent sequences even in a
small ∆db and checking them against the set of infrequent
sequences in DB will be very costly.

When the database is updated with a combination of IN-
SERT and APPEND, we can treat INSERT as a special case
of APPEND – treating the inserted sequences as appended
transactions to an empty sequence in the original database.
Then this problem is reduced to APPEND. Therefore, we
focus on the APPEND case in the following discussion.

In this paper, an efficient algorithm, called IncSpan, is
developed, for incremental mining over multiple database
increments. Several novel ideas are introduced in the al-
gorithm development: (1) maintaining a set of “almost fre-
quent” sequences as the candidates in the updated database,
which has several nice properties and leads to efficient tech-
niques, and (2) two optimization techniques, reverse pattern
matching and shared projection, are designed to improve the
performance. Reverse pattern matching is used for matching
a sequential pattern in a sequence and prune some search
space. Shared projection is designed to reduce the number
of database projections for some sequences which share a
common prefix. Our performance study shows that IncSpan
is efficient and scalable.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the basic concepts related to incremental
sequential pattern mining. Section 3 presents the idea of
buffering patterns, several properties of this technique and
the associated method. Section 4 formulates the IncSpan al-
gorithm with two optimization techniques. We report and
analyze performance study in Section 5, introduce related
work in Section 6. We conclude our study in Section 7.

2. PRELIMINARY CONCEPTS
Let I = {i1, i2, . . . , ik} be a set of all items. A subset

of I is called an itemset. A sequence s = 〈t1, t2, . . . , tm〉
(ti ⊆ I) is an ordered list. The size, |s|, of a sequence is
the number of itemsets in the sequence. The length, l(s),
is the total number of items in the sequence, i.e., l(s) =Pn

i=1 |ti|. A sequence α = 〈a1, a2, . . . , am〉 is a sub-sequence
of another sequence β = 〈b1, b2, . . . , bn〉, denoted as α v β
(if α 6= β, written as α < β), if and only if ∃i1, i2, . . . , im,
such that 1 6 i1 < i2 < . . . < im 6 n and a1 ⊆ bi1 , a2 ⊆
bi2 , . . . , and am ⊆ bim .

A sequence database, D = {s1, s2, . . . , sn}, is a set of se-
quences. The support of a sequence α in D is the number
of sequences in D which contain α, support(α) = |{s|s ∈
D and α v s}|. Given a minimum support threshold,
min sup, a sequence is frequent if its support is no less
than min sup; given a factor µ ≤ 1, a sequence is semi-
frequent if its support is less than min sup but no less
than µ ∗ min sup; a sequence is infrequent if its support
is less than µ ∗ min sup. The set of frequent sequential
pattern, FS, includes all the frequent sequences; and the
set of semi-frequent sequential pattern SFS, includes
all the semi-frequent sequences.

EXAMPLE 1. The second column of Table 1 is a sam-
ple sequence database D. If min sup = 3, FS = {〈(a)〉 :
4, 〈(b)〉 : 3, 〈(d)〉 : 4, 〈(b)(d)〉 : 3}.

Seq ID. Original Part Appended Part

0 (a)(h) (c)
1 (eg) (a)(bce)
2 (a)(b)(d) (ck)(l)
3 (b)(df)(a)(b) φ
4 (a)(d) φ
5 (be)(d) φ

Table 1: A Sample Sequence Database D and the
Appended part

Given a sequence s = 〈t1, . . . , tm〉 and another sequence
sa = 〈t′1, . . . , t′n〉, s′ = s ¦ sa means s concatenates with
sa. s′ is called an appended sequence of s, denoted as
s′ ∼a s. If sa is empty, s′ = s, denoted as s′ ∼=a s. An
appended sequence database D′ of a sequence database
D is one that (1) ∀s′i ∈ D′, ∃sj ∈ D such that s′i ∼a sj or
s′i ∼=a sj , and (2) ∀si ∈ D, ∃s′j ∈ D′ such that s′j ∼a si or
s′j ∼=a si. We denote LDB = {s′i|s′i ∈ D′ and s′i ∼a sj},
i.e., LDB is the set of sequences in D′ which are appended
with items/itemsets. We denote ODB = {si|si ∈ D and
si ∼a s′j}, i.e., ODB is the set of sequences in D which are
appended with items/itemsets in D′. We denote the set of
frequent sequences in D′ as FS′.

EXAMPLE 2. The third column of Table 1 is the ap-
pended part of the original database. If min sup = 3,
FS′ = {〈(a)〉 : 5, 〈(b)〉 : 4, 〈(d)〉 : 4, 〈(b)(d)〉 : 3, 〈(c)〉 :
3, 〈(a)(b)〉 : 3, 〈(a)(c)〉 : 3}.

A sequential pattern tree T is a tree that represents
the set of frequent subsequences in a database. Each node
p in T has a tag labelled with s or i. s means the node is a
starting item in an itemset; i means the node is an interme-
diate item in an itemset. Each node p has a support value
which represents the support of the subsequence starting
from the root of T and ending at the node p.

Problem Statement. Given a sequence database D,
a min sup threshold, the set of frequent subsequences FS
in D, and an appended sequence database D′ of D, the
problem of incremental sequential pattern mining is
to mine the set of frequent subsequences FS′ in D′ based
on FS instead of mining on D′ from scratch.

3. BUFFER SEMI-FREQUENT PATTERNS
In this section, we present the idea of buffering semi-

frequent patterns, study its properties, and design solutions
of how to incrementally mine and maintain FS and SFS.

��

�������������	���� �
����

������������������

Figure 2: The Sequential Pattern Tree of FS and
SFS in D

3.1 Buffering Semi-frequent Patterns
We buffer semi-frequent patterns, which can be consid-

ered as a statistics-based approach. The technique is to
lower the min sup by a buffer ratio µ ≤ 1 and keep a set
SFS in the original database D. This is because since the
sequences in SFS are “almost frequent”, most of the fre-
quent subsequences in the appended database will either
come from SFS or they are already frequent in the original
database. With a minor update to the original database,
it is expected that only a small fraction of subsequences
which were infrequent previously would become frequent.
This is based on the assumption that updates to the original
database have a uniform probability distribution on items.
It is expected that most of the frequent subsequences intro-
duced by the updated part of the database would come from
the SFS. The SFS forms a kind of boundary (or “buffer
zone”) between the frequent subsequences and infrequent
subsequences.

EXAMPLE 3. Given a database D in Example 1, min sup
= 3, µ = 0.6. The sequential pattern tree T representing
FS and SFS in D is shown in Figure 2. FS are shown in
solid line and SFS in dashed line.

When the database D is updated to D′, we have to check
LDB to update support of every sequence in FS and SFS.
There are several possibilities:

1. A pattern which is frequent in D is still frequent in D′;

2. A pattern which is semi-frequent in D becomes frequent
in D′;

3. A pattern which is semi-frequent in D is still semi-frequent
in D′;

4. Appended database ∆db brings new items.

5. A pattern which is infrequent in D becomes frequent in
D′;

6. A pattern which is infrequent in D becomes semi-frequent
in D′;

Case (1)–(3) are trivial cases since we already keep the
information. We will consider case (4)–(6) now.

Case (4): Appended database ∆db brings new items. For
example, in the database D′, 〈(c)〉 is a new item brought by
∆db. It does not appear in D.

Property: An item which does not appear in D and is
brought by ∆db has no information in FS or SFS.

Solution: Scan the database LDB for single items.
For a new item or an originally infrequent item in D, if

it becomes frequent or semi-frequent, insert it into FS or
SFS. Then use the new frequent item as prefix to construct
projected database and discover frequent and semi-frequent
sequences recursively. For a frequent or semi-frequent item
in D, update its support.

Case (5): A pattern which is infrequent in D becomes
frequent in D′. For example, in the database D′, 〈(a)(c)〉 is
an example of case (5). It is infrequent in D and becomes
frequent in D′. We do not keep 〈(a)(c)〉 in FS or SFS, but
we have the information of its prefix 〈(a)〉.

Property: If an infrequent sequence p′ in D becomes
frequent in D′, all of its prefix subsequences must also be
frequent in D′. Then at least one of its prefix subsequences
p is in FS.

Solution: Start from its frequent prefix p in FS and
construct p-projected database, we will discover p′.

Formally stated, given a frequent pattern p in D′, we want
to discover whether there is any pattern p′ with p as prefix
where p′ was infrequent in D but is frequent in D′. A se-
quence p′ which changes from infrequent to frequent must
have ∆sup(p′) > (1− µ)min sup.

We claim if a frequent pattern p has support in LDB
supLDB(p) ≥ (1 − µ)min sup, it is possible that some sub-
sequences with p as prefix will change from infrequent to
frequent. If supLDB(p) < (1 − µ)min sup, we can safely
prune search with prefix p.

Theorem 1. For a frequent pattern p, if its support in
LDB supLDB(p) < (1 − µ)min sup, then there is no se-
quence p′ having p as prefix changing from infrequent in D
to frequent in D′.
Proof : p′ was infrequent in D, so

supD(p′) < µ∗min sup (1)
If supLDB(p) < (1− µ)min sup, then

supLDB(p′) ≤ supLDB(p) < (1− µ)min sup
Since supLDB(p′) = supODB(p′) + ∆sup(p′). Then we

have
∆supLDB(p′) ≤ supLDB(p′) < (1 − µ)min sup.

(2)
Since supD′(p

′) = supD(p′) + ∆sup(p′), combining (1)
and (2), we have supD′(p

′) < min sup. So p′ cannot be
frequent in D′.

Therefore, if a pattern p has support in LDB supLDB(p) <
(1 − µ)min sup, we can prune search with prefix p. Other-
wise, if supLDB(p) ≥ (1−µ)min sup, it is possible that some
sequences with p as prefix will change from infrequent to fre-
quent. In this case, we have to project the whole database
D′ using p as prefix. If |LDB| is small or µ is small, there are
very few patterns that have supLDB(p) ≥ (1 − µ)min sup,
making the number of projections small.

In our example, supLDB(a) = 3 > (1 − 0.6) ∗ 3, we have
to do the projection with 〈(a)〉 as prefix. And we discover
“〈(a)(c)〉 : 3” which was infrequent in D. For another ex-
ample, supLDB(d) = 1 < (1− 0.6) ∗ 3, there is no sequence
with d as prefix which changes from infrequent to frequent,
so we can prune the search on it.

Theorem 1 provides an effective bound to decide whether
it is necessary to project a database. It is essential to guar-
antee the result be complete.

We can see from the projection condition, supLDB(p) ≥
(1 − µ)min sup, the smaller µ is, the larger buffer we keep,
the fewer database projections the algorithm needs. The
choice of µ is heuristic. If µ is too high, then the buffer is
small and we have to do a lot of database projections to
discover sequences outside of the buffer. If µ is set very
low, we will keep many subsequences in the buffer. But
mining the buffering patterns using µ ∗ min sup would be
much more inefficient than with min sup. We will show this

��

�����������������	

�
����

�������
����

������

������ �����

�����

Figure 3: The Sequential Pattern Tree of FS and
SFS in D′

tradeoff through experiments in Section 5.
Case (6): A pattern which is infrequent in D becomes

semi-frequent in D′. For example, in the database D′, 〈(be)〉
is an example of case (6). It is infrequent in D and becomes
semi-frequent in D′.

Property: If an infrequent sequence p′ becomes semi-
frequent in D′, all of its prefix subsequences must be either
frequent or semi-frequent. Then at least one of its prefix
subsequences, p, is in FS or SFS.

Solution: Start from its prefix p in FS or SFS and con-
struct p-projected database, we will discover p′.

Formally stated, given a pattern p, we want to discover
whether there is any pattern p′ with p as prefix where p′ was
infrequent but is semi-frequent in D′.

If the prefix p is in FS or SFS, construct p-projected
database and we will discover p′ in p-projected database.
Therefore, for any pattern p′ from infrequent to semi-frequent,
if its prefix is in FS or SFS, p′ can be discovered.

In our example, for the frequent pattern 〈(b)〉, we do the
projection on 〈(b)〉 and get a semi-frequent pattern 〈(be)〉 : 2
which was infrequent in D.

We show in Figure 3 the sequential pattern tree T includ-
ing FS and SFS after the database updates to D′. We can
compare it with Figure 2 to see how the database update
affects FS and SFS.

4. INCSPAN: DESIGN AND
IMPLEMENTATION

In this section, we formulate the IncSpan algorithm which
exploits the technique of buffering semi-frequent patterns.
We first present the algorithm outline and then introduce
two optimization techniques.

4.1 IncSpan: Algorithm Outline
Given an original database D, an appended database D′,

a threshold min sup, a buffer ratio µ, a set of frequent se-
quences FS and a set of semi-frequent sequences SFS, we
want to discover the set of frequent sequences FS′ in D′.

Step 1: Scan LDB for single items, as shown in case (4).
Step 2: Check every pattern in FS and SFS in LDB to

adjust the support of those patterns.
Step 2.1: If a pattern becomes frequent, add it to FS′.

Then check whether it meets the projection condition. If so,
use it as prefix to project database, as shown in case (5).

Step 2.2: If a pattern is semi-frequent, add it to SFS′.
The algorithm is given in Figure 4.

4.2 Reverse Pattern Matching
Reverse pattern matching is a novel optimization tech-

nique. It matches a sequential pattern against a sequence
from the end towards the front. This is used to check sup-

Algorithm. IncSpan(D′, min sup, µ, FS, SFS)
Input: An appended database D′, min sup, µ, frequent
sequences FS in D, semi-frequent sequences SFS
in D.
Output: FS′ and SFS′.

1: FS′ = φ, SFS′ = φ
2: Scan LDB for single items;
3: Add new frequent item into FS′;
4: Add new semi-frequent item into SFS′;
5: for each new item i in FS′ do
6: PrefixSpan(i, D′|i, µ ∗min sup, FS′, SFS′);
7: for every pattern p in FS or SFS do
8: check ∆sup(p);
9: if sup(p) = supD(p) + ∆sup(p) ≥ min sup
10: insert(FS′, p);
11: if supLDB(p) ≥ (1− µ)min sup
12: PrefixSpan(p, D′|p, µ ∗min sup, FS′, SFS′);
13: else
14: insert(SFS′, p);
15: return;

Figure 4: IncSpan algorithm

���������������� ����������������

��

Figure 5: Reverse Pattern Matching

port increase of a sequential pattern in LDB. Since the
appended items are always at the end part of the original
sequence, reverse pattern matching would be more efficient
than projection from the front.

Given an original sequence s, an appended sequence s′ =
s ¦ sa, and a sequential pattern p, we want to check whether
the support of p will be increased by appending sa to s.
There are two possibilities:

1. If the last item of p is not supported by sa, whether p
is supported by s or not, sup(p) is not increased when
s grows to s′. Therefore, as long as we do not find the
last item of p in sa, we can prune searching.

2. If the last item of p is supported by sa, we have to check
whether s′ supports p. We check this by continuing in
the reverse direction. If p is not supported by s′, we can
prune searching and keep sup(p) unchanged. Otherwise
we have to check whether s supports p. If s supports p,
keep sup(p) unchanged; otherwise, increase sup(p) by 1.

Figure 5 shows the reverse pattern matching.

4.3 Shared Projection
Shared Projection is another optimization technique we

exploit. Suppose we have two sequences 〈(a)(b)(c)(d)〉 and
〈(a)(b)(c)(e)〉, and we need to project database using each
as prefix. If we make two database projections individu-
ally, we do not take advantage of the similarity between the
two subsequences. Actually the two projected databases up
to subsequence 〈(a)(b)(c)〉, i.e., D′|〈(a)(b)(c)〉 are the same.

From D′|〈(a)(b)(c)〉, we do one more step projection for item
d and e respectively. Then we can share the projection for
〈(a)(b)(c)〉.

To use shared projection, when we detect some subse-
quence that needs projecting database, we do not do the
projection immediately. Instead we label it. After finishing
checking and labelling all the sequences, we do the projec-
tion by traversing the sequential pattern tree. Tree is natural
for this task because the same subsequences are represented
using shared branches.

5. PERFORMANCE STUDY
A comprehensive performance study has been conducted

in our experiments. We use a synthetic data generator pro-
vided by IBM. The synthetic dataset generator can be re-
trieved from an IBM website, http://www.almaden.ibm.com
/cs/quest. The details about parameter settings can be re-
ferred in [1].

All experiments are done on a PowerEdge 6600 server
with Xeon 2.8 , 4G memory. The algorithms are writ-
ten in C++ and compiled using g++ with -O3 optimiza-
tion. We compare three algorithms: IncSpan, an incremental
mining algorithm ISM [7], and a non-incremental algorithm
PrefixSpan[8].

Figure 6 (a) shows the running time of three algorithms
when min sup changes on the dataset D10C10T2.5N10, 0.5%
of which has been appended with transactions. IncSpan is
the fastest, outperforming PrefixSpan by a factor of 5 or
more, and outperforming ISM even more. ISM even cannot
finish within a time limit when the support is low.

Figure 6 (b) shows how the three algorithms can be af-
fected when we vary the percentage of sequences in the
database that have been updated. The dataset we use is
D10C10T2.5N10, min sup=1%. The buffer ratio µ = 0.8.
The curves show that the time increases as the incremental
portion of the database increases. When the incremental
part exceeds 5% of the database, PrefixSpan outperforms
IncSpan. This is because if the incremental part is not very
small, the number of patterns brought by it increases, mak-
ing a lot overhead for IncSpan to handle. In this case, mining
from scratch is better. But IncSpan still outperforms ISM by
a wide margin no matter what the parameter is.

Figure 6 (c) shows the memory usage of IncSpan and ISM.
The database is D10C10T2.5N10, min sup varies from 0.4%
to 1.5%, buffer ratio µ = 0.8. Memory usage of IncSpan in-
creases linearly as min sup decreases while memory used by
ISM increases dramatically. This is because the number of
sequences in negative border increases sharply as min sup
decreases. This figure verifies that negative border is a
memory-consuming approach.

Figure 7 (a) shows how the IncSpan algorithm can be af-
fected by varying buffer ratio µ. Dataset is D10C10T2.5N10,
5% of which is appended with new transactions. We use
PrefixSpan as a baseline. As we have discussed before, if we
set µ very high, we will have fewer pattern in SFS, then the
support update for sequences in SFS on LDB will be more
efficient. However, since we keep less information in SFS,
we may need to spend more time on projecting databases.
In the extreme case µ = 1, SFS becomes empty. On the
other hand, if we set the µ very low, we will have a large
number of sequences in SFS, which makes the support up-
date stage very slow. Experiment shows, when µ = 0.8, it
achieves the best performance.

Figure 7 (b) shows the performance of IncSpan to handle
multiple (5 updates in this case) database updates. Each
time the database is updated, we run PrefixSpan to mine
from scratch. We can see from the figure, as the increments
accumulate, the time for incremental mining increases, but
increase is very small and the incremental mining still out-
performs mining from scratch by a factor of 4 or 5. This
experiment shows that IncSpan can really handle multiple
database updates without significant performance degrad-
ing.

Figure 7 (c) shows the scalability of the three algorithms
by varying the size of database. The number of sequences in
databases vary from 10,000 to 100,000. 5% of each database
is updated. min sup=0.8%. It shows that all three algo-
rithms scale well with the database size.

6. RELATED WORK
In sequential pattern mining, efficient algorithms like GSP

[10], SPADE [13], PrefixSpan [8], and SPAM [2] were devel-
oped.

Partition [9] and FUP [3] are two algorithms which pro-
mote partitioning the database, mining local frequent item-
sets, and then consolidating the global frequent itemsets by
cross check. This is based on that a frequent itemset must
be frequent in at least one local database. If a database is
updated with INSERT, we can use this idea to do the incre-
mental mining. Zhang et al. [14] developed two algorithms
for incremental mining sequential patterns when sequences
are inserted into or deleted from the original database.

Parthasarathy et al. [7] developed an incremental mining
algorithm ISM by maintaining a sequence lattice of an old
database. The sequence lattice includes all the frequent se-
quences and all the sequences in the negative border. How-
ever, there are some disadvantages for using negative border:
(1) The combined number of sequences in the frequent set
and the negative border is huge; (2) The negative border
is generated based on the structural relation between se-
quences. However, these sequences do not necessarily have
high support. Therefore, using negative border is very time
and memory consuming.

Masseglia et al. [6] developed another incremental mining
algorithm ISE using candidate generate-and-test approach.
The problem of this algorithm is (1) the candidate set can
be very huge, which makes the test-phase very slow; and
(2) its level-wise working manner requires multiple scans of
the whole database. This is very costly, especially when the
sequences are long.

7. CONCLUSIONS
In this paper, we investigated the issues for incremen-

tal mining of sequential patterns in large databases and
addressed the inefficiency problem of mining the appended
database from scratch. We proposed an algorithm IncSpan
by exploring several novel techniques to balance efficiency
and reusability. IncSpan outperforms the non-incremental
method (using PrefixSpan) and a previously proposed incre-
mental mining algorithm ISM by a wide margin. It is a
promising algorithm to solve practical problems with many
real applications.

There are many interesting research problems related to
IncSpan that should be pursued further. For example, in-
cremental mining of closed sequential patterns, structured

����

���

�

��

���

����

���� ���� ��� ��� ��� ��� � ���

��������	

�
��
��
��

	
���

��������

	��

(a) varying min sup

����

���

�

��

���

��� � � � � �

���������	�
�����
�������

�
��
��
�
�

�	
��	

��������	

���

(b) varying percentage of up-
dated sequences

�

��

���

����

�����

��� ��� ��� � ���

��������	

�
��
�
��
�
��
��
��
�
�

�	

���	��

(c) Memory Usage under varied
min sup

Figure 6: Performance study

�

�

��

��

��

��

��� ��	 ��� ��
 ��� ��� � ���������

��������	
����������

�
��
��
��
�

����

(a) varying buffer ratio µ

�

��

��

��

���

� � � � �

����������	
��������

�
��
��
��
�

	
���

��������

(b) multiple increments of
database

����

���

�

��

���

����

�� �� �� �� ���

����������	�
����
�����

�
�
��
��
�

��	
���

�����
���

�
�

(c) varying # of sequences (in
1000) in DB

Figure 7: Performance study

patterns in databases and/or data streams are interesting
problems for future research.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In Proc. 1995 Int. Conf. Data Engineering
(ICDE’95), pages 3–14, March 1995.

[2] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick.
Sequential pattern mining using bitmaps. In Proc.
2002 ACM SIGKDD Int. Conf. Knowledge Discovery
in Databases (KDD’02), July 2002.

[3] D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance
of discovered association rules in large databases: An
incremental update technique. In Proc. of the 12th Int.
Conf. on Data Engineering (ICDE’96), March 1996.

[4] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:
Sequential pattern mining with regular expression
constraints. In Proc. 1999 Int. Conf. Very Large Data
Bases (VLDB’99), pages 223–234, Sept 1999.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences. In Proc.
1995 Int. Conf. Knowledge Discovery and Data
Mining (KDD’95), pages 210–215, Aug 1995.

[6] F. Masseglia, P. Poncelet, and M. Teisseire.
Incremental mining of sequential patterns in large
databases. Data Knowl. Eng., 46(1):97–121, 2003.

[7] S. Parthasarathy, M. Zaki, M. Ogihara, and
S. Dwarkadas. Incremental and interactive sequence
mining. In Proc. of the 8th Int. Conf. on Information
and Knowledge Management (CIKM’99), Nov 1999.

[8] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In Proc. 2001 Int. Conf. Data
Engineering (ICDE’01), pages 215–224, April 2001.

[9] A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proc. 1995 Int. Conf. Very Large Data
Bases (VLDB’95), Sept 1995.

[10] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance
improvements. In Proc. of the 5th Int. Conf. on
Extending Database Technology (EDBT’96), Mar 1996.

[11] J. Wang and J. Han. Bide: Efficient mining of
frequent closed sequences. In Proc. of 2004 Int. Conf.
on Data Engineering (ICDE’04), March 2004.

[12] X. Yan, J. Han, and R. Afshar. CloSpan: Mining
closed sequential patterns in large datasets. In Proc.
2003 SIAM Int.Conf. on Data Mining (SDM’03), May
2003.

[13] M. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, 40:31–60, 2001.

[14] M. Zhang, B. Kao, D. Cheung, and C. Yip. Efficient
algorithms for incremental updates of frequent
sequences. In Proc. of Pacific-Asia Conf. on
Knowledge Discovery and Data Mining (PAKDD’02),
May 2002.

