Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion

Yuanyuan Liu* Fanhua Shang ${ }^{\dagger}$ Hong Cheng* James Cheng ${ }^{\dagger}$ Hanghang Tong ${ }^{\ddagger}$

Abstract

Most existing low- n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, which leads to a convex combination problem of much smaller scale matrix nuclear norm minimization. Finally, we develop an efficient alternating direction method of multipliers (ADMM) scheme to solve the proposed problem. Experimental results on both synthetic and real-world data validate the effectiveness of our approach. Moreover, our method is significantly faster than the state-of-the-art approaches and scales well to handle large datasets.

1 Introduction

Multi-way data analysis is an important topic in signal processing [7], numerical linear algebra [6], computer vision [19], [20], data mining [16], [29], machine learning [27], neuroscience [22], and so on. As a generalization of scalars, vectors (first-order tensors) and matrices (second-order tensors), higher-order tensors are becoming increasingly popular. However, the values of their entries may be missing due to problems in the acquisition process, e.g., loss of information or high cost in obtaining complete data. In this paper, we study the tensor completion problem, which is to estimate the missing values in the tensor. The tensor completion problem has been successfully applied to a wide range of real-world problems, such as visual data [19], [20], EEG data [1], [22], and hyperspectral data analysis [10], social network analysis [29] and link prediction [33].

[^0]In recent years, sparse vector recovery and low-rank matrix completion problems have been intensively studied. Although the l_{0}-norm and the rank minimization have been proven to be strong global constraints and good measures of sparsity, the optimization problem involving the l_{0}-norm or the rank minimization is NP-hard in general due to their discrete nature. The l_{1}-norm and the nuclear norm (also known as the trace norm) are widely used to approximate the l_{0}-norm and the rank of a matrix, and the resulting problems are convex optimization problems. In addition, some researchers [4], [5], [24] have provided theoretical guarantee that the task of the l_{0}-norm minimization or the rank minimization problem can be accomplished via solving the l_{1}-norm or the nuclear norm minimization under some reasonable conditions. In fact, the l_{1}-norm and the nuclear norm have been shown to be the tightest convex surrogates to the l_{0}-norm and the rank function, respectively [5], [8].

As the generalization of sparse vector recovery and low-rank matrix completion, the low-rank tensor recovery problem has drawn lots of attention from researchers in the past several years [15]. Compared with vectors and matrices, a tensor can be used to express more complicated intrinsic structures of higherorder data. In this paper we are particularly interested in the low-rank tensor completion problem, which is to find a tensor \mathcal{X} of the (nearly) lowest rank from a subset of the entries of the tensor \mathcal{T} such that $\mathcal{X}_{\Omega}=\mathcal{T}_{\Omega}$, where \mathcal{X}_{Ω} denotes the restriction of the tensor on the known entries given by Ω. Liu et al. [19] indicated that tensor completion utilizes all information along all dimensions, while matrix completion only considers the constraints along two particular dimensions.

Recently, several works [10], [19], [20], [27], [28] extended the framework of trace norm regularization to the estimation of a partially observed low-rank tensor. Liu et al. [19] first introduced an extension of the trace norm to the tensor completion problem. In a subsequent paper [20], they defined the trace norm of a tensor as a convex combination of trace norms of its unfolded matrices. There are some similar tensor completion methods in [10], [27]. As a result, the tensor completion problem is converted into a convex combination of the nuclear norm minimization of the involved matrices. However,
the tensor nuclear norm minimization (TNNM) problem has to be solved iteratively and involves multiple SVDs at each iteration. Therefore, all these algorithms for TNNM suffer from high computational cost of multiple SVDs.

Tensor decomposition is a type of classical higherorder data analysis method and gives a concise representation of the underlying structure of the tensor, revealing that the tensor data can be modeled as lying close to a low-dimensional subspace. Two most popular tensor decomposition methods, the Tucker decomposition [9], [31] and the CANDECOMP/PARAFAC (CP) decomposition [1], [11], are also used to solve tensor completion problems. However, those tensor decomposition models do require the ability to reliably estimate the rank of the involved tensor.

In this paper, we focus on addressing two issues for the low-rank tensor completion problem, i.e., the robustness of the given tensor rank and the computational cost. We propose a novel factor matrix nuclear norm minimization (NNCP) method based on the CP decomposition for tensor completion problems. Experimental results on both synthetic and real-world data validate the efficiency and effectiveness of our NNCP approach. The main contributions of this paper are as follows:

1. We deduce the relation of the rank of between each factor matrix and the corresponding unfolded matrix of a tensor, and formulate a factor matrix rank minimization model.
2. We introduce a tractable relaxation of the rank function into our factor matrix rank minimization model, and then obtain a convex combination problem of much smaller factor matrix nuclear norm minimization.
3. We present an efficient alternating direction method of multipliers (ADMM) scheme to solve the proposed problem.

2 Notions and Related Work

Before reviewing previous work, we first introduce some basic tensor notions and terminologies. A matrix is denoted by an upper-case letter, e.g., X, the entries as lower-case letters, e.g., $x_{i j}$. An N th-order tensor is denoted by a calligraphic letter, e.g., $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$, and its entries are denoted by $x_{i_{1}, i_{2} \cdots, i_{N}}$. The order N of a tensor is the number of dimensions, also known as ways or modes. Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing every index but one. The mode- n fibers are all vectors $\mathrm{x}_{i_{1}, \cdots, i_{n-1}, i_{n+1}, \cdots, i_{N}}$ that are obtained by fixing
the values of $\left\{i_{1}, \cdots, i_{N}\right\} \backslash i_{n}$.
The mode- n unfolding, also known as matricization, of an N th-order tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ is denoted by $X_{(n)} \in \mathbb{R}^{I_{n} \times \Pi_{j \neq n} I_{j}}$, which is a rearrangement of the entries of \mathcal{X} into the matrix $X_{(n)}$ such that the mode- n fiber becomes the row index and all other $(N-1)$ modes become column indices in lexicographical order. The tensor element $\left(i_{1}, i_{2}, \cdots, i_{N}\right)$ is mapped to the matrix element $\left(i_{n}, j\right)$, where

$$
j=1+\sum_{k=1, k \neq n}^{N}\left(i_{k}-1\right) J_{k} \text { with } J_{k}=\prod_{m=1, m \neq n}^{k-1} I_{m}
$$

The inner product of two same-sized tensors $\mathcal{A} \in$ $\mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ and $\mathcal{B} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ is the sum of the product of their entries, $<\mathcal{A}, \mathcal{B}>=\Sigma_{i_{1}, \cdots i_{N}} a_{i_{1}, \cdots i_{N}} b_{i_{1}, \cdots i_{N}}$. The Frobenius norm of an N th-order $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ is defined as:

$$
\|\mathcal{X}\|_{F}:=\sqrt{\sum_{i_{1}=1}^{I_{1}} \cdots \sum_{i_{N}=1}^{I_{N}} x_{i_{1}, \cdots, i_{N}}^{2}}
$$

Let A and B be two matrices of size $m \times n$ and $p \times q$ respectively. The Kronecker product of two matrices A and B, denoted by $A \otimes B$, is an $m p \times n q$ matrix given by $A \otimes B=\left[a_{i j} B\right]_{m p \times n q}$.

Let $A=\left[\mathrm{a}_{1} \mathrm{a}_{2} \cdots \mathrm{a}_{r}\right]$ and $B=\left[\mathrm{b}_{1} \mathrm{~b}_{2} \cdots \mathrm{~b}_{r}\right]$ be two column matrices of size $m \times r$ and $n \times r$ respectively. Then the Khatri-Rao product of two matrices A and B is defined as the column-wise Kronecker product and represented by \odot :

$$
A \odot B=\left[\mathrm{a}_{1} \otimes \mathrm{~b}_{1} \mathrm{a}_{2} \otimes \mathrm{~b}_{2} \cdots \mathrm{a}_{r} \otimes \mathrm{~b}_{r}\right]
$$

2.1 Low-n-Rank Tensor Estimation For the tensor completion problem, Liu et al. [19] and Signoretto et al. [28] have proposed an extension of low-rank matrix completion concept to tensor data. With an exact analogue to the definition of the matrix rank, the rank of a tensor \mathcal{X}, denoted by $\operatorname{rank}(\mathcal{X})$, is defined as follows.

Definition 2.1. The rank of a tensor is the smallest number of rank-one tensors that generate the tensor as their sum, i.e., the smallest R such that

$$
\mathcal{X}=\sum_{i=1}^{R} \mathrm{a}_{i}^{1} \circ \mathrm{a}_{i}^{2} \circ \cdots \circ \mathrm{a}_{i}^{N},
$$

where \circ denotes the outer product of some vectors, i.e., $\left(\mathrm{a}_{i}^{1} \circ \mathrm{a}_{i}^{2} \circ \cdots \circ \mathrm{a}_{i}^{N}\right)_{i_{1}, i_{2} \cdots, i_{N}}=\left[\mathrm{a}_{i}^{1}\right]_{i_{1}}\left[\mathrm{a}_{i}^{2}\right]_{i_{2}} \cdots\left[\mathrm{a}_{i}^{N}\right]_{i_{N}}$.

This definition of the rank of a tensor is an extension of the rank of a matrix, but with different properties. A key difference is that the rank of a tensor is difficult to handle, as there is no straightforward way to determine the rank of a given tensor. In fact, the problem is NPhard [13], [15], [17]. Fortunately, the n-rank of a tensor \mathcal{X}, denoted by $n-\operatorname{rank}(\mathcal{X})$, is easy to compute, which consists of the matrix ranks of the mode- n matricization of the tensor.

Definition 2.2. The n-rank of an Nth-order tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ is the tuple of the ranks of the mode-n unfolding,

$$
n-\operatorname{rank}(\mathcal{X})=\left(\operatorname{rank}\left(X_{(1)}\right), \operatorname{rank}\left(X_{(2)}\right), \cdots, \operatorname{rank}\left(X_{(N)}\right)\right)
$$

where $\operatorname{rank}\left(X_{(n)}\right)$ is called the mode-n rank.
Liu et al. [20] and Gandy et al. [10] have proposed to minimize the weighted tensor n-rank model for tensor completion problems as follows:

$$
\begin{equation*}
\min _{\mathcal{X}} \sum_{n=1}^{N} w_{n} \operatorname{rank}\left(X_{(n)}\right), \quad \text { s.t., } \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega} \tag{2.1}
\end{equation*}
$$

where w_{n} 's are pre-specified weights, and $X_{(n)}$ denotes the unfolded matrix along the n-th mode on the tensor \mathcal{X}. And the entries of \mathcal{T} in the set Ω are given while the remaining elements are missing. In order to keep things simple, the weighted sum of the ranks of the different unfolded matrices is used to take the place of the n-rank of the involved tensor. In addition, Gandy et al. [10] have presented an unweighted model, i.e., a special case of the above model (2.1), where $w_{n}=1, n=1, \ldots, N$.

The non-convex optimization problem (2.1) can be solved by convex relaxation replacing the rank of the matrix with the nuclear norm as follows:

$$
\begin{equation*}
\min _{\mathcal{X}} \sum_{n=1}^{N} w_{n}\left\|X_{(n)}\right\|_{*}, \quad \text { s.t., } \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega} \tag{2.2}
\end{equation*}
$$

where the nuclear norm of the tensor \mathcal{X} is defined as

$$
\begin{equation*}
\|\mathcal{X}\|_{*}=\sum_{n=1}^{N} w_{n}\left\|X_{(n)}\right\|_{*} \tag{2.3}
\end{equation*}
$$

and $\left\|X_{(n)}\right\|_{*}$ denotes the nuclear norm of the matrix $X_{(n)}$, i.e., the sum of its singular values. In the presence of noise, we obtain a corresponding unconstrained formulation:

$$
\begin{equation*}
\min _{\mathcal{X}} \sum_{n=1}^{N} w_{n}\left\|X_{(n)}\right\|_{*}+\frac{\lambda}{2}\left\|\mathcal{X}_{\Omega}-\mathcal{T}_{\Omega}\right\|_{F}^{2} \tag{2.4}
\end{equation*}
$$

where $\lambda>0$ is a regularization parameter.
In fact, each mode- n unfolded matrix $X_{(n)}$ shares the same entries and cannot be optimized independently. Recently, some nuclear norm minimization algorithms have been proposed to successfully address the visual data and hyperspectral data recovery problems [20], [10]. However, all those algorithms have to be solved iteratively and involve multiple SVDs at each iteration, thus suffering from high computational cost. Furthermore, many additional variables are introduced

Figure 1: Illustration of an R-component CP model for a third-order tensor.
to split these interdependent terms in (2.2) and (2.4) such that they can be solved independently. As a result, all those algorithms for the convex combination of multiple nuclear norm minimization problems suffer from high computational cost.
2.2 Tensor Decompositions for Completion Next, we will introduce two tensor decomposition models for tensor completion problems. In [1], Acar et al. presented a weighted least squares model for third-order tensor decomposition problems with missing entries:

$$
\begin{equation*}
\min _{U_{1}, \cdots, U_{N}}\left\|\mathcal{W} *\left(\mathcal{T}-U_{1} \circ U_{2} \cdots \circ U_{N}\right)\right\|_{F}^{2} \tag{2.5}
\end{equation*}
$$

where the symbol $*$ denotes the Hadamard (elementwise) product, and $U_{n} \in \mathbb{R}^{I_{n} \times R}$ are referred to as the factor matrices of CP and are the combination of the vectors from the rank-one components (e.g., as shown in Fig. $\left.1, U_{1}=\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{R}\right]\right)$, and R is a positive integer. In this sense, the approximation generally requires significantly less storage $O\left(R \Sigma I_{n}\right)$ than the original tensor. Hence, we are particularly interested in extending the CP decomposition for tensor completion problems. Moreover, \mathcal{W} is a nonnegative weight tensor with the same size as \mathcal{T},

$$
w_{i_{1}, i_{2} \cdots, i_{N}}= \begin{cases}1 & \text { if } t_{i_{1}, i_{2} \cdots, i_{N}} \text { is known } \\ 0 & \text { otherwise }\end{cases}
$$

In [9], the Tucker model is formulated as follows:

$$
\begin{equation*}
\min _{U_{n}, \mathcal{C}}\left\|\mathcal{W} *\left(\mathcal{T}-\mathcal{C} \times_{1} U_{1} \times_{2} \cdots \times_{N} U_{N}\right)\right\|_{F}^{2} \tag{2.6}
\end{equation*}
$$

where $U_{n} \in \mathbb{R}^{I_{n} \times R_{n}}, \mathcal{C} \in \mathbb{R}^{R_{1} \times R_{2} \cdots R_{N}}$ is a core tensor with the given ranks $\left(R_{1}, R_{2}, \cdots, R_{N}\right)$, and \times_{n} denotes the n-mode matrix product (see [15]).

Recently, some extensions of both basic decomposition models and corresponding algorithms were developed for tensor estimation problems. However, to solve the tensor approximation and completion problems, a suitable rank value needs to be given, and it was shown that both the tucker and CP models have a poor performance when real-world data has a high rank [20].

3 Factor Matrix Nuclear Norm Minimization Model

The major bottleneck of existing tensor completion algorithms for solving the optimization problems (2.2) and (2.4) is the high computational cost of multiple SVDs on the large matrices at each iteration. Motivated by this, we formulate a novel factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. In other words, our model is to minimize the n-rank of factor matrices of the CP decomposition instead of low- n-rank of the involved tensor.
3.1 The Rank of Factor Matrices Let $\mathcal{X} \in$ $\mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ be an N th-order low-rank tensor with tensor rank r, then the CP model of the tensor \mathcal{X} is written as follows:

$$
\begin{equation*}
\mathcal{X}=U_{1} \circ U_{2} \cdots \circ U_{N}=\sum_{i=1}^{r} \mathrm{u}_{1}^{(i)} \circ \mathrm{u}_{2}^{(i)} \cdots \circ \mathrm{u}_{N}^{(i)} \tag{3.7}
\end{equation*}
$$

where $U_{n}=\left[\mathrm{u}_{n}^{(1)} \mathrm{u}_{n}^{(2)} \cdots \mathrm{u}_{n}^{(r)}\right] \in \mathbb{R}^{I_{n} \times r}, n=1, \cdots, N$ denote the factor matrices of the tensor \mathcal{X}.

Theorem 3.1. Let $X_{(n)}, n=1, \cdots, N$ be the unfolded matrices of the tensor \mathcal{X} with the rank r, and U_{n}, $n=1, \cdots, N$ be the factor matrices. Then

$$
\begin{equation*}
\operatorname{rank}\left(X_{(n)}\right) \leq \operatorname{rank}\left(U_{n}\right), \quad n=1, \cdots, N \tag{3.8}
\end{equation*}
$$

Proof. Since $\mathcal{X}=U_{1} \circ U_{2} \cdots \circ U_{N}$, we have

$$
\begin{gather*}
X_{(n)}=U_{n}\left(U_{N} \odot \cdots U_{n+1} \odot U_{n-1} \odot \cdots U_{1}\right)^{T} \tag{3.9}\\
n=1, \cdots, N
\end{gather*}
$$

Thus

$$
\begin{aligned}
\operatorname{rank}\left(X_{(n)}\right)= & \operatorname{rank}\left(U_{n}\left(U_{N} \odot \cdots U_{n+1} \odot U_{n-1} \odot \cdots U_{1}\right)^{T}\right) \\
& \leq \operatorname{rank}\left(U_{n}\right), \quad n=1, \cdots, N .
\end{aligned}
$$

From the above theorem, it is clear that the factor matrices $U_{n} \in \mathbb{R}^{I_{n} \times r}, \quad n=1, \cdots, N$ have a much smaller size than the mode- n unfolded matrices $X_{(n)} \in$ $\mathbb{R}^{I_{n} \times \Pi_{j \neq n} I_{j}}$, while the rank of each factor matrix is an upper bound on the rank of the corresponding unfolded matrix. In the following subsection, we will propose a new model that uses the rank of the factor matrices U_{n}, i.e., $\operatorname{rank}\left(U_{n}\right)$, instead of the mode- n rank of the tensor in (2.1), i.e., $\operatorname{rank}\left(X_{(n)}\right)$.
3.2 Our Model Suppose that the unknown tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ is low rank, our rank minimization model based on the CP decomposition for tensor com-
pletion can be expressed as follows:

$$
\begin{aligned}
& \min _{\mathcal{X}, U_{n}} \sum_{n=1}^{N} w_{n} \operatorname{rank}\left(U_{n}\right) \\
& \text { s.t., } \mathcal{X}=U_{1} \circ \cdots \circ U_{N}, \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega}
\end{aligned}
$$

where \mathcal{X} and $\mathcal{T} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}, U \in \mathbb{R}^{I_{n} \times R}$, and R denotes an upper bound of the tensor rank and is a positive integer. Moreover, the factor matrix rank minimization is a relaxation form of the mode- n rank minimization of the tensor along each mode. In addition, several researchers [14] have provided some tensor rank estimation strategies to compute a good value r for the rank of the tensor. Thus, we only set a relatively large integer R such that $R \geq r$.

Due to the discrete nature of the rank, the above model (3.10) can be relaxed by replacing the rank function with the nuclear norm as follows:

$$
\begin{align*}
& \min _{\mathcal{X}, U_{n}} \sum_{n=1}^{N} w_{n}\left\|U_{n}\right\|_{*} \tag{3.11}\\
& \text { s.t., } \mathcal{X}=U_{1} \circ \cdots \circ U_{N}, \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega}
\end{align*}
$$

Furthermore, the relaxed version is formulated by relaxing the CP decomposition constraint term in (3.11):

$$
\begin{array}{ll}
\min _{\mathcal{X}, U_{n}} & \sum_{n=1}^{N} w_{n}\left\|U_{n}\right\|_{*}+\frac{\lambda}{2}\left\|\mathcal{X}-U_{1} \circ \cdots \circ U_{N}\right\|_{F}^{2} \tag{3.12}\\
\text { s.t., } & \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega}
\end{array}
$$

The above model (3.12) is called a factor matrix nuclear norm minimization (NNCP) approach based on the CP decomposition. We only need to perform SVD in some involved factor matrices with much smaller scale, and hence the NNCP algorithm we present in Section 4 is very efficient. Meanwhile, the performance of NNCP is much more robust to the given tensor rank R than the Tucker and the CP methods, which will be verified in our experiments.

4 NNCP Algorithm

Recently, it has been shown in [2], [32], [21] that the alternating direction method of multipliers (ADMM) is very efficient for some convex or non-convex programming problems from various applications. Some recently exploited applications of ADMM are reported in [18], [20], [26]. In this paper we also propose an ADMM scheme for solving the proposed model (3.12), and the problem (3.12) is reformulated into the following equiv-
alent form:

$$
\begin{align*}
& \min _{\mathcal{X}, U_{n}, M_{n}} \sum_{n=1}^{N} w_{n}\left\|M_{n}\right\|_{*}+\frac{\lambda}{2}\left\|\mathcal{X}-U_{1} \cdots \circ U_{N}\right\|_{F}^{2}, \tag{4.13}\\
& \text { s.t., } \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega}, M_{n}=U_{n}, n=1, \cdots, N,
\end{align*}
$$

where $M_{n}, n=1, \cdots, N$ are auxiliary variables.
4.1 Solving Scheme. The partial augmented Lagrangian function for (4.13) is given by:
(4.14)

$$
\begin{aligned}
& \mathcal{L}\left(M_{1}, \cdots, M_{N}, \mathcal{X}, U_{1}, \cdots, U_{N}, Y_{1}, \cdots, Y_{N}, \mu\right) \\
&=\sum_{n=1}^{N}\left(w_{n}\left\|M_{n}\right\|_{*}+\left\langle Y_{n}, M_{n}-U_{n}\right\rangle+\frac{\mu}{2}\left\|M_{n}-U_{n}\right\|_{F}^{2}\right) \\
&+\frac{\lambda}{2}\left\|\mathcal{X}-U_{1} \circ U_{2} \cdots \circ U_{N}\right\|_{F}^{2},
\end{aligned}
$$

where $Y_{n} \in \mathbb{R}^{I_{n} \times R}, n=1, \cdots, N$ are the Lagrange multipliers, and $\mu>0$ is a penalty parameter.

In the following, we present an ADMM iterative scheme to minimize \mathcal{L} with respect to $\left(M_{1}, \cdots M_{N}, \mathcal{X}, U_{1}, \cdots U_{N}, Y_{1}, \cdots Y_{N}\right)$. More specifically, to update the variables $M_{n}, n=1, \cdots, N$ with fixing the other variables, the optimization problem is formulated concretely as follows:

$$
\begin{equation*}
\min _{M_{n}} w_{n}\left\|M_{n}\right\|_{*}+\frac{\mu^{k}}{2}\left\|M_{n}-U_{n}^{k}+Y_{n}^{k} / \mu^{k}\right\|_{F}^{2} . \tag{4.15}
\end{equation*}
$$

Following [3], a closed-form solution to the problem (4.15) can be obtained easily as follows:

$$
\begin{equation*}
M_{n}^{k+1}=\operatorname{SVT}_{w_{n} / \mu^{k}}\left(U_{n}^{k}-Y_{n}^{k} / \mu^{k}\right), \tag{4.16}
\end{equation*}
$$

where $\operatorname{SVT}_{\delta}(A)=U \operatorname{diag}\left(\left\{(\sigma-\delta)_{+}\right\}\right) V^{T}$ is a singular value thresholding (SVT) operator, the SVD of A is given by $A=U \operatorname{diag}\left(\left\{\sigma_{i}\right\}_{1 \leq i \leq r}\right) V^{T}, t_{+}=\max (0, t)$, and $\max (\cdot, \cdot)$ should be understood element-wise. The computation complexity of the SVT operator is $O\left(I_{n} R^{2}\right)$. Thus, our NNCP method has a significantly lower complexity than other nuclear norm minimization algorithms for both optimization problems (2.2) and (2.4) which require to perform SVDs on the unfolded matrices $X_{(n)}$ with the size of $I_{n} \times \prod_{i \neq n} I_{i}, n=1, \cdots, N$ at each iteration, with the time cost $O\left(I_{n}^{2} \times \prod_{i \neq n} I_{i}\right)$.

To update the variables $\left(U_{1}, \cdots, U_{N}\right)$, the optimization problem is given by:

$$
\begin{align*}
& \left.\min _{U_{1}, \cdots, U_{n}} \frac{\lambda}{2} \right\rvert\, \mathcal{X}^{k}-U_{1} \circ \cdots \circ U_{N} \|_{F}^{2} \\
& \quad+\sum_{n=1}^{N} \frac{\mu^{k}}{2}\left\|U_{n}-M_{n}^{k+1}-Y_{n}^{k} / \mu^{k}\right\|_{F}^{2} . \tag{4.17}
\end{align*}
$$

To solve $U_{n}, n=1, \cdots, N$ with fixing the other variables, the problem (4.17) becomes a smooth optimization problem. Let $B_{n}=\left(U_{N}^{k} \circ \cdots U_{n+1}^{k} \circ U_{n-1}^{k+1} \circ \cdots U_{1}^{k+1}\right)$, then the resulting subproblem with respect to U_{n} is formulated as follows:

$$
\begin{equation*}
\min _{U_{n}} \frac{\lambda}{2}\left\|U_{n} B_{n}-X_{(n)}^{k}\right\|_{F}^{2}+\frac{\mu^{k}}{2}\left\|U_{n}-M_{n}^{k+1}-Y_{n}^{k} / \mu^{k}\right\|_{F}^{2} . \tag{4.18}
\end{equation*}
$$

Thus the inexact updates of U_{n} are given by solving the optimization problem (4.18) as follows [18]:
(4.19)
$U_{n}^{k+1}=\frac{1}{\lambda+\mu^{k}}\left(\lambda X_{(n)}^{k} B_{n}^{T}+\mu^{k} M_{n}^{k+1}+Y_{n}^{k}\right)\left(\lambda B_{n} B_{n}^{T}+\mu^{k} I\right)^{-1}$.
To update the variable \mathcal{X}, we have the following subproblem,

$$
\begin{align*}
& \min _{\mathcal{X}}\left\|\mathcal{X}-U_{1}^{k+1} \circ \ldots \circ U_{N}^{k+1}\right\|_{F}^{2}, \tag{4.20}\\
& \text { s.t., } \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega} .
\end{align*}
$$

Furthermore, the optimal solution \mathcal{X} satisfies the following equation by deriving simply the KKT conditions for (4.20):
(4.21) $\mathcal{X}_{\Omega}^{k+1}=\mathcal{T}_{\Omega}$ and $\mathcal{X}_{\Omega}^{k+1}=\left(U_{1}^{k+1} \circ \cdots \circ U_{N}^{k+1}\right)_{\Omega^{c}}$,
where Ω^{C} is the complement of Ω, i.e., the set of indexes of the unobserved entries.

Based on the above analysis, we develop the following ADMM iterative scheme for the tensor completion problem (3.12), as outlined in Algorithm 1. Nonetheless, the proposed model (3.12) is non-convex and proving the convergence properties of ADMM in theory is still an open issue [12]. The stability and efficiency of our NNCP algorithm (i.e., Algorithm 1) can be validated in the experimental section.
4.2 Analysis of NNCP The proposed NNCP model (3.12) can be reformulated as follows:
(4.22) $\min _{U_{n}} \sum_{n=1}^{N} \frac{w_{n}}{\lambda}\left\|U_{n}\right\|_{*}+\frac{1}{2}\left\|\mathcal{W} *\left(\mathcal{T}-U_{1} \cdots \circ U_{N}\right)\right\|_{F}^{2}$.

Thus, our proposed model (3.12) is also a nuclear norm regularized least squares problem. When letting $\lambda \rightarrow$ ∞, the model (4.22) degenerates to the ordinary CP tensor decomposition model (2.5) for tensor completion problems.

In this sense, our NNCP algorithm is also a fast higher-order tensor decomposition method in the presence of missing data and gives a concise representation of the latent structure of the tensor. And the existing tensor completion model (2.5) based on the CP decomposition is a special case of our NNCP method.

```
Algorithm 1 Solving the model (3.12) via ADMM.
Input: \(N\) th-order tensor \(\mathcal{T}\), index set \(\Omega\), rank \(R\), and
    parameter \(\lambda\).
Initialize: \(Y_{n}^{0}=0, M_{n}^{0}=0, U_{n}^{0}=\operatorname{rand}\left(I_{n}, R\right)\),
    \(n=1, \cdots, N, \mu^{0}=10^{-6}, \mu_{\max }=10^{10}, \rho=1.15\),
    and tol \(=10^{-5}\).
    while not converged do
        for \(n=1: N\) do
            Update \(M_{n}^{k+1}\) by (4.16);
            Update \(U_{n}^{k+1}\) by (4.19).
        end for
        Update \(\mathcal{X}^{k+1}\) by (4.21).
        Update the multiplier \(Y_{n}^{k+1}\) by
                        \(Y_{n}^{k+1}=Y_{n}^{k}+\mu^{k}\left(M_{n}^{k+1}-U_{n}^{k+1}\right)\).
        Update the parameter \(\mu^{k+1}\) by
                    \(\mu^{k+1}=\min \left(\rho \mu^{k}, \mu_{\text {max }}\right)\).
        Check the convergence condition,
        \(\max \left\{\left\|M_{n}^{k+1}-U_{n}^{k+1}\right\|_{F}, n=1, \cdots, N\right\}<\) tol.
    end while
Output: \(U_{n}, n=1, \cdots, N\).
```

Next, we discuss the time complexity of our NNCP algorithm. For the tensor completion problem (3.12), the main running time of NNCP is consumed by performing SVD for the SVT operator and some multiplications. The time complexity of performing SVD is $O_{1}=$ $O\left(\sum_{n=1}^{N} I_{n} R^{2}\right)$. The time complexity of some multiplication operators is $O_{2}=O\left(R \sum_{n=1}^{N}\left(\sum_{i=1}^{n-1} \prod_{j=n-i}^{n-1} I_{j}+\right.\right.$ $\left.\left.\sum_{i=1}^{N-n-1} \prod_{j=n-i}^{N} I_{j}\right)\right)$ and $O_{3}=O\left(N R \prod_{n=1}^{N} I_{n}\right)$. Thus, the total time complexity of Algorithm 1 is $O\left(T\left(O_{1}+O_{2}+O_{3}\right)\right)$, where T is the number of iterations.

5 Experiments

In this section, we evaluate the effectiveness and efficiency of our NNCP algorithm for some tensor completion tasks on both synthetic data and real-world data including multi-relational prediction.
5.1 Synthetic Data In this part we generated a low-n-rank tensor $\mathcal{T} \in \mathbb{R}^{I_{1} \times I_{2} \cdots I_{N}}$ which is used as ground truth data. The tensor data follows the Tucker model, i.e., $\mathcal{T}=\mathcal{C} \times_{1} U_{1} \times_{2} \cdots \times_{N} U_{N}$, where the core tensor $\mathcal{C} \in \mathbb{R}^{r \times r \cdots \times r}$ and $U_{n} \in \mathbb{R}^{I_{n} \times r}$ are generated with i.i.d. standard Gaussian entries. With this construction, the n-rank of \mathcal{T} equals (r, r, \cdots, r) almost surely. The order of the tensors varies from three to five, and r is set to 5. Furthermore, we randomly sample a few entries from \mathcal{T} and recover the whole tensor with various sampling rates (SR) by our NNCP algorithm and three existing state-of-the-art algorithms including weighted Tucker
$(\text { WTucker })^{1}[9]$, weighted CP $(W C P)^{2}[1]$ and FaLRTC ${ }^{3}$ [20].

We set tol $=10^{-5}$ and maxiter $=1000$ for all these algorithms. In the implementation of our NNCP algorithm, we set the regularization parameter $\lambda=10$. For our NNCP algorithm and FaLRTC, the weights w_{n} are set to $w_{n}=1 / N, n=1, \cdots, N$, and the smoothing parameter for FaLRTC is set to $\mu_{n}=5 w_{n} / I_{n}$. The other parameters of FaLRTC are set to their default values. For the three tensor decomposition methods including NNCP, WTucker, and WCP, the tensor rank is set to $R=10$. The relative square error (RSE) of the recovered tensor \mathcal{X} for all these algorithms is given by $\mathrm{RSE}=\|\mathcal{X}-\mathcal{T}\|_{F} /\|\mathcal{T}\|_{F}$. The experiments are performed with Matlab 7.11 on an Intel Core 2 Duo (3.0 GHz) PC running Windows XP with 2 GB main memory.

The average results (RSE and time cost) of 10 independent runs are shown in Table 1, where the order of tensor data varies from four to five. From the results shown in Table 1, we can see that our NNCP algorithm usually yields much more accurate solutions using less time, and often outperforms the other three compared algorithms including WTucker, WCP and FaLRTC in terms of RSE and efficiency.

We also study the convergence behaviors of WTucker, FaLRTC and our NNCP algorithm on the synthetic tensor data of size $80 \times 80 \times 80$ with the given ranks of the tensor $r_{1}=r_{2}=r_{3}=5$, as shown in Fig. 2 , where the ordinate is the \log-value of the residual of $\max \left\{\left\|M_{n}^{k+1}-U_{n}^{k+1}\right\|_{F}, n=1, \cdots, N\right\}$, or the relative change of \mathcal{X}^{k} achieved by three algorithms, and the abscissa denotes the number of iterations. We can observe that the relative change or the residual of NNCP drops much more quickly than WTucker and FaLRTC, and converges much faster within 50 iterations.

Figure 2: Convergence behaviors of WTucker, FaLRTC and NNCP on the synthetic tensor data of size $80 \times 80 \times$ 80.

[^1]Table 1: The RSE and time cost (seconds) comparison on the synthetic data:
(a) Tensor size: $20 \times 20 \times 20 \times 20 \times 20$

	WTucker		WCP		FaLRTC		NNCP	
SR	RSE	Time	RSE	Time	RSE	Time	RSE	Time
20%	$2.26 \mathrm{e}-01$	4071.76	$4.48 \mathrm{e}-01$	2634.85	$4.65 \mathrm{e}-01$	1198.77	$1.58 \mathrm{e}-01$	209.39
50%	$6.34 \mathrm{e}-02$	2451.53	$1.25 \mathrm{e}-01$	2463.57	$1.14 \mathrm{e}-01$	821.46	$7.86 \mathrm{e}-02$	224.67
80%	$3.17 \mathrm{e}-02$	3034.17	$7.26 \mathrm{e}-02$	2396.24	$5.77 \mathrm{e}-02$	852.21	$2.73 \mathrm{e}-02$	260.25

(b) Tensor size: $30 \times 30 \times 30 \times 30$

	WTucker		WCP		FaLRTC		NNCP	
SR	RSE	Time	RSE	Time	RSE	Time	RSE	Time
20%	$1.85 \mathrm{e}-01$	502.93	$9.72 \mathrm{e}-02$	708.04	$4.48 \mathrm{e}-01$	359.43	$9.48 \mathrm{e}-02$	34.59
50%	$6.59 \mathrm{e}-02$	439.52	$7.13 \mathrm{e}-02$	645.63	$1.16 \mathrm{e}-01$	512.85	$5.63 \mathrm{e}-02$	36.35
80%	$4.84 \mathrm{e}-02$	490.86	$5.40 \mathrm{e}-02$	669.63	$6.48 \mathrm{e}-02$	473.20	$1.85 \mathrm{e}-02$	39.81

Figure 3: The RSE results of WTucker, WCP and our NNCP algorithm versus the given tensor ranks.

To further evaluate the robustness of our NNCP algorithm with respect to the given tensor rank, we conduct some experiments on the rank- $(5,5,5)$ synthetic data of size $80 \times 80 \times 80$, and illustrate the recovery results of WTucker, WCP and our NNCP algorithm with 30% sampling rate, where the rank parameter R for these three algorithms is chosen from $\{10, \cdots, 30\}$. The average RSE results of 10 independent runs are shown in Fig. 3. In addition the RSE result of FaLRTC is 0.0343 . It is clear that our NNCP algorithm performs much more robust than both WTucker and WCP in terms of the tensor rank. More importantly, our NNCP method consistently yields much more accurate solutions than the other algorithms including WTucker, WCP and FaLRTC. This also confirms that our NNCP model with nuclear norm regularization can provide a good estimation of a low-rank tensor.
5.2 Large-Scale Link Prediction In this part, we examine our method on a real-world network, the YouTube data set ${ }^{4}$ [30]. YouTube is currently the most popular video sharing web site, which allows users to interact with each other in various forms such as contacts, subscriptions, sharing favorite videos, etc. In total, this data set reaches 848,003 users, with 15,088 users sharing all of the information types, and includes 5 -dimensions of interactions: contact network, co-contact network, co-subscription network, co-subscribed network, and favorite network. Additional information about the data can be found in [30]. We ran these experiments on a machine with 6 -core Intel Xeon 2.4 GHz CPU and 64 GB memory.

We address the link prediction problem as a tensor completion problem. We compare the link prediction results of NNCP, WTucker, WCP, Hard and FaLRTC on the YouTube data set. For our NNCP algorithm, we set the regularization parameter $\lambda=10$. The tolerance value of our NNCP method, WTucker, WCP, the hard completion (Hard) method ${ }^{5}$ [27] and FaLRTC is fixed at tol $=10^{-5}$. For FaLRTC, the weights w_{n} are set to $w_{n}=1 / 3, n=1,2,3$, and the smoothing parameters are set to $\mu_{n}=5 w_{n} / I_{n}, n=1,2,3$. Besides, for the hard completion method we let $\tau=10^{4}$ and $\lambda_{1}=\lambda_{2}=$ $\lambda_{3}=1$. For the three tensor decomposition methods including NNCP, WTucker and WCP, the tensor ranks are set to $R_{1}=R_{2}=40$ and $R_{3}=5$.

We use the 15,088 users who share all of the information types and have 5 -dimensions of interactions

[^2]

Figure 4: Time cost (seconds) comparison on the YouTube data set. For each dataset, we use 20% for training. Note that the other four methods including WTucker, WCP, Hard and FaLRTC could not run sizes $\{8,000,15,088\}$ due to runtime exceptions.

Figure 5: Average ROC curves showing the performance of link prediction methods with 10% and 20% training data, respectively.
in our experiments. So the data size is $15,088 \times$ $15,088 \times 5$. We first report the average running time (in seconds) of all these five algorithms over 10 independent runs in Fig. 4, when we vary the number of users. Our NNCP algorithm runs significantly faster than FaLRTC, WTucker, WCP and Hard. The runtime of NNCP increases only slightly when the number of users increases. This shows that our NNCP method has very
good scalability and can address large-scale problems. In contrast, the runtime of WTucker, WCP, FaLRTC and Hard increases dramatically. They could not yield experimental results within 48 hours when the number of users is 8,000 or 15,088 .

Next we study the link prediction accuracy. As the other methods cannot finish running when the problem size is large, we choose 4,117 users who have more than 10 interactions to form a data set of size $4,117 \times$ $4,117 \times 5$. We randomly select 10% or 20% entries as the training set, and the remainder as the testing data. We report the average prediction accuracy (the score Area Under the Receiver Operating Characteristic curve, AUC) over 10 independent runs in Fig. 5. We can see that two trace norm regularized tensor completion algorithms, NNCP and FaLRTC, outperform WTucker and WCP in terms of the prediction accuracy. Our NNCP algorithm can achieve very similar performance compared with FaLRTC in terms of AUC.

6 Conclusions and Future Work

We proposed a novel factor matrix n-rank minimization method based on the CP decomposition for low-rank tensor completion and decomposition tasks. We first used a factor matrix rank minimization instead of the low- n-rank minimization of involved tensors. Then, we relaxed the matrix rank into a tractable convex surrogate, and obtained a much smaller scale factor matrix nuclear norm minimization problem. Finally, we developed an efficient ADMM solving scheme to solve the proposed problem. Our experimental results on both synthetic and real-world data verified the efficiency and effectiveness of our NNCP algorithm.

Moreover, our NNCP algorithm can handle largescale tensor completion and decomposition problems, and its performance is very robust to the given tensor rank. For future work, we will conduct theoretical analysis on the relationship of the optimal solutions to our NNCP model (3.12) and the traditional tensor nuclear norm minimization model (2.4). We are also interested in exploring ways to regularize our proposed model with auxiliary information as in [23], [25].

Acknowledgments

We would like to thank Dr. Ji Liu of University of Wisconsin-Madison, Dr. Marco Signoretto of Katholieke Universiteit Leuven and Dr. Marko Filipovic for sharing their codes. This work is supported by the Hong Kong Research Grants Council (RGC) General Research Fund (GRF) Project Nos. CUHK 411211 and 411310, and the Chinese University of Hong Kong Direct Grant Nos. 4055015 and 4055017 . This last author is partially supported by the National Science Foundation under Grant

No. IIS1017415 and by the Army Research Laboratory under Cooperative Agreement No. W911NF-09-2-0053.

References

[1] E. Acar, D.M. Dunlavy, T.G. Kolda, and M. Morup. Scalable tensor factorizations with missing data. In SDM, pp. 701-711, 2010.
[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1-122, 2011.
[3] J. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM J. Optim., 20(4):1956-1982, 2010.
[4] E. J. Candes and B. Recht. Exact matrix completion via convex optimization. Found. Comput. Math., 9(6):717-772, 2009.
[5] E. J. Candes, and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory, 51(2):4203-4215, 2009.
[6] L. De Lathauwer. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl., 28:642-666, 2006.
[7] L. De Lathauwer and J. Vandewalle. Dimensionality reduction in higher-order signal processing and rank($\mathrm{r} 1, \mathrm{r} 2, \ldots$. rn) reduction in multilinear algebra. Lin. Algebra. Appl., 391:31-55, 2004.
[8] M. Fazel. Matrix rank minimization with applications. PhD Thesis, Stanford University, California, 2002.
[9] M. Filipovic and A. Jukic. Tucker factorization with missing data with application to low-n-rank tensor completion. Multidim. Syst. Sign. Process., 2014.
[10] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problem, 27(2), 025010, 2011.
[11] R.A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis. UCLA working papers in phonetics, 16:1-84, 1970.
[12] B. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim., 22(2):313-340, 2012.
[13] C. J. Hillar, L. H. Lim. Most tensor problems are NP hard. J. ACM, 45(6), 2013.
[14] R. Bro, H. A.L. Kiers. A new efficient method for determining the number of components in PARAFAC models. J. Chemometrics, 17:274-286, 2003.
[15] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.
[16] T.G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. in $I C D M$, pp. 363-372, 2008.
[17] L. Lathauwer, B Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253-1278, 2000.
[18] Z. Lin, M. Chen, and L. Wu. The augmented Lagrange multiplier method for exact recovery of corrupted lowrank matrices. Technical Report UILU-ENG-09-2215, Univ. Illinois, Urbana-Champaign, Oct. 2009.
[19] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. In $I C C V$, pp. 2114-2121, 2009.
[20] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. IEEE TPAMI, 35(1):208-220, 2013.
[21] Y. Liu, L. C. Jiao, and F. Shang. A fast tri-factorization method for low-rank matrix recovery and completion. pattern recogn., 46(1):163-173, 2013.
[22] M. Morup, L.K. Hansen, C.S. Herrmann, J. Parnas, and S.M. Arnfred. Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage, 29(3):938-947, 2006.
[23] A. Narita, K. Hayashi, R. Tomioka, and H. Kashima. Tensor facotiration using auxiliary information. DMKD, 25(2):298-324, 2012.
[24] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471501, 2010.
[25] F. Shang, L.C. Jiao, and F. Wang. Graph dual regularization non-negative matrix factorization for coclustering. pattern recogn., 45(6):2237-2250, 2012.
[26] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Method Softw., 29(2):239-263, 2014.
[27] M. Signoretto, Q. T. Dinh, L.D. Lathauwer, and J. Suykens. Learning with tensors: a framework based on covex optimization and spectral regulzation. Mach. Learn., in press, 2014.
[28] M. Signoretto, L.D. Lathauwer, and J. Suykens. Nuclear norms for tensors and their use for convex multilinear estimation. Technical Report 10-186, ESATSISTA, K. U. Leuven, 2010.
[29] J. Sun, S. Papadimitriou, C.-Y. Lin, N. Cao, S. Liu, and W. Qian. MultiVis: content-based social network exploration through multi-way visual analysis. In $S D M$, pp. 1063-1074, 2009.
[30] L. Tang, X. Wang and H. Liu. Uncovering groups via heterogeneous interaction analysis. In ICDM, pp. 503512, 2009.
[31] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279-311, 1966.
[32] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Prog. Comp., 4(4):333-361, 2012.
[33] Y. K. Yilmaz, A. T. Cemgil, and U. Simsekli. Generalized coupled tensor factorization. In NIPS, pp. 21512159, 2011.

[^0]: * Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong. \{yyliu, hcheng\}@se.cuhk.edu.hk
 ${ }^{\dagger}$ Department of Computer Science and Engineering, The Chinese University of Hong Kong. \{fhshang, jcheng\}@cse.cuhk.edu.hk
 ${ }^{\ddagger}$ Computer Science Department, City College, The City University of New York. tong@cs.ccny.cuny.edu

[^1]: ${ }^{1}$ http: //www.lair.irb.hr/ikopriva/marko-filipovi.html
 ${ }^{2}$ http://www.sandia.gov/~tgkolda/TensorToolbox/
 ${ }^{3}$ http://pages.cs.wisc.edu/~ji-liu/

[^2]: ${ }^{4}$ http $: / /$ leitang.net/heterogeneous_network.html
 ${ }^{5}$ https://sites.google.com/site/marcosignoretto/codes

