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ABSTRACT
MapReduce has become one of the most popular parallel com-
puting paradigms in cloud, due to its high scalability, reliability,
and fault-tolerance achieved for a large variety of applications in
big data processing. In the literature, there are MapReduce Class
MRC and Minimal MapReduce Class MMC to define the mem-
ory consumption, communication cost, CPU cost, and number of
MapReduce rounds for an algorithm to execute in MapReduce.
However, neither of them is designed for big graph processing in
MapReduce, since the constraints in MMC can be hardly achieved
simultaneously on graphs and the conditions in MRC may induce
scalability problems when processing big graph data. In this pa-
per, we study scalable big graph processing in MapReduce. We in-
troduce a Scalable Graph processing Class SGC by relaxing some
constraints in MMC to make it suitable for scalable graph process-
ing. We define two graph join operators in SGC, namely, EN join
and NE join, using which a wide range of graph algorithms can be
designed, including PageRank, breadth first search, graph keyword
search, Connected Component (CC) computation, and Minimum
Spanning Forest (MSF) computation. Remarkably, to the best of
our knowledge, for the two fundamental graph problems CC and
MSF computation, this is the first work that can achieve O(log(n))
MapReduce rounds with O(n + m) total communication cost in
each round and constant memory consumption on each machine,
where n and m are the number of nodes and edges in the graph re-
spectively. We conducted extensive performance studies using two
web-scale graphs Twitter-2010 and Friendster with different graph
characteristics. The experimental results demonstrate that our al-
gorithms can achieve high scalability in big graph processing.
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1. INTRODUCTION
As one of the most popular parallel computing paradigms for

big data, MapReduce [10] has been widely used in a lot of com-
panies such as Google, Facebook, Yahoo, and Amazon to process
a large amount of data in the order of tera-bytes everyday. The
success of MapReduce is due to its high scalability, reliability, and
fault-tolerance achieved for a large variety of applications and its
easy-to-use programming model that allows developers to develop
parallel data-driven algorithms in a distributed shared nothing envi-
ronment. A MapReduce algorithm executes in rounds. Each round
has three phases: map, shuffle, and reduce. The map phase gener-
ates a set of key-value pairs using a map function, the shuffle phase
transfers the key-value pairs into different machines and ensures
that key-value pairs with the same key arrive at the same machine,
and the reduce phase processes all key-value pairs with the same
key using a reduce function.

Motivation: In the literature, there are researches that define al-
gorithm classes in MapReduce in terms of memory consumption,
communication cost, CPU cost, and the number of rounds. Karloff
et al. [23] give the first attempt in which the MapReduce Class
(MRC) is proposed. MRC defines the maximal requirements for
an algorithm to execute in MapReduce, in the sense that if any con-
dition in MRC is violated, running the algorithm in MapReduce
is meaningless. Nevertheless, a better class is highly demanded
to guide the development of more stable and scalable MapReduce
algorithms. Thus, Tao et al. [41] introduce the Minimal MapRe-
duce Class (MMC) in which several aspects can achieve optimal-
ity simultaneously. A lot of important database problems including
sorting and sliding aggregation can be solved in MMC. However,
MMC is still incapable of solving a large range of problems espe-
cially for those involved in graph processing, which is an important
branch of big data processing. The reasons are twofold. First, a
graph usually has some inherent characteristics which make it hard
to achieve high parallelism. For example, a graph is usually un-
structured and highly irregular, making the locality of the graph
very poor [30]. Second, the loosely synchronised shared nothing
computing structure in MapReduce makes it difficult to achieve
high workload balancing and low communication cost simultane-
ously as defined in MMC when processing graphs (see Section 3
for more details). Motivated by this, in this paper, we relax some
conditions in MMC and define a new class of MapReduce algo-
rithms that is more suitable for scalable big graph processing.

Contributions: We make the following contributions in this paper.

(1) New class defined for scalable graph processing: We define a
new class SGC for scalable graph processing in MapReduce. We
aim at achieving three goals: scalability, stability, and robustness.
Scalability requires an algorithm to achieve good speed-up w.r.t the
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number of machines used. Stability requires an algorithm to ter-
minate in bounded number of rounds. Robustness requires that an
algorithm never fails regardless of how much memory each ma-
chine has. SGC relaxes two constraints defined in MMC, namely,
the communication cost on each machine, and the total number of
rounds. For the former, we define a new cost, that balances the
communication in a random manner where the randomness is re-
lated to the degree distribution of the graph. For the latter, we relax
the O(1) rounds defined in MMC to O(log(n)) where n is the
graph node number. In addition, we require the memory used in
each machine to be loosely related to the size of the input data, in
order to achieve high robustness. Such a condition is even stronger
than that defined in MMC. The robustness requirement is highly
demanded by a commercial database system, with which a database
administrator does not need to worry that the data grows too large
to reside entirely in the total memory of the machines.

(2) Two elegant graph operators defined to solve a large range of
graph problems: We define two graph join operators, namely, NE
join and EN join. NE join propagates information from nodes
to their adjacent edges and EN join aggregates information from
adjacent edges to nodes. Both NE join and EN join can be imple-
mented in SGC. Using the two graph join operators, a large range
of graph algorithms can be designed in SGC, including PageRank,
breadth first search, graph keyword search, Connected Component
(CC) computation, and Minimum Spanning Forest (MSF) compu-
tation. Especially, for CC and MSF computation, it is non-trivial to
solve them using graph operators in SGC. To the best of our knowl-
edge, for the two fundamental graph problems, this is the first work
that can achieve O(log(n)) MapReduce rounds with O(n + m)
total communication cost in each round and constant memory con-
sumption on each machine, where n and m are the number of nodes
and edges in the graph respectively. We believe our findings on
MapReduce can also guide the development of scalable graph pro-
cessing algorithms in other systems in cloud.

(3) Unified graph processing system: In all of our algorithms, we
enforce the input and output of any graph operation to be either a
node table or an edge table, with which a unified graph processing
system can be designed. The benefits are twofold. First, the unified
input and output make the system self-containable, on top of which
more complex graph processing tasks can be designed by chaining
several graph queries together. For example, one may want to find
all connected components of the subgraph induced by nodes that
are related to photography and hiking. This can be done by chain-
ing three graph queries: a graph keyword search query, an induced
subgraph query, and a connected component query, all of which are
studied in this paper. Second, by chaining multiple queries with
the unified input/output, more query optimization techniques can
be developed and integrated into the system.

(4) Extensive performance studies: We conducted extensive per-
formance studies using two real web-scale graphs Twitter-2010 and
Friendster, both of which have billions of edges. Twitter-2010 has a
smaller diameter with a skewed degree distribution, and Friendster
has a larger diameter with a more uniform degree distribution. All
of our algorithms can achieve high scalability on the two datasets.

Outline: Section 2 presents the preliminary. Section 3 introduces
the scalable graph processing class SGC and two graph operators
NE join and EN join in SGC. Section 4 presents three basic graph
algorithms in SGC. Sections 5 and 6 show how to compute CC
and MSF in SGC respectively. Section 7 evaluates the algorithms
in SGC using extensive experiments. Section 8 reviews the related
work and Section 9 concludes the paper.

2. PRELIMINARY
In this section, we introduce the MapReduce framework and re-

view the two algorithm classes in MapReduce in the literature.

2.1 The MapReduce Framework
MapReduce, introduced by Google [10], is a programming model

that allows developers to develop highly scalable and fault-tolerant
parallel applications to process big data in a distributed shared noth-
ing environment. A MapReduce algorithm executes in rounds. Each
round involves three phases: map, shuffle, and reduce. Assuming
that the input data is stored in a distributed file system as a set of
key-value pairs, the three phases work as follows.
• Map: In this phase, each machine reads a part of the key-value

pairs {(km
i , vmj )} from the distributed file system and generates

a new set of key-value pairs {(ks
i , v

s
j )} to be transferred to other

machines in the shuffle phase.
• Shuffle: The key-value pairs {(ks

i , v
s
j )} generated in the map

phase are shuffled across all machines. At the end of the shuffle
phase, all the key-value pairs {(ks

i , v
s
1), (ks

i , v
s
2), · · · } with the

same key ks
i are guaranteed to arrive at the same machine.

• Reduce: Each machine groups the key-value pairs with the same
key ks

i together as (ks
i , {vs1, vs2, · · · }), from which a new set of

key-value pairs {(kr
i , v

r
j )} is generated and stored in the dis-

tributed file system to be processed in the next round.
Two functions need to be implemented in each round: a map

function and a reduce function. A map function determines how to
generate {(ks

i , v
s
j )} from {(km

i , vmj )} whereas a reduce function
determines how to generate {(kr

i , v
r
j )} from (ks

i , {vs1, vs2, · · · }).

2.2 Algorithm Classes in MapReduce
In the literature, two algorithm classes have been introduced in

MapReduce, in terms of disk usage, memory usage, communica-
tion cost, CPU cost, and number of MapReduce rounds. Let S be
the set of objects in the problem and t be the number of machines
in the system. The two classes are defined as follows.
MapReduce Class MRC: The MapReduce Class MRC is intro-
duced by Karloff et al. [23]. Fix a ϵ > 0, a MapReduce algorithm
in MRC should have the following properties:
• Disk: Each machine uses O(|S|1−ϵ) disk space. The total disk

space used is O(|S|2−2ϵ).
• Memory: Each machine uses O(|S|1−ϵ) memory. The total

memory used is O(|S|2−2ϵ).
• Communication: In each round, each machine sends/receives

O(|S|1−ϵ) data. The total communication cost is O(|S|2−2ϵ).
• CPU: In each round, the CPU consumption on each machine is

O(poly(|S|)), i.e., polynomial to |S|.
• Number of rounds: The number of rounds is O(logi |S|) for a

constant i ≥ 0.
Minimal MapReduce Class MMC: The Minimal MapReduce
Class MMC is introduced by Tao et al. [41] which aims to achieve
outstanding efficiency in multiple aspects simultaneously. A MapRe-
duce algorithm in MMC should have the following properties:
• Disk: Each machine uses O( |S|

t ) disk space. The total disk
space used is O(|S|).

• Memory: Each machine uses O( |S|
t ) memory. The total mem-

ory used is O(|S|).
• Communication: In each round, each machine sends/receives

O( |S|
t ) data. The total communication cost is O(|S|).

• CPU: In each round, the CPU consumption on each machine is
O(

Tseq

t ), where Tseq is the time to solve the same problem on
a single sequential machine.

• Number of rounds: The number of rounds is O(1).
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3. SCALABLE GRAPH PROCESSING
MRC defines the basic requirements for an algorithm to execute

in MapReduce, whereas MMC requires several aspects to achieve
optimality simultaneously in a MapReduce algorithm. In the fol-
lowing, we analyze the problems involved in MRC and MMC in
graph processing and propose a new class SGC which is suitable
for scalable graph processing in MapReduce.

We first analyze MMC. Consider a graph G(V,E) with n =
|V | nodes and m = |E| edges. A common graph operation is to ex-
change data among all adjacent nodes (nodes that share a common
edge) in the graph G. The memory constraint in MMC requires
that all edges/nodes are distributed evenly among all machines in
the system. Let Ei,j be the set of edges (u, v) in G such that u is
in machine i and v is in machine j. The communication constraint
in MMC can be formalized as follows:

max
1≤i≤t

(Σ1≤j≤t,j ̸=i|Ei,j |) ≤ O((n+m)/t) (1)

This requires minimizing max1≤i≤t (Σ1≤j≤t,j ̸=i |Ei,j |) which
is an NP-hard problem [13]. Furthermore, even if the optimal
solution is computed, it is not guaranteed that min (max1≤i≤t

(
∑

1≤j≤t,j ̸=i |Ei,j |)) ≤ O(n+m
t ). Thus, MMC is not suitable

to define a graph algorithm in MapReduce.
Next, we discuss MRC. Since MRC defines the basic condi-

tions that a MapReduce algorithm should satisfy, a graph algorithm
in MapReduce is not an exception. However, like MMC, a better
class is always desirable to be defined for more stably and scalably
graph processing in MapReduce. Given a graph G(V,E) with n
nodes and m edges, assume that m ≥ n1+c, the authors in [23]
define a class based on MRC for graph processing in MapReduce,
in which a MapReduce algorithm has the following properties:
• Disk: Each machine uses O(n1+ c

2 ) disk space. The total disk
space used is O(m1+ c

2 ).
• Memory: Each machine uses O(n1+ c

2 ) memory. The total mem-
ory used is O(m1+ c

2 ).
• Communication: In each round, each machine sends/receives

O(n1+ c
2 ) data. The total communication cost is O(m1+ c

2 ).
• CPU: In each round, the CPU consumption on each machine is

O(poly(m)), i.e., polynomial to m.
• Number of rounds: The number of rounds is O(1).
Such a class has a good property that the algorithm runs in constant
rounds. However, it requires each machine to use O(n1+ c

2 ) mem-
ory, which can be large even for a dense graph. When the memory
of each machine cannot hold O(n1+ c

2 ) data, the algorithm fails no
matter how many machines are used in the system. Thus, the class
is not scalable to handle a graph with large n.

3.1 The Scalable Graph Processing Class SGC
We now explore a better class that is suitable for graph process-

ing in MapReduce. We aim at defining a MapReduce class in which
a graph algorithm has the following three properties.
• Scalability: The algorithm can always be speeded up by adding

more machines.
• Stability: The algorithm stops in bounded rounds.
• Robustness: The algorithm never fails regardless of how much

memory each machine has.
It is difficult to distribute the communication cost evenly among

all machines for a graph algorithm in MapReduce. The main rea-
son is due to the skewed degree distribution (e.g., power-law distri-
bution) for a large range of real-life graphs, in which some nodes
may have very high degrees. Hence, instead of using O(m+n

t ) as
the upper bound of communication cost per machine, we define a
weaker bound, denoted as Õ(mt , D(G, t)). Suppose the nodes are

MRC MMC SGC

Disk/machine O(n1+ c
2 ) O(n+m

t ) O(n+m
t )

Disk/total O(m1+ c
2 ) O(n + m) O(n + m)

Memory/machine O(n1+ c
2 ) O(n+m

t ) O(1)

Memory/total O(m1+ c
2 ) O(n + m) O(t)

Communication/machine O(n1+ c
2 ) O(n+m

t ) Õ(m
t , D(G, t))

Communication/total O(m1+ c
2 ) O(n + m) O(n + m)

CPU/machine O(poly(m)) O(
Tseq

t ) Õ(m
t , D(G, t))

CPU/total O(poly(m)) O(Tseq) O(n + m)
Number of rounds O(1) O(1) O(log(n))

Table 1: Graph Algorithm Classes in MapReduce
uniformly distributed among all machines, denote by Vi the set of
nodes stored in machine i for 1 ≤ i ≤ t, and let dj be the degree
of node vj in the input graph, Õ(mt , D(G, t)) is defined as:

Õ(
m

t
,D(G, t)) = O( max

1≤i≤t
(Σvj∈Vidj)) (2)

D(G, t) =
t− 1

t2
Σvj∈V d2j (3)

Lemma 3.1: Let xi (1 ≤ i ≤ q) be the communication cost upper
bound for machine i, i.e., xi =

∑
vj∈Vi

dj , the expected value of
xi, E(xi) = 2m

t , and the variance of xi, V ar(xi) = D(G, t). ✷

The proof of Lemma 3.1 is omitted due to space limitation. Note
that the variance of the degree distribution of G, denoted V ar(G),
is (

∑
vj∈V (dj − 2m

n )2)/n = (nΣvj∈V d2j − 4m2)/n2. For fixed
t, n, and m values, minimizing D(G, t) is equivalent to minimizing
V ar(G). In other words, the variance of communication cost for
each machine is minimized if all nodes in the graph have the same
degree. We define the scalable graph processing class SGC below.

Scalable Graph Processing Class SGC: A graph MapReduce al-
gorithm in SGC should have the following properties:
• Disk: Each machine uses O(m+n

t ) disk space. The total disk
space used is O(m+n). This is the minimal requirement, since
we need at least O(m+ n) disk space to store the data.

• Memory: Each machine uses O(1) memory. The total memory
used is O(t). This is a very strong constraint, to ensure the
robustness of the algorithm. Note that the memory defined here
is the memory used in the map and reduce phases. There is also
memory used in the shuffle phase, which is usually predefined
by the system and is independent of the algorithm.

• Communication: In each round, each machine sends/receives Õ
(mt , D(G, t)) data, and the total communication cost is O(m+
n), where G is the input graph in the round.

• CPU: In each round, the CPU cost on each machine is Õ (mt ,
D(G, t)), where G is the input graph in the round. The CPU
cost defined here is the cost spent in the map and reduce phases.

• Number of rounds: The number of rounds is O(log(n)).
Discussion: For the memory constraint, SGC only requires each
machine to use constant memory, that is to say, even if the total
memory of the system is smaller than the input data, the algorithm
can still be processed successfully. This is an even stronger con-
straint than that defined in MMC. Nevertheless, we give the flex-
ibility for the algorithm to run other query optimization tasks using
the free memory, which can be orthogonally studied to our work.
Given the constraints on memory, communication, and CPU, it is
nearly impossible for a wide range of graph algorithms to be pro-
cessed in constant rounds in MapReduce. Thus, we relax the O(1)
rounds defined in MMC to O(log(n)) rounds, which is reason-
able since O(log(n)) is the processing time lower bound for a large
number of parallel graph algorithms in the parallel random-access
machines, and is practical for the MapReduce framework as evi-
denced by our experiments. The comparison of the three classes
for graph processing in MapReduce is shown in Table 1.
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3.2 Two Graph Operators in SGC
We assume that a graph G(V,E) is stored in a distributed file

system as a node table V and an edge table E. Each node in the
table has a unique id and some other information such as label
and keywords. Each edge in the table has id1, id2 defining the
source and target node ids of the edge, and some other information
such as weight and label. We use the node id to represent the node
if it is obvious. G can be either directed or undirected. For an
undirected graph, each edge is stored as two edges (id1, id2) and
(id2, id1). In the following, we introduce two graph operators in
SGC, namely, NE join, and EN join, using which a large range of
graph problems can be designed.

3.2.1 NE Join
An NE join aims to propagate the information on nodes into

edges, i.e., for each edge (vi, vj) ∈ E, an NE join outputs an edge
(vi, vj , F (vi)) (or (vi, vj , F (vj))) where F (vi) (or F (vj)) is a set
of functions operated on vi (or vj) in the node table V . Given a
node table Vi and an edge table Ej , an NE join of Vi and Ej can
be formulated using the following algebra:

Πid1,id2,f1(c1)→p1,f2(c2)→p2,···(σcond(c)((Vi → V )

✶NE
id,id′ (Ej → E)))|C(cond′(c′)) → cnt (4)

or equivalently in the following SQL form:
select id1, id2, f1(c1) as p1, f2(c2) as p2, · · ·
from Vi as V NE join Ej as E on V.id = E.id′

where cond(c)
count cond′(c′) as cnt

where each of c, c′, c1, c2, · · · is a subset of fields in the two tables
Vi and Ej , fk is a function operated on the fields ck, and cond
and cond′ are two functions that return either true or false defined
on the fields in c and c′ respectively. id′ can be either id1 or id2.
The count part counts the number of trues returned by cond′(c′)
and the number is assigned to a counter cnt, which is useful in
determining a terminate condition for an iterative algorithm.

NE join in MapReduce: The NE join operation can be imple-
mented in MapReduce as follows. Let the set of fields used in V
be cv , and the set of fields used in E be ce. In the map phase,
for each node v ∈ V , the values in cv with key v.id are emitted
as a key-value pair (v.id, v.cv). For each edge e ∈ E, the values
in ce with key e.id′ are emitted as a key-value pair (e.id′, e.ce).
In the reduce phase, for each node id, the set of key-value pairs
{(id, v.cv), (id, e1.ce), (id, e2.ce), · · · } can be processed as a data
stream without loading the whole set into memory. Assuming that
(id, v.cv) comes first before all other key-value pairs (id, ei.ce) in
the stream (this can be implemented as a secondary sort in MapRe-
duce), the algorithm first loads (id, v.cv) into memory and then
processes each (id, ei.ce) one by one. For a certain (id, ei.ce), the
algorithm checks cond(c). If cond(c) returns false, the algorithm
skips (id, ei.ce) and continues to process the next (id, ei+1.ce).
Otherwise, the algorithm calculates all fj(cj) and cond′(c′) from
(id, v.cv) and (id, ei.ce), outputs the selected fields as a single tu-
ple into the distributed file system, and increases cnt if cond′(c′)
returns true. It is easy to see that NE join belongs to SGC.

3.2.2 EN Join
An EN join aims to aggregate the information on edges into

nodes, i.e., for each node vi ∈ V , an EN join outputs a node
(vi, G(adj(vi))) where adj(vi) = {(vi, vj) ∈ E}, and G is a
set of decomposable aggregate functions on the edge set adj(vi),
where a decomposable aggregate function is defined as follows:

Definition 3.1: (Decomposable Aggregate Function) An aggregate
function gk is decomposable if for any dataset s, and any two sub-

Algorithm 1 PageRank(V (id), E(id1, id2), d)

1: Vr ←
∏

id,cnt(id2)→d, 1
|V |→r

(V ✶EN
id,id1

E);

2: for i = 1 to d do
3: Er ←

∏
id1,id2, r

d
→p(Vr ✶NE

id,id1
E);

4: Vr ←
∏

id,d, α
|V |+(1−α)sum(Er.p)→r(Vr ✶EN

id,id2
Er);

5: return
∏

id,r(Vr);

sets of s, s1 and s2, with s1 ∩ s2 = ∅ and s1 ∪ s2 = s, gk(s) can
be computed using gk(s1) and gk(s2). ✷

Given a node table Vi and an edge table Ej , an EN join of Vi

and Ej can be formulated using the following algebra:
Πid,g1(c1)→p1,g2(c2)→p2,···(σcond(c)((Vi → V )

✶EN
id,id′ (Ej → E)))|C(cond′(c′)) → cnt (5)

or equivalently in the following SQL form:
select id, g1(c1) as p1, g2(c2) as p2, · · ·
from Vi as V EN join Ej as E on V.id = E.id′

where cond(c)
group by id
count cond′(c′) as cnt

where each of c, c′, c1, c2, · · · is a subset of fields in the two
tables Vi and Ej , and id′ can be either id1 or id2. The where part
and count part are analogous to those defined in NE join. gk is a
decomposable aggregate function operated on the fields in ck, by
grouping the results using node ids as denoted in the group by part.
Since the group by field is always the node id, we omit the group
by part in Eq. 5 for simplicity.

EN join in MapReduce: The EN join operation can be imple-
mented in MapReduce as follows. Let the set of fields used in V be
cv , and the set of fields used in E be ce. The map phase is similar
to that in the NE join. That is, for each node v ∈ V , the values in
cv with key v.id are emitted as a key-value pair (v.id, v.cv), and
for each edge e ∈ E, the values in ce with key e.id′ are emitted as a
key-value pair (e.id′, e.ce). In the reduce phase, for each node id,
the set of key-value pairs {(id, v.cv), (id, e1.ce), (id, e2.ce), · · · }
can be processed as a data stream without loading the whole set
into memory. Assuming that (id, v.cv) comes first before all other
key-value pairs (id, ei.ce) in the stream, the algorithm first loads
(id, v.cv) into memory and then processes each (id, ei.ce) one by
one. For each function gk, since gk is decomposable, gk({e1, e2,
· · · , ei}) can be calculated using gk({e1, e2, · · · , ei−1}) and
gk({ei}). After processing all (id, ei.ce), all the gk functions are
computed. Finally, the algorithm checks cond(c). If cond(c) re-
turns true, it outputs the id as well as all the gk values as a single
tuple into the distributed file system and increases cnt if cond′(c′)
returns true. It is easy to see that EN join belongs to SGC.

4. BASIC GRAPH ALGORITHMS
The combination of NE join and EN join can solve a wide range

of graph problems in SGC. In this section, we introduce some
basic graph algorithms, including PageRank, breadth first search,
and graph keyword search, in which the number of rounds is deter-
mined by a user given parameter or a graph factor which is small
and can be considered as a constant. We will introduce more com-
plex algorithms that need logarithmic rounds in the worst case in
the next sections, including connected component and minimum
spanning forest computation.

PageRank. PageRank is a key graph operation which computes the
rank of each node based on the links (directed edges) among them.
Given a directed graph G(V,E), PageRank is computed iteratively.
Let the initial rank of each node be 1

|V | , in iteration i, the rank of a
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Algorithm 2 BFS(V (id), E(id1, id2, s)

1: Vd ←
∏

id,id=s?0:φ→d(V )

2: for i = 1 to +∞ do
3: Ed ←

∏
id1,id2,d→d1

(Vd ✶NE
id,id1

E);

4: Vd ←
∏

id,((d=φ∧min(d1) ̸=φ)?i:d)→d(Vd ✶EN
id,id2

Ed) | C(d =

i)→ nnew ;
5: if nnew = 0 then break;
6: return Vd;

Algorithm 3 KWS(V (id, t), E(id1, id2), {k1, · · · , kl}, rmax)

1: Vr ←
∏

id,k1∈t?(id,0):(φ,φ)→(p1,d1),··· ,

kl∈t?(id,0):(φ,φ)→(pl,dl)
(V );

2: for i = 1 to rmax do
3: Er ←

∏
id1,id2,(p1,d1)→(pe1 ,de1 ),··· ,

(pl,dl)→(pel
,del

) (Vr ✶NE
id,id1

E);

4: Vr ←
∏

id,amin(p1,d1,pe1 ,de1+1)→(p1,d1),··· ,

amin(pl,dl,pel
,del

+1)→(pl,dl)
(Vr ✶EN

id,id2
Er);

5: return
∏

Vr.∗(σd1 ̸=φ∧···∧dl ̸=φ(Vr));

node v is computed as ri(v) = α
|V |+(1−α)

∑
u∈nbrin(v)

ri−1(u)

d(u) ,
where 0 < α < 1 is a parameter, nbrin(v) is the set of in-
neighbors of v in G, and d(u) is the number of out-neighbors of
u in G.

The PageRank algorithm in SGC is shown in Algorithm 1. Given
the node table V (id), the edge table E(id1, id2), and the number of
iterations d, initially, the algorithm computes the out-degree of each
node using V ✶EN

id,id1 E, assigns an initial rank 1
|V | to each node,

and generates a new table Vr (line 1). Then, the algorithm updates
the node ranks in d iterations. In each iteration, the ranks of nodes
are updated using an NE join followed by an EN join. In the NE
join, the partial rank p(v) = r(v)

d(v) for each node v is propagated to
all its outgoing edges using Vr ✶id,id1 E and a new edge table Er

is generated (line 3). In the EN join, for each node v, the partial
ranks p(u) from all its incoming edges (u, v) are aggregated. The
new rank is computed as α

|V | + (1− α)
∑

u∈nbrin(v)(p(u)) using
Vr ✶EN

id,id2 Er , and Vr is updated with the new ranks (line 4).

Breadth First Search. Breadth First Search (BFS) is a fundamen-
tal graph operation. Given an undirected graph G(V,E), and a
source node s, a BFS computes for every node v ∈ V the shortest
distance (i.e., the minimum number of hops) from s to v in G.

The BFS algorithm in SGC is shown in Algorithm 2. Given a
node table V (id), an edge table E(id1, id2), and a source node s,
the algorithm computes for each node v the shortest distance d(v)
from s to v. Initially, a node table Vd is created with d(s) = 0
and d(v) = φ for v ̸= s (line 1). Next, the algorithm iteratively
computes the nodes with d(v) = i from nodes with d(v) = i − 1.
Each iteration i is processed using an NE join followed by an EN
join. The NE join propagates d(u) into each edge (u, v) using
Vd ✶NE

id,id1 E and produces a new table Ed. The EN join updates
all d(v) based on the following rule:
(Distance Update Rule): In the i-th iteration of BFS, a node v is
assigned d(v) = i iff in the (i−1)-th iteration, d(v) = φ and there
exists a neighbor u of v such that d(u) ̸= φ.
The rule can be easily implemented using Vd ✶EN

id,id2 Ed (line 4)
in which it also computes a counter nnew which is the number of
nodes with d(v) = i. When nnew = 0, the algorithm terminates.
It is easy to see that the number of iterations for Algorithm 2 is no
larger than the diameter of the graph G. Thus the algorithm belongs
to SGC if the diameter of the graph is small.

Graph Keyword Search. We now investigate a more complex al-
gorithm, namely, keyword search in an undirected graph G(V,E).

Algorithm 4 CC(V (id), E(id1, id2))

1: Vm ←
∏

id,min(id,id2)→p(V ✶EN
id,id1

E);

2: Vc ←
∏

V.id,V.p,cnt(V ′.id)→c((Vm → V ) ✶EN
id,p (Vm → V ′));

3: Vp ←
∏

id,((c=0∧id=p)?min(id2):p)→p(Vc ✶EN
id,id1

E);
4: while true do
5: Vs ← star(Vp);
6: Eh ←

∏
id1,id2,p→p1

(Vs ✶NE
id,id1

E);

7: V ′
h ←

∏
id,p,min(p,p1)→pm

(σs=1(Vs ✶EN
id,id2

Eh));

8: Vh ←
∏

Vs.id,(cnt(pm)=0?Vs.p:min(pm))→p(Vs ✶EN
id,p V ′

h);
9: Vs ← star(Vh);
10: Eu ←

∏
id1,id2,p→p1

(Vs ✶NE
id,id1

E);

11: V ′
u ←

∏
id,p,min(p1|p1 ̸=p)→pm

(σs=1(Vs ✶EN
id,id2

Eu));

12: Vu ←
∏

Vs.id,(cnt(pm)=0?Vs.p:min(pm))→p(Vs ✶EN
id,p V ′

u);
13: Vp ←

∏
V ′.id,V.p((Vu → V ) ✶NE

id,p (Vu → V ′)) | C(V ′.p ̸=
V.p)→ ns;

14: if ns = 0 then break;
15: return Vp;

16: Procedure star(Vp)

17: Vg ←
∏

V ′.id,V ′.p,V.p→g,(V.p=V ′.p?1:0)→s ((Vp → V ) ✶NE
id,p (

Vp → V ′));
18: V ′

s ←
∏

V.id,V.p,and(V.s,V ′.s)→s ((Vg → V ) ✶EN
id,g (Vg → V ′));

19: Vs ←
∏

V ′.id,V ′.p,(V ′.s=0?0:V.s)→s ((V ′
s → V ) ✶NE

id,p (V ′
s → V ′));

20: return Vs;

Suppose for each v ∈ V , t(v) is the text information included in v.
Given a keyword query with a set of l keywords Q = {k1, k2, · · · ,
kl}, a keyword search [16, 17] finds a set of rooted trees in the form
of (r, {(p1, d(r, p1)), (p2, d(r, p2)), · · · , (pl, d(r, pl))}), where r
is the root node, pi is a node that contains keyword ki in t(pi), and
d(r, pi) is the shortest distance from r to pi in G for 1 ≤ i ≤ l.
Each answer is uniquely determined by its root node r. rmax is the
maximum distance allowed from the root node to a keyword node
in an answer, i.e., d(r, pi) ≤ rmax for 1 ≤ i ≤ l.

Graph keyword search can be solved in SGC. The algorithm is
shown in Algorithm 3. Given a node table V (id, t), an edge ta-
ble E(id1, id2), a keyword query {k1, k2, · · · , kl}, and rmax, the
algorithm first initializes a table Vr , where in each node v, for ev-
ery ki, a pair (pi, di) is generated as (id(v), 0) if ki is contained
in v.t, and (φ,φ ) otherwise (line 1). Then the algorithm itera-
tively propagates the keyword information from each node to its
neighbor nodes using rmax iterations. In each iteration, the key-
word information for each node is first propagated into its adjacent
edges using NE join, and then the information on edges is grouped
into nodes to update the keyword information on each node using
EN join. Specifically, the NE join generates a new edge table
Er , in which each edge (u, v) is embedded with keyword infor-
mation (p1(u), d1(u)), · · · , (pl(u), dl(u)) retrieved from node u
using Vr ✶NE

id,id1 E (line 3). In the EN join Vr ✶EN
id,id2 E (line 4),

each node updates its nearest node pi that contains keyword ki us-
ing an amin function, which is defined as:

amin({(p1, d1), · · · , (pk, dk)}) = (pi, di)|(di = min1≤j≤kdj) (6)

amin is a decomposable since for any two sets s1 and s2 with
s1 ∩ s2 = ∅, the following equation holds:

amin(s1 ∪ s2) = amin({amin(s1), amin(s2)}) (7)

After rmax iterations, for all nodes v in Vr , its nearest node pi that
contains keyword ki(1 ≤ i ≤ l) with distance di = d(v, pi) ≤
rmax is computed. The algorithm returns the nodes with di ̸= φ
for all 1 ≤ i ≤ l as the final set of answers (line 5).

5. CONNECTED COMPONENT
Given an undirected graph G(V,E) with n nodes and m edges,

a Connected Component (CC) is a maximal set of nodes that can
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Figure 2: Initialize CC: Compute Vm

reach each other through paths in G. Computing all CCs of G is a
fundamental graph problem and can be solved efficiently on a se-
quential machine using O(n+m) time. However, it is non-trivial to
solve the problem in MapReduce. Below, we briefly introduce the
state-of-the-art algorithms for CC computation, followed by pre-
senting our algorithm in SGC.

5.1 State-of-the-art
We present three algorithms for CC computation in MapReduce:

HashToMin, HashGToMin, and PRAM-Simulation. HashToMin
and HashGToMin are two MapReduce algorithms proposed in [36],
with a similar idea to use the smallest node in each CC as the rep-
resentative of the CC, assuming that there is a total order among all
nodes in G. PRAM-Simulation is to simulate the algorithm in the
Parallel Random Access Machine (PRAM) model in MapReduce
using the simulation method proposed in [23].

Algorithm HashToMin: Each node v ∈ V maintains a set Cv ini-
tialized as Cv = {v} ∪ {u|(u, v) ∈ E}. Let vmin = min{u|u ∈
Cv}, the algorithm updates Cv in iterations until it converges. Each
iteration is processed using MapReduce as follows. In the map
phase, for each v ∈ V , two types of key-value pairs are emitted:
(1) (vmin, Cv), and (2) (u, {vmin}) for all u ∈ Cv . In the re-
duce phase, for each v ∈ V , a set of key-value pairs are received
in forms of {(v, C1

v), · · · , (v, Ck
v )}. The new Cv is updated as⋃

1≤i≤k Ci
v . The HashToMin algorithm finishes in O(log(n))

rounds1, with O(log(n)(m+n)) total communication cost in each
round. The algorithm can be optimized to use O(1) memory on
each machine using secondary sort in MapReduce.

Algorithm HashGToMin: Each node v ∈ V maintains a set Cv

initialized as Cv = {v}. Let C≥v = {u|u ∈ Cv, u > v} and
vmin = min{u|u ∈ Cv}, the algorithm updates Cv in iterations
until it converges. Each iteration is processed using three MapRe-
duce rounds. In the first two rounds, each round updates Cv as
Cv ∪ {umin|(u, v) ∈ E} in MapReduce. The third round is pro-
cessed as follows. In the map phase, for each v ∈ V , two types of
key-value pairs are emitted: (1) (vmin, C≥v), and (2) (u, {vmin})
for all u ∈ C≥v . In the reduce phase, for each v ∈ V , a set of
key-value pairs are received in forms of {(v, C1

v), · · · , (v, Ck
v )}.

The new Cv is updated as
⋃

1≤i≤k Ci
v . The HashGToMin al-

gorithm finishes in Õ(log(n)) (i.e., expected O(log(n))) rounds,
with O(m+n) total communication cost in each round. However,
it needs O(n) memory for a single machine to hold a whole CC in
memory. Thus, as indicated in [36], HashGToMin is not suitable
to handle a graph with large n.

Algorithm PRAM-Simulation: The PRAM model allows multiple
processors to compute in parallel using a shared memory. There
are CRCW PRAM if concurrent writes are allowed, and CREW
PRAM if not. In [23], a theoretical result shows that an CREW

1The result is only proved on a path graph in [36].
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PRAM algorithm in O(t) time can be simulated in MapReduce in
O(t) rounds. For the CC computation problem, in the literature, the
best result in CRWE PRAM is presented in [22] which computes
CCs in O(log(n)) time. However, it needs to compute the 2-hop
node pairs which requires O(n2) communication cost in the worst
case in each round. Thus, the simulation algorithm is impractical.

5.2 Connected Component in SGC
We introduce our algorithm to compute CCs in SGC. Concep-

tually, the algorithm shares similar ideas with most deterministic
O(log(n)) CRCW PRAM algorithms, such as [39] and [6], but it
is a non-trivial adaption since each operation should be carefully
designed using graph joins in SGC. Our algorithm maintains a for-
est using a parent pointer p(v) for each v ∈ V . Each rooted tree
in the forest represents a partial CC. A singleton is a tree with one
node, and a star is a tree of height 1. A tree is an isolated tree
if there are no edges in E that connect the tree to another tree.
The forest is iteratively updated using two operations: hooking and
pointer jumping. Hooking merges several trees into a larger tree,
and pointer jumping changes the parent of each node to its grand-
parent in each tree. When the algorithm ends, each tree becomes
an isolated star that represents a CC in the graph.

Specifically, the algorithm first initializes a forest to make sure
that no singletons exist except for isolated singletons. Then, the al-
gorithm updates the forest in iterations. In each iteration, two hook-
ing operations, namely, a conditional star hooking and an uncondi-
tional star hooking, followed by a pointer jumping operation are
performed. The two hooking operations eliminate all non-isolated
stars in the forest and the pointer jumping operation produces new
stars to be eliminated in the next iteration. Our algorithm CC is
shown in Algorithm 4, which includes five components: Forest Ini-
tialization (line 1-3), Star Detection (line 16-20), Conditional Star
Hooking (line 5-8), Unconditional Star Hooking (line 9-12), and
Pointer Jumping (line 13-14). We explain the algorithm using a
sample graph G(V,E) shown in Fig. 1.

Forest Initialization: The forest is initialized in three steps. (1) In
the first step, a table Vm is computed, in which each node v finds
the smallest node among its neighbors in G including itself as the
parent p(v) of v, i.e., p(v) = min{v ∪ {u|(u, v) ∈ E}}. Such an
operation guarantees that no cycles are created except for self cy-
cles (i.e., p(v) = v). The operation can be done using V ✶EN

id,id1 E
as shown in line 1. (2) In the second step, we create a table Vc

by counting the number of subnodes for each node in the forest,
i.e., for each node v, c(v) = |{u|p(u) = v}|. This can be done
using a self EN join Vm ✶EN

id,p Vm where the second Vm is con-
sidered as an edge table since it has two fields representing node
ids (line 2). (3) In the third step, we create Vp by eliminating all
non-isolated singletons. A node v is a singleton, iff c(v) = 0 and
p(v) = v. A non-isolated singleton v can be eliminated by as-
signing p(v) = min{u|(u, v) ∈ E}, which can be done using
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Vc ✶EN
id,id1 E (line 3). Obviously, no cycles (except for self cycles)

are created in Vp.
For example, for the graph G shown in Fig. 1, the forest Vm is

shown in Fig. 2, where solid edges represent parent pointers and
dashed edges represent graph edges. p(17) = 10 since 10 is the
smallest neighbor of 17 in G. p(2) = 2 since 2 has no neighbor
which is smaller than 2. There are two singletons 9 and 16, which
are eliminated in Vp as shown in Fig. 3, by pointing 9 to 12 and
16 to 17, since 12 is the smallest neighbor of 9 in G and 17 is the
smallest neighbor of 16 in G.

Star Detection: We need to detect whether each node belongs to a
star before hooking. We use s(v) = 1 to denote that v belongs to a
star and s(v) = 0 otherwise. The star detection is done using three
steps based on the following three filtering rules:
• (Rule-1): A node v does not belong to a star if p(v) ̸= p(p(v)).
• (Rule-2): A node v does not belong to a star if ∃u, such that u

does not belong to a star and p(p(u)) = v.
• (Rule-3): A node v does not belong to a star if p(v) does not

belong to a star.
It is guaranteed that after applying the three rules one by one in
order, all non-stars are filtered. We now introduce how to apply
the three rules using graph join operators. (Rule-1) For each node
v, we find its grandparent g(v) = p(p(v)), and assign 1 or 0 to
s(v) depending on whether p(v) = g(v). This can be done using
a self join Vp ✶NE

id,p Vp as shown in line 17. (Rule-2) A node
v belongs to a star after applying Rule-2 if s(v) = 1 and for all
u such that g(u) = v, s(u) = 1. Thus, we use an aggregate
function and(s(v), s(u)) which is a boolean function and returns
1 iff s(v) = 1 and ∀g(u) = v, s(u) = 1. This can be done using a
self join Vg ✶EN

id,g Vg for Vg created in Rule-1 as shown in line 18.
(Rule-3) For each node v, we compute s(p(v)) and assign s(v) = 0
if s(p(v)) = 0. This can be done using a self join V ′

s ✶NE
id,p V ′

s for
V ′
s created in Rule-2 as shown in line 19.
For example, Fig. 4 shows Vg by applying Rule-1 on Vp shown

in Fig. 3. The grey nodes are those detected as non-star nodes, i.e.,
s(v) = 0. For node 11, it does not belong to a star as (g(11) =
3) ̸= (p(11) = 4). Fig. 5 shows V ′

s by applying Rule-2 on Vg .
Two new nodes 1 and 3 are filtered as non-star nodes. For node 3,
s(3) = 0 since there exists node 11 with g(11) = 3 and s(11) = 0.
Fig. 6 shows Vs by applying Rule-3 on V ′

s . Three nodes 10, 13 and
4 are filtered. For node 4, s(4) = 0 since its parent node 3 has
s(3) = 0. In Vs, all non-star nodes are filtered, and 3 stars rooted
at 2, 5 and 7 are detected.

Conditional Star Hooking: In a conditional star hooking, for any
node v which is the root of a star (i.e., p(v) = v and s(v) = 1),
the parent of v is updated to min{{p(v)} ∪ {u|∃(x, y) ∈ E, s.t.
p(x) = u and p(y) = v}}. In other words, v is hooked to a
new parent u, if u is no larger than v, and the tree that u lies in
is connected to the star that v lies in through an edge (x, y) with
p(x) = u and p(y) = v. The operation ensures that p(v) is no
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larger than v in order to make sure that no cycles (except for self
cycles) are created. After the hooking, it is guaranteed that there
are no edges that connect two stars. Conditional star hooking is
done in three steps. (1) Create a new edge table Eh by embedding
p(x) to each edge (x, y) ∈ E using Vs ✶NE

id,id1 E (line 6), where
Vs is the forest with all stars detected (line 5). (2) Create a table
V ′
h, in which for each node y such that y is in a star, pm(y) =

min{{p(y)}∪{p(x)|(x, y) ∈ E}} is computed. This can be done
using σs=1(Vs ✶EN

id,id2 Eh) (line 7). (3) Create a table Vh, in which
the parent of each node v is updated to min{pm(y)|p(y) = v} if
such pm exists using Vs ✶EN

id,p V ′
h (line 8).

For example, for Vs shown in Fig. 6 with all stars detected, there
exists an edge (x, y) = (15, 18) with u = p(x) = 5 and v =
p(y) = 7. Since 7 is in a star and 5 < 7, 7 is hooked to a new
parent 5 by assigning p(7) = 5 as shown in Fig. 7. Note that 5 is
also in a star in Vs, however, since 7 > 5, we cannot hook 5 to 7
by assigning p(5) = 7 after which a cycle is created.

Unconditional Star Hooking: Unconditional star hooking is sim-
ilar to conditional star hooking by dropping the condition that a
node v should be hooked to a parent u with u ≤ v. It is done us-
ing the similar three steps (line 10-12) with the only difference on
the second step, which calculates pm(y) as min{p(x)|(x, y) ∈ E
and p(x) ̸= p(y)}, instead of min{{p(y)}∪ {p(x)|(x, y) ∈ E}}.
We add a condition p(x) ̸= p(y) to avoid hooking a star to it-
self in order to make sure that all non-isolated stars are eliminated.
Unconditional star hooking does not create cycles (except for self
cycles) due to the fact that after conditional star hooking, there is
no edge that connects two stars.

For example, for the forest Vh shown in Fig. 7, there is only one
star rooted at node 2. There exists an edge (x, y) = (19, 17) with
u = p(x) = 2 and v = p(y) = 10 and u ̸= v, so 2 is hooked to a
new parent 10 as shown in Fig. 8 with no stars existing.

Pointer Jumping: Pointer jumping changes the parent of each
node to its grandparent in the forest Vu generated in unconditional
star hooking by assigning p(v) = p(p(v)) for each node v. This
can be done using a self join Vu ✶NE

id,p Vu (line 13). In pointer
jumping, we also create a counter ns which counts the number of
nodes with p(v) ̸= p(p(v)). When ns = 0, all stars in Vu are iso-
lated stars and the algorithm terminates with each star represents a
CC (line 14). For example, for the forest Vu computed in uncon-
ditional star hooking, after pointer jumping, the new forest Vp is
shown in Fig. 9 with two stars with roots 3 and 5 generated.

The following theorem shows the efficiency of Algorithm 4. Due
to lack of space, the proof is omitted.

Theorem 5.1: Algorithm 4 stops in O(log(n)) iterations. ✷

The comparison of algorithms HashToMin, HashGToMin, and
our algorithm CC is shown in Table 2 in terms of the memory con-
sumption per machine, total communication cost per round, and the
number of rounds, in which our algorithm is the best in all factors.
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HashToMin HashGToMin CC

Memory/machine O(1) O(n) O(1)
Communication/round O(log(n)(n + m)) O(n + m) O(n + m)

Number of rounds O(log(n)) Õ(log(n)) O(log(n))

Table 2: CC Computation Algorithms in MapReduce

6. MINIMUM SPANNING FOREST
Given a weighted undirected graph G(V,E) of n nodes and m

edges, with each edge (u, v) ∈ E assigned a weight w((u, v)), a
Minimum Spanning Forest (MSF) is a spanning forest of G with
the minimum total edge weight. We also use (u, v, w((u, v))) to
denote an edge. Although MSF can be efficiently computed on a
sequential machine using O(m + n log(n)) time, it is non-trivial
to solve the algorithm in MapReduce.

6.1 State-of-the-art
We introduce two algorithms in MRC, namely, OneRoundMSF

and MultiRoundMSF. OneRoundMSF is proposed in [23] and
MultiRoundMSF is proposed in [25].

Algorithm OneRoundMSF: Fix a number k, the algorithm parti-
tions V into k equally sized subsets randomly, i.e., V = V1 ∪ V2 ∪
· · ·∪ Vk with Vi ∩ Vj = ∅ for i ̸= j. Then k(k − 1)/2 graphs
Gi,j for 1 ≤ i < j ≤ k are created. Each Gi,j is a subgraph of
G induced by nodes Vi ∪ Vj . Next, the MSF of each Gi,j , Mi,j is
computed in parallel in k(k− 1)/2 machines. Finally, all Mi,j are
merged in a single machine as a new graph H , and the MSF of H is
computed as the MSF of G. The algorithm can be processed using
one round of MapReduce, and it requires H with size O(n1+ c

2 ) to
fit in the memory of a single machine assuming that m ≥ n1+c.

Algorithm MultiRoundMSF: OneRoundMSF does not work effi-
ciently since every node is duplicated k−1 times. MultiRoundMSF
proposed in [25] improves OneRoundMSF using multiple rounds
of MapReduce. In each round, the edges E are partitioned into l
equally sized subsets randomly, i.e., E = E1 ∪E2 ∪ · · ·∪El with
Ei∩Ej = ∅ for i ̸= j. The MSF of each Ei, Ti is computed in par-
allel in l machines, and the new E is assigned T1 ∪ T2 ∪ · · · ∪ Tl.
The algorithm stops when |E| ≤ n1+ϵ for a constant ϵ and the
MSF of E is computed in a single machine as the MSF of G. The
algorithm requires a single machine to have O(n1+ϵ) memory.

6.2 Minimum Spanning Forest in SGC
Suppose there is a total order among all edges as follows. For

any two edges e1 = (u1, v1, w1) and e2 = (u2, v2, w2), e1 <
e2 iff one of the following conditions holds: (1) w1 < w2, (2)
w1 = w2 and min(u1, v1) < min(u2, v2), and (3) w1 = w2,
min(u1, v1) = min(u2, v2), and max(u1, v1) < max(u2, v2).

Our algorithm is based on the Sollin’s Algorithm [5] for MSF
computation, in which the following lemma plays a key role.

Lemma 6.1: For any Vs ⊆ V , the smallest edge in {(u, v)|u ∈
Vs, v /∈ Vs} is in the MSF. ✷

Our algorithm MSF shares similar ideas with Algorithm 4 for
CC computation. We maintain a forest using parent pointers. Trees
in the forest are merged to form larger trees in iterations, and the
algorithm terminates when all trees in the forest become isolated
stars. In each iteration, the forest is updated using two operations,
namely, hooking and pointer jumping. Hooking eliminates all stars

Algorithm 5 MSF(V (id), E(id1, id2, w))

1: Vp ←
∏

id,min((id1,id2,w))→em,em.id2→p(V ✶EN
id,id1

E);
2: Et ←

∏
em

(σem ̸=φ(Vp));
3: while true do
4: Vb ←

∏
V ′.id,((V ′.id=V.p∧V ′.id<V.id)?V ′.id:V.id)→p((Vp →

V ) ✶NE
id,p (Vp → V ′));

5: Vc ←
∏

V ′.id,V.p((Vb → V ) ✶NE
id,p (Vb → V ′)) | C(V ′.p ̸=

V.p)→ ns;
6: if ns = 0 then break;
7: Vs ← star(Vc);
8: Em ←

∏
(id1,id2,w)→e,p→p1

(Vs ✶NE
id,id1

E);

9: Vm ←
∏

id,p,amin(e,p1|p1 ̸=p)→(em,pm)(σs=1(Vs ✶EN
id,id2

Em));

10: Vp ←
∏

Vs.id,(cnt(pm)=0?(φ,Vs.p):amin(em,pm))→(em,p)(Vs

✶EN
id,p Vm);

11: Et ← Et ∪ (
∏

em
(σem ̸=φ(Vp)));

12: return Et;
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Figure 10: A Sample Graph and Forest Initialization
by merging them into other trees and pointer jumping decreases the
depth of the trees to generate new stars. The algorithm is different
from Algorithm 4 mainly in three aspects:

• Hooking Strategy: Different from CC computation, in MSF, a
star cannot be arbitrarily hooked to a tree as long as there is an
edge connecting them. Instead, a star can only be hooked to a
tree using an edge that is minimum among all edges leaving the
star, as indicated in Lemma 6.1.

• Cycle Breaking: The above hooking strategy may produce cy-
cles among multiple nodes. We need a strategy to break all such
cycles without breaking any tree apart.

• MSF Maintenance: Instead of maintaining the forest defined by
parent pointers, we also need to maintain the MSF which is an-
other forest different from the forest defined by parent pointers.

The algorithm MSF is shown in Algorithm 5. We introduce MSF
in terms of Forest Initialization (line 1-2), Cycle Breaking (line 4),
Pointer Jumping (line 5-6), and Edge Hooking (line 7-11). We ex-
plain the algorithm using a sample graph G(V,E) shown in Fig. 10(a)

Forest Initialization: Suppose we use p(v) to denote the parent
pointer of each node v ∈ V , and use edge table Et to maintain the
edges in MSF. In the initialization step, for each node v ∈ V , the
algorithm finds its minimum adjacent edge (u, v) ∈ E, hooks v to
u using p(v) = u, and adds (u, v) to the MSF Et by Lemma 6.1.
The hooking can be done using V ✶EN

id,id1 E (line 1). Let Vp be
the forest after the hooking, it is guaranteed that no singletons exist
in Vp except for isolated singletons. It is possible that in Vp, cycles
of multiple nodes can be formed by parent pointers, however, the
following lemma shows a good property of Vp using which a cycle
breaking method can be applied efficiently.

Lemma 6.2: Each cycle in Vp is with length no larger than 2. ✷

For example, for the graph shown in Fig. 10(a), after forest ini-
tialization, the forest Vp is shown in Fig. 10(b). Node 2 is hooked
to 13 since the edge (2, 13, 7) is the smallest edge among all adja-
cent edges of 2 in G. Note that node 13 is also hooked to node 2 by
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the same edge (2, 13, 7), thus a cycle of size 2 is formed by nodes
2 and 13. All the edges in Vp are added to the MSF Et.

Cycle Breaking: Cycle breaking breaks the cycles to make sure
that there are no cycles except for self cycles in the forest. Accord-
ing to Lemma 6.2, a cycle of length 2 can be easily detected if there
is a node v with p(v) ̸= v and p(p(v)) = v. We can eliminate such
cycles using the following rule:
(Cycle Breaking Rule): For a node v with p(v) ̸= v and p(p(v)) =
v, if p(v) > v, then assign v to p(v).
By applying the rule, we create a table Vb with no cycles (except
for self cycles) using a self join Vp ✶NE

id,p Vp as shown in line 4.
For example, for the forest Vp in Fig. 10(b), the node 4 has

p(4) = 6 ̸= 4 and p(p(4)) = 4. Since p(4) > 4, by applying
the cycle breaking rule, p(4) is updated to 4. The new forest Vb

with no cycles of length larger than 1 is shown in Fig. 11.

Pointer Jumping: Pointer jumping is analogous to that in Algo-
rithm 4, which creates a table Vc by changing the parent of each
node v to its grandparent, using p(v) = p(p(v)) by a self join
Vb ✶NE

id,p Vb as shown in line 5. Again, in pointer jumping, we
create a counter ns to count the number of non-star nodes. When
ns = 0, the algorithm terminates and outputs Et as the MSF of G.

For example, after pointer jumping, the forest Vb in Fig. 11 is
changed to the forest Vc in Fig. 12. The parent of node 8 changes to
its grandparent 4, and two new stars with roots 7 and 4 are created.

Edge Hooking: Edge hooking aims to eliminate all stars (except
for isolated stars) in the forest Vc . Suppose we create a table
Vs in line 7 with all stars detected using the same procedure star
in Algorithm 4. In edge hooking, for any node v which is the
root of a star (i.e., p(v) = v and s(v) = 1), let (x, y, w) =
min{(x′, y′, w′)|p(y′) = v, p(x′) ̸= p(y′)}, then v is assigned a
new parent u = p(x) after hooking. Edge hooking is done in three
steps. (1) Create a new edge table Em by embedding p(x) to each
edge (x, y, w) ∈ E using Vs ✶NE

id,id1 E (line 8). (2) Create a table
Vm, in which for each node y such that y is in a star, pm(y) = p(x)
with em(y) = (x, y, w) = min{(x′, y′, w′)|p(y′) = v, p(x′) ̸=
p(y′)} is computed. This can be done with an aggregate function
amin((x, y, w), p(x)|p(x) ̸= p(y)) using the EN join σs=1 (Vs

✶EN
id,id2 Em) (line 9). (3) Create a table Vp, in which the parent

of each node v is updated to pm(y) with (x, y, w) = min{em(y)
| p(y) = v} if such pm exists using Vs ✶EN

id,p Vm (line 10). The
corresponding edge em = min{em(y)|p(y) = v} is added to the
MSF table Et (line 11) by Lemma 6.1 if it exists. It is guaranteed
that Lemma 6.2 still holds on the Vp created in edge hooking.

For example, for Vc in Fig. 12, there exists an edge (x, y) =
(15, 16) with u = p(x) = 9 and v = p(y) = 7. Since 7 is the root
of a star and (15, 16, 13) = min{(x′, y′w′)|p(y′) = 7, p(x′) ̸=
7} = min{(10, 7, 15), (9, 18, 14), (15, 16, 13), (5, 2, 14)}, 7 is
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Figure 13: Edge Hooking: Compute Vp

OneRoundMSF MultiRoundMSF MSF

Memory/machine O(n1+ c
2 ) O(n1+ϵ) O(1)

Communication/round O(m1+ c
2 ) O(n + m) O(n + m)

Number of rounds O(1) O(
logn(m)−1

ϵ ) O(log(n))

Table 3: MSF Computation Algorithms in MapReduce
hooked to 9 as shown in Fig. 13. Similarly, 4 is also hooked to
9. The edges (15, 16, 13) and (12, 8, 10) are added to the MSF Et.

The following theorem shows the efficiency of Algorithm 5. Due
to lack of space, the proof is omitted.

Theorem 6.1: Algorithm 5 stops in O(log(n)) iterations. ✷

The comparison of algorithms OneRoundMSF, MultiRoundMSF,
and our algorithm MSF is shown in Table 3 in terms of memory
consumption per machine, total communication cost per round, and
the number of rounds. As we will show later in our experiments, the
high memory requirement of OneRoundMSF and MultiRoundMSF
becomes the bottleneck for the algorithms to achieve high scalabil-
ity when handling graphs with large n.

7. PERFORMANCE STUDIES
In this section, we show our experimental results. We deploy

a cluster of 17 computing nodes, including one master node and
16 slave nodes, each of which has four Intel Xeon 2.4GHz CPUs
and 15GB RAM running 64-bit Ubuntu Linux. We implement all
algorithms using Hadoop (version 1.2.1) with Java 1.6. We allow
each node to run three mappers and three reducers concurrently,
each of which uses a heap size of 2048MB in JVM. The block size
in HDFS is set to be 128MB, the data replication factor of HDFS is
set to be 3, and the I/O buffer size is set to be 128KB.

Datasets: We use two web-scale graphs Twitter-20102 and Friend-
ster3 with different graph characteristics for testing.
• Twitter-2010 contains 41,652,230 nodes and 1,468,365,182 edges

with an average degree of 71. The maximum degree is 3,081,112
and the diameter of Twitter-2010 is around 24.

• Friendster contains 65,608,366 nodes and 1,806,067,135 edges
with an average degree of 55. The maximum degree is 5,214
and the diameter of Friendster is around 32.

Algorithms: Besides the five algorithms PageRank (Algorithm
1), BFS (Algorithm 2), KWS (Algorithm 3), CC (Algorithm 4),
and MSF (Algorithm 5), we also implement the algorithms for
PageRank, BFS, and graph keyword search using the join opera-
tions supported by Pig (http://pig.apache.org/) on Hadoop, denoted
PageRank-Pig, BFS-Pig and KWS-Pig respectively. Since the
algorithms for PageRanks, BFS, and graph keyword search are
rather simple, i.e., for each algorithm, only two MapReduce jobs
are needed in each iteration for both Pig and our implementation,
the main difference between Pig and our implementation is how
the join operation is implemented. In Pig, the join operation is
implemented using a load-and-join manner where each key-value
pair is accessed for more than once in the reducer, and in our im-
plementation, the join operation is implemented as a streaming
2http://law.di.unimi.it/webdata/twitter-2010/
3http://snap.stanford.edu/data/com-Friendster.html
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Figure 14: PageRank
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Figure 15: Breadth First Search

manner as introduced in Section 3.2 where each key-value pair is
accessed for only once in the reducer. For CC computation, we
implement HashToMin and HashGToMin as introduced in Sec-
tion 5 by integrating all the optimization techniques introduced in
[36], and for MSF computation, we implement OneRoundMSF
and MultiRoundMSF as introduced in Section 6. All the four
algorithms OneRoundMSF, MultiRoundMSF, HashToMin, and
HashGToMin, and all our algorithms proposed in this paper are
implemented by java using plain MapReduce in Hadoop without
using Pig or other MapReduce based translators.

Parameters: For each dataset, we extract subgraphs of 20%, 40%,
60%, 80% and 100% nodes of the original graph with a default
value of 60%. We also vary the number of slave nodes t in the
cluster from 4 to 16 with a default value of 10. We test both pro-
cessing time and maximum communication cost on each machine.
The curves for the communication cost are very similar to those
for processing time, thus we only show the processing time due to
lack of space. We set the maximum running time to be 36 hours.
If a test does not stop in the time limit, or fails due to out of mem-
ory exception, we will denote the processing time using INF. For
PageRank, we consider each graph as a directed graph and for other
algorithms, we consider each graph as an undirected graph.

Exp-1: PageRank. We test PageRank . We set the default number
of iterations d to be 6. The testing results are shown in Fig. 14.
Fig. 14 (a) and Fig. 14 (b) demonstrate the curves for Twitter-2010
and Friendster respectively when varying the size of the graph from
20% to 100%. The time for both PageRank and PageRank-Pig
increases when the size of the graph increases. PageRank-Pig is
1.5 to 3 times slower than PageRank. This is because Pig is not
optimized for graph processing using the techniques in NE join
and EN join introduced in Section 3. Fig. 14 (c) and Fig. 14
(d) show the results on Twitter-2010 and Friendster respectively
when varying the number of slave nodes t in the cluster from 4 to
16. When t increases, the processing time for both PageRank and
PageRank-Pig decreases. PageRank can achieve high scalability
in both Twitter-2010 and Friendster. PageRank-Pig is 2.3 times
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Figure 17: Minimum Spanning Forest

slower than PageRank on average. We also vary the number of
iterations d from 2 to 10. The processing time for both PageRank
and PageRank-Pig increases linearly with the number of iterations.
The curves are not shown due to lack of space.

Exp-2: Breadth First Search. Fig. 15 shows the testing results
for BFS and BFS-Pig by setting the depth of BFS to be 6. The
curves on Twitter-2010 and Friendster when varying the graph size
are shown in Fig. 15 (a) and Fig. 15 (b) respectively. The results are
similar to those in PageRank. As shown in Fig. 15 (c) and Fig. 15
(d), when increasing t from 4 to 16, the processing time for both
BFS and BFS-Pig decreases, and the time decreases more sharply
when t is smaller. This is because when t is smaller, each machine
will spend more time on shuffling and sorting data on disk, which
is costly. We also vary the depth of BFS d from 2 to 10. The curves
are omitted since the processing time for both BFS and BFS-Pig
increases linearly with d.

Exp-3: Graph Keyword Search. We randomly generate some
keywords in both Twitter-2010 and Friendster, and test KWS and
KWS-Pig using a keyword query with 3 keywords and rmax = 3
by default. The trends by varying n and t on both Twitter-2010
and Friendster are similar to those in BFS, since in graph keyword
search, the keyword information on each node is propagated to its
neighbors in a BFS manner in iterations. We also vary rmax from
1 to 5. Again, the processing time for both KWS and KWS-Pig
increases linearly with rmax. Due to space limitation, we omit the
figures for graph keyword search in the paper.

Exp-4: Connected Component. We test three algorithms: CC,
HashToMin, and HashGToMin. Since HashGToMin fails in al-
most all test cases due to the out of memory exception, we only
show the testing results for HashToMin and CC.

Fig. 16 (a) shows the curves when varying the size of the graph
in Twitter-2010. When the number of nodes n in the graph is 20%,
HashToMin and CC have similar performance. However, when
n increases, the processing time of HashToMin increases more
sharply than CC. The reasons are twofold. First, HashToMin gen-
erates more intermediate results than CC, which increase both the
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communication cost and the cost for sorting data on each machine.
This is consistent with the theoretical results shown in Table 2. Sec-
ond, HashToMin needs to sort all the edges in the graph in order
to achieve constant memory consumption on each machine, which
is very costly. Fig. 16 (b) shows the testing results on Friendster
when varying n. HashToMin cannot stop in the time limit when
n increases to 60% while CC still keeps stable. The reason is due
to the large intermediate results generated by HashToMin. Note
that Friendster is a graph with a large diameter and uniform de-
gree distribution. In such a graph, the number of iterations used in
HashToMin is large. Since the communication cost of HashToMin
in each round is linear with respect to the number of iterations used,
a large number of intermediate results are generated and shuffled by
HashToMin in each round, making HashToMin inefficient.

The testing results when varying t on Twitter-2010 and Friend-
ster are shown in Fig. 16 (c) and Fig. 16 (d) respectively. In Twitter-
2010, the processing time for both CC and HashToMin decreases
when t increases. When t increases to 13, the time for HashToMin
decreases more slowly than CC. HashToMin is 1.5 to 2.2 times
slower than CC in all test cases. When varying t in Friendster,
HashToMin cannot stop in the time limit until t reaches 16 due to
the large number of intermediate results generated, while the pro-
cessing time of CC decreases stably when t increases.

Exp-5: Minimum Spanning Forest. In our last set of experi-
ments, we compare three algorithms: MSF, OneRoundMSF, and
MultiRoundMSF. OneRoundMSF runs out of memory for all test
cases, thus we only show the testing results for MultiRoundMSF
and MSF. We assign each edge a random weight uniformly in
(0, 1). We also tested other methods of assigning edge weights
(e.g., using other distributions). We find that the weight assignment
method has small effect on the efficiency of the algorithms.

The testing results are shown in Fig. 17, in which Fig. 17 (a)
and Fig. 17 (b) show the curves when varying n and Fig. 17 (c)
and Fig. 17 (d) show the curves when varying t. Not surprisingly,
MultiRoundMSF runs out of memory in most cases, since it re-
quires a single machine to have a memory size super-linear to the
number of nodes in the graph. In Fig. 17 (b), when increasing n
from 20% to 100%, the processing time of MSF increases near
linearly, demonstrating the high scalability of MSF. As shown
in Fig. 17 (c) and Fig. 17 (d), once MultiRoundMSF runs out of
memory, the problem cannot be solved by adding more machines in
the system, while the performance of MSF can be improved stably
when the number of slaves increases from 4 to 16.

Exp-6: Degree Distribution Test. We test the impact of degree
distribution to the efficiency of the algorithms proposed in this pa-
per. Recall that the datasets Twitter-2010 and Friendster have dif-
ferent degree distributions. Twitter-2010 has a skewed degree dis-
tribution with maximum degree 3,081,112, and Friendster has a
more uniform degree distribution with maximum degree 5,214. We
test the CC algorithm on both Twitter-2010 and Friendster. First,
we take the processing time for n = 20% as 1, and test the relative
processing time scale when varying n from 20% to 100% on both
Twitter-2010 and Friendster. The result is shown in Fig. 18 (a). The
curves for processing time scale on Twitter-2010 and Friendster are

similar, which indicates that the processing time scale when vary-
ing n is not largely impacted by the degree distribution. Next, we
take the processing time for t = 4 as 1, and test the speedup of the
algorithm when varying t from 4 to 16 on both Twitter-2010 and
Friendster. The result is shown in Fig. 18 (b). When t is large, the
speedup of CC on Twitter-2010 increases slower than Friendster,
because the nodes with very high degree in Twitter-2010 become
the bottleneck for the speedup, while the speedup for Friendster
still keeps increasing stably when t = 16. For other proposed algo-
rithms, we can get similar result. Due to space limitation, we only
show the result for the CC algorithm in the paper.

8. RELATED WORK
MapReduce Framework: MapReduce [10] is a big data process-
ing framework that has become the de facto standard used through-
out both industry and academia. In industry, Google has developed
a MapReduce system on the distributed key-value store BigTable
on top of GFS (Google File System). Yahoo has developed a MapRe-
duce system Hadoop and a high level data flow language Pig based
on a distributed key-value store HBase on top of HDFS (Hadoop
Distributed File System). Facebook has developed a SQL-like data
warehouse infrastructure Hive based on Hadoop using a key-value
store Cassandra. Microsoft has developed two languages, Scope
and DryadLINQ, based on the distributed execution engine Dryad.
Amazon has developed a key-value store called Dynamo.

In academia, Hadoop++ by Dittrich et al. [11] improves the per-
formance of Hadoop using user-defined functions. Column-based
storage is studied by Floratou et al. [14] and hybrid-based storage
is studied by Lin et al. [28] to speed up MapReduce tasks. HAIL is
proposed by Dittrich et al. [12] to improve the upload pipeline of
HDFS. Query optimization in MapReduce is discussed by Jahani
et al. [18] and Lim et al. [27]. Mulit-query and iterative query
optimization in MapReduce are studied by Wang et al. [45] and
Onizuka et al. [34] respectively. Cost analysis of MapReduce is
given by Afrati et al. [3]. Some other works focus on solving a spe-
cific type of query in MapReduce. For example, set similarity joins
in MapReduce are studied by Vernica et al. [44] and Metwally and
Faloutsos [32]. Theta joins in MapReduce are discussed by Okcan
and Riedewald [33] and Zhang et al. [48]. Multiway joins are opti-
mized by Afrati et al. [4]. KNN joins in MapReduce are proposed
by Lu et al. [29]. A survey on distributed data management and
processing using MapReduce is given by Li et al. [26].

Graph Processing Systems in Cloud: Many graph processing
systems are developed in order to deal with big graphs. One rep-
resentative such system is Pregel [31], and its open source imple-
mentation Giraph and HAMA based on Hadoop. Pregel takes a
vertex-centric approach and implements a bulk synchronous paral-
lel (BSP) computation model [43], which targets towards iterative
computation on graphs. HipG [24] improves BSP by using asyn-
chronous messages to avoid synchronization. Microsoft Research
Labs develop a distributed in-memory based graph processing en-
gine called Trinity [38, 47] based on a hypergraph model. Pow-
erGraph [15] is a distributed graph processing system that is op-
timized to process power-law graphs. Distance oracle is studied
in [35]. Giraph++ is proposed in [42] to take graph partitioning
into consideration when processing graphs. Workload balancing
for graph processing in cloud is discussed in [37].

Graph Processing in MapReduce: Many graph algorithms in-
cluding triangles/rectangles enumeration, k-cliques computation,
barycentric clustering, and components finding in MapReduce are
discussed in [9]. In [25], several techniques are proposed to re-
duce the size of the input in a distributed fashion in MapReduce,
and the techniques are applied for several graph problems such
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as minimum spanning trees, approximate maximal matchings, ap-
proximate node/edge covers, and minimum cuts. Triangle counting
in MapReduce is optimized in [40]. Diameter and radii computa-
tions in MapReduce are studied in [20]. Personalized PageRank
computation in MapReduce is studied in [7]. Matrix multiplica-
tion based graph mining algorithms in MapReduce are discussed
in [19, 21]. Densest subgraph computation in MapReduce is stud-
ied in [8]. Subgraph instances enumeration in MapReduce is pro-
posed in [2]. Algorithms for connected components computation
in MapReduce in logarithmic rounds are discussed in [36]. Max-
imum clique computation in MapReduce is studied in [46]. Re-
cursive query processing such as transitive closure computation in
MapReduce is discussed in [1].

Algorithm Classes in MapReduce: Algorithm classes in MapRe-
duce are studied by Karloff et al. [23] and Tao et al. [41], both
of which have been introduced in details in Section 2. Note that
by defining a new class for graph processing in MapReduce, we
focus on the scalability issues that can be commonly achieved by
a class of graph algorithms in MapReduce. The query optimiza-
tion techniques introduced in the MapReduce framework can be
orthogonally studied to our work by case-to-case analyses. Each of
the algorithms studied in this paper can certainly benefit from fur-
ther optimization using techniques such as multi-query optimiza-
tion [45] and iterative query optimization [34] which are beyond
the main scope of research in this paper.

9. CONCLUSIONS
In this paper, we study scalable big graph processing in MapRe-

duce. We review previous MapReduce classes, and propose a new
class SGC to guide the development of scalable graph processing
algorithms in MapReduce. We introduce two graph join operators
using which a large range of graph algorithms can be designed in
SGC. Especially, for two fundamental graph algorithms CC com-
putation and MSF computation, we improve the state-of-the-art al-
gorithms both in theory and practice. We conducted extensive per-
formance studies using real web-scale graphs to show the high scal-
ability achieved for our algorithms in SGC.
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