
Mining Closed Discriminative Dyadic Sequential Patterns

David Lo♯, Hong Cheng§, and Lucia♯
♯School of Information Systems, Singapore Management University

§Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong

{davidlo,lucia.2009}@smu.edu.sg,hcheng@se.cuhk.edu.hk

ABSTRACT
A lot of data are in sequential formats. In this study, we are
interested in sequential data that goes in pairs. There are
many interesting datasets in this format coming from var-
ious domains including parallel textual corpora, duplicate
bug reports, and other pairs of related sequences of events.
Our goal is to mine a set of closed discriminative dyadic
sequential patterns from a database of sequence pairs each
belonging to one of the two classes +ve and -ve. These
dyadic sequential patterns characterize the discriminating
facets contrasting the two classes. They are potentially good
features to be used for the classification of dyadic sequential
data. They can be used to characterize and flag correct and
incorrect translations from parallel textual corpora, auto-
mate the manual and time consuming duplicate bug report
detection process, etc. We provide a solution of this new
problem by proposing new search space traversal strategy,
projected database structure, pruning properties, and novel
mining algorithms. To demonstrate the scalability and util-
ity of our solution, we have experimented with both syn-
thetic and real datasets. Experiment results show that our
solution is scalable. Mined patterns are also able to im-
prove the accuracy of one possible downstream application,
namely the detection of duplicate bug reports using pattern-
based classification.

Categories and Subject Descriptors: H.2.8 [Database
Applications]: Data Mining

1. MOTIVATION & INTRODUCTION
A lot of data are in sequential formats. Some examples

include series of words in a textual document, DNA se-
quences, protein sequences, purchase histories, program ex-
ecution traces, etc. In these data sources each data unit is a
sequence of atomic events. For example, in textual corpora,
each document is a sequence of words. Much of this data
could be analyzed to extract important knowledge useful to
decision makers.
In this work, we are interested in the analysis of sequential

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

data. We specifically consider data in the form of pairs of se-
quences. Each data unit is composed of two sequences, and
we consider a database of such sequence pairs. Our data
representation is motivated by many data sources in this
particular data format from various domains including soft-
ware engineering, text mining, social network, etc. Thus, an
algorithm that could analyze such data sources potentially
leads to many real-world applications. We illustrate some
examples in the following paragraphs.
In the software engineering domain, there are important

problems requiring the analysis of pairs of sequences. One of
such problems is the detection of duplicate bug reports [22].
Duplicate bug reports are parallel textual documents ex-
pressed in different ways. Daily, large software vendors, e.g.,
Microsoft, receive millions of bug reports from their clients.
Due to the flexibility of natural language, many bug reports,
referring to the same problem, could be expressed in vari-
ous ways. This causes a problem as software engineers (also
referred to as bug triagers) are flooded with a large mass of
bug reports to be checked. Mining patterns that discrimi-
nate pairs of bug reports that are duplicate from those that
are not would be very useful to address this problem.
In the text mining domain, recently there is an active

interest on automated machine translations [19]. A trans-
lation is simply a mapping of two documents, each being
a sequence of word tokens describing the same content in
different ways. Some translations are bad while others are
good. It would be interesting to find some rules that differ-
entiate good from bad translations. There are many books
describing common language error patterns, e.g., [14]. Min-
ing common good or bad translation patterns would help in
automated machine translation work, where the translation
process is performed by a machine.
One could imagine many other data expressed as a pair

of sequences, e.g., a pair of program traces representing the
activities or behaviors of two related sub-systems, a pair of
sequences of activities performed by two accomplices in a
fraud case (e.g., Enron), etc.
All the above problems necessitate a need to mine from

pairs of sequences. Class labels could be attached to these
pairs, e.g., duplicate or not, good or bad translation, cor-
rect or erroneous program execution, fraud or not, etc. All
the above problems would benefit from a mining engine that
could extract features that discriminate good from bad pairs.
These features are in the form of pairs of sequential pat-
terns referred to in this paper as dyadic sequential patterns.
In particular, we are interested to mine patterns that are
both frequent and discriminative. Also, rather than mining

1

all frequent and discriminative patterns, it would be bet-
ter to mine a compact set of patterns, for example, closed
patterns [27, 24] which are a lossless compression of all fre-
quent patterns. We refer to our problem as mining closed
discriminative dyadic sequential patterns.
Mining dyadic sequential patterns poses a number of tech-

nical challenges. First, there is a need to define the search
space and specify a good search space traversal strategy so
that no pattern is visited more than once or missed. Second,
there is a need to design a good data structure for efficient
mining of dyadic sequential patterns. Different from a stan-
dard sequential pattern, a dyadic pattern consists of two
sequences and there is no restriction that the left sequence
of the pattern needs to match the left sequence of a sequence
pair in the database. Indeed, it could match either the left
or the right sequence. There is also a need to identify new
properties that could be used to prune the search space of
infrequent, non-closed, and non-discriminative dyadic pat-
terns. It would be best if a direct mining strategy could be
performed where non-interesting patterns are removed early
rather than late (i.e., via a post-mining filtering step).
We address the above challenges in our proposed min-

ing solution. At a high-level view, which would be made
concrete in subsequent sections, our algorithm traverses the
search space of possible patterns in a depth first search fash-
ion by extending smaller patterns to larger ones. We employ
a traversal strategy to ensure that no patterns are visited
more than once. Also, all interesting (i.e., frequent, closed,
and discriminative) patterns would be visited. During the
traversal, pattern statistics are computed efficiently and in-
crementally by leveraging a novel data structure. Search
spaces containing non-interesting patterns are pruned to sig-
nificantly reduce the number of unfruitful checks of bad pat-
tern candidates. In the process, frequent, closed, and dis-
criminative patterns are output when they are found.
We experiment our solution on a number of synthetic

datasets to test the sensitivity of our approach on various
dataset parameters. We also experiment our solution on a
real bug report dataset and show that we could mine inter-
esting patterns which could help to improve the accuracy in
detecting duplicate bug reports.
The contributions of this work are as follows:
1 We propose a new problem of mining closed discrimina-

tive dyadic sequential patterns and show the potential
applications.

2 We propose a new algorithm that utilizes a new search
space traversal strategy, a new data structure, and sev-
eral new and adapted pruning strategies.

3 We show the scalability of our solution on several syn-
thetic and real datasets.

4 We show the utility of our solution in improving a
downstream application task, in particular the detec-
tion of duplicate bug reports.

This paper is structured as follows. Section 2 describes
related work. Section 3 formalizes some important concepts
and definitions. Section 4 describes our new search space
traversal strategy. Our data structure is presented in Sec-
tion 5. We state several properties and theorems in Sec-
tion 6. We elaborate several variants of our proposed algo-
rithm in Section 7. Experimental results on synthetic and
real datasets are presented in Section 8. We conclude and
discuss future work in Section 9.

2. RELATED WORK
Agrawal and Srikant proposed frequent itemset mining

in [4]. Given a transaction database, the task is to find item-
sets that are frequent in the database based on a user defined
minimum support threshold. There have been a number of
studies extending frequent itemset mining to mine a set of
closed itemsets [25], improve mining speed [23], etc.
Agrawal and Srikant later extended frequent itemset min-

ing to sequential pattern mining in [5]. In sequential pat-
tern mining, frequent patterns are mined from sequences.
Hence, there is a temporal order among elements in a pat-
tern. Given a sequence database, the task is to find sequen-
tial patterns that appear in no less than a minimum number
of sequences. There have been a number of studies extending
standard sequential pattern mining, including mining closed
patterns [27, 24], generators [12, 16], repetitive patterns [17,
10], non-redundant rules [18], discriminative sequential pat-
terns [15], as well as parallel sequential pattern mining [9].
In this work, we extend sequential pattern mining by min-
ing dyadic sequential patterns. A dyadic sequential pattern
comprises of two sequences. The new problem setting re-
quires new search space traversal strategy, data structure,
pruning strategies, and algorithms.
Dong and Li propose emerging patterns in [11], which are

patterns that appear more frequently in one class than the
other. Cheng et al. propose discriminative itemset patterns
based on information gain and show that these patterns are
useful for improving classification accuracy [7]. Cheng et al.
later extend their approach to directly mine discriminative
patterns with a branch-and-bound search strategy [8]. Lo et
al. mine discriminative sequences from program execution
traces [15]. Yan et al. mine discriminative graphs from a
graph database [26]. Similar to the work by Lo et al. [15], we
mine discriminative sequential patterns. But the patterns
we are interested in are dyadic sequential patterns where
each pattern consists of two sequences. Besides, in [15] non-
discriminative patterns are removed during a post-mining
filtering step. In this work, we push a pruning strategy
based on a few interesting properties of the discriminative
score deep into the mining process, which prunes the search
space and significantly improves the mining efficiency and
scalability.

3. CONCEPTS & DEFINITIONS
In this section, we describe some concepts and definitions

on sequence database, dyadic sequential pattern, and dis-
criminative score.

Definition 3.1 (Sequence). A sequence is a series of
events from an alphabet Δ. We assume that there is a linear
order among the events in the alphabet. This linear order
could be alphabetic order, numeric order, etc. We denote a
sequence of length 𝑛 by ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩.

Definition 3.2 (Subsequence Relation). A sequen-
ce 𝑠1= ⟨𝑒1, ..., 𝑒𝑛⟩ is a subsequence of another sequence 𝑠2=
⟨𝑓1, . . . , 𝑓𝑚⟩, iff there exist integers 1 ≤ 𝑥1 ≤ . . . ≤ 𝑥𝑛 ≤ 𝑚
such that ∀𝑖=1...𝑛 𝑒𝑖 = 𝑓𝑥𝑖 . We denote this as 𝑠1 ⊑ 𝑠2.

Definition 3.3 (Sequence Pair with Label). A se-
quence pair consists of two sequences. We denote this as
s1-s2, where s1 and s2 are sequences. The left sequence of a
sequence pair s is denoted as s.Left, and the right one is de-
noted as s.Right. In our setting, we attach a class label to a

2

sequence pair which is either +ve or -ve. These abstract
labels correspond to two contrasting user-defined domain-
specific concepts, e.g., fraud vs no fraud, duplicate vs non-
duplicate, etc.

Definition 3.4 (Subsequence Relation Over Pair).
Consider two pairs s = s1-s2 and r = r1-r2, we say that s is
a subsequence of r iff s1 ⊑ r1 and s2 ⊑ r2. We denote this
as s ⊑𝑝 r.

Definition 3.5 (Sequence Pair Database). A se-
quence pair database is a multi-set of sequence pairs denoted
as DB. The size of a database is the number of sequence
pairs it contains and is denoted as ∣DB∣. The number of
pairs belonging to the +ve class and -ve class in a database
DB is denoted as DB.Pos and DB.Neg respectively.

Definition 3.6 (Dyadic Sequential Pattern). A
dyadic sequential pattern P is a pair of sequences. It is de-
noted as p1-p2, where the first sequence p1 is referred to as
the left sequence of P, while p2 is referred to as the right
sequence of P. The left sequence of the pattern P is denoted
as P.Left, and the right one is denoted as P.Right.

Definition 3.7 (Pattern Occurrence). Consider a
dyadic sequential pattern P=p1-p2 and a sequence pair S=s1-
s2. P occurs in S, iff p1 is a sub-sequence of s1 and p2 is a
subsequence of s2. In other words, P ⊑𝑝 S.

Definition 3.8 (Pattern Frequency/Support).
Given a sequence pair database DB, the frequency or sup-
port of a pattern P in database DB is the number of se-
quence pairs in DB where P occurs. We denote the sup-
port of a pattern P in DB by 𝑠𝑢𝑝(P,DB). The number of
+ve labeled sequences in DB where P occurs is denoted as
𝑠𝑢𝑝+𝑣𝑒(P,DB). The number of -ve labeled sequences in DB
where P occurs is denoted as 𝑠𝑢𝑝−𝑣𝑒(P,DB). It must be the
case that 𝑠𝑢𝑝(P,DB) = 𝑠𝑢𝑝−𝑣𝑒(P,DB) + 𝑠𝑢𝑝+𝑣𝑒(P,DB). We
drop DB if it is clear from the context.

Definition 3.9 (Discriminative Score). Consider a
pattern r in a database DB. The discriminative score of r is
defined by the information gain [21] as:

𝐼𝐺(𝑐∣𝑟) = 𝐻(𝑐)−𝐻(𝑐∣𝑟) (1)

where 𝐻(𝑐) = −∑
𝑐𝑖∈{±𝑣𝑒} 𝑃 (𝑐𝑖) log𝑃 (𝑐𝑖) is the entropy

and 𝐻(𝑐∣𝑟) = −∑
𝑃 (𝑟)

∑
𝑐𝑖∈{±𝑣𝑒} 𝑃 (𝑐𝑖∣𝑟) log𝑃 (𝑐𝑖∣𝑟) is the

conditional entropy given the pattern 𝑟. The discriminative
score of a pattern r in DB is denoted as disc(r,DB). We drop
DB if it is clear from the context.

If we use the notations 𝐷𝐵.𝑃𝑜𝑠, 𝐷𝐵.𝑁𝑒𝑔, 𝑠𝑢𝑝+𝑣𝑒(𝑟,𝐷𝐵)
and 𝑠𝑢𝑝−𝑣𝑒(𝑟,𝐷𝐵) in the information gain calculation, we
have the following expressions. Let 𝑝 = 𝑠𝑢𝑝+𝑣𝑒(𝑟,𝐷𝐵), 𝑞 =
𝑠𝑢𝑝−𝑣𝑒(𝑟,𝐷𝐵) and ∣𝐷𝐵∣ = 𝐷𝐵.𝑃𝑜𝑠+𝐷𝐵.𝑁𝑒𝑔, then

𝐻(𝑐) = −𝐷𝐵.𝑃𝑜𝑠

∣𝐷𝐵∣ log
𝐷𝐵.𝑃𝑜𝑠

∣𝐷𝐵∣ − 𝐷𝐵.𝑁𝑒𝑔

∣𝐷𝐵∣ log
𝐷𝐵.𝑁𝑒𝑔

∣𝐷𝐵∣

𝐻(𝑐∣𝑟) = − 𝑝+𝑞
∣𝐷𝐵∣ (

𝑝
𝑝+𝑞

log 𝑝
𝑝+𝑞

+ 𝑞
𝑝+𝑞

log 𝑞
𝑝+𝑞
)

− ∣𝐷𝐵∣−(𝑝+𝑞)
∣𝐷𝐵∣ (𝐷𝐵.𝑃𝑜𝑠−𝑝∣𝐷𝐵∣−(𝑝+𝑞)

log 𝐷𝐵.𝑃𝑜𝑠−𝑝
∣𝐷𝐵∣−(𝑝+𝑞)

+ 𝐷𝐵.𝑁𝑒𝑔−𝑞
∣𝐷𝐵∣−(𝑝+𝑞)

log 𝐷𝐵.𝑁𝑒𝑔−𝑞
∣𝐷𝐵∣−(𝑝+𝑞)

)

Idx Sequence Pair Label
1 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ +ve
2 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ +ve
3 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ +ve
4 ⟨𝑎, 𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ +ve
5 ⟨𝑏, 𝑐, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑓, 𝑔⟩ +ve
6 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ -ve
7 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑑, 𝑐, 𝑑, 𝑒⟩ -ve
8 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ − ⟨𝑐, 𝑑, 𝑑⟩ -ve
9 ⟨𝑎, 𝑑, 𝑑⟩ − ⟨𝑒, 𝑐, 𝑑, 𝑒, 𝑑⟩ -ve

Table 1: Example Database ExDB

Num Pattern P sup(P) disc(P)
1 ⟨𝑎⟩ - ⟨𝑑⟩ 8 0.102
2 ⟨𝑎, 𝑑⟩- ⟨𝑑⟩ 8 0.102
3 ⟨𝑎, 𝑑, 𝑑⟩ - ⟨𝑑⟩ 8 0.102

. . .
4 ⟨𝑎⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ 5 0.229
5 ⟨𝑎, 𝑏⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ 5 0.229
6 ⟨𝑎, 𝑏, 𝑑⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ 5 0.229

. . .
7 ⟨𝑏⟩ - ⟨𝑒⟩ 7 0.320
8 ⟨𝑏, 𝑑⟩ - ⟨𝑒⟩ 7 0.320
9 ⟨𝑏, 𝑑, 𝑑⟩ - ⟨𝑒⟩ 7 0.320

. . .

Table 2: Some Mined Frequent Discriminative Pat-
terns from ExDB @ min sup = 4, min disc = 0.1

Given a sequence pair database 𝐷𝐵, 𝐷𝐵.𝑃𝑜𝑠 and 𝐷𝐵.𝑁𝑒𝑔
are fixed values. Thus the information gain of a pattern 𝑃
is a function of 𝑠𝑢𝑝−𝑣𝑒(𝑃,𝐷𝐵) and 𝑠𝑢𝑝+𝑣𝑒(𝑃,𝐷𝐵), i.e.,

𝑑𝑖𝑠𝑐(𝑃,𝐷𝐵) = 𝐼𝐺(𝑠𝑢𝑝+𝑣𝑒(𝑃,𝐷𝐵), 𝑠𝑢𝑝−𝑣𝑒(𝑃,𝐷𝐵))

Definition 3.10 (Frequent Pattern). A pattern is
frequent if its support is no less than a user defined threshold
𝑚𝑖𝑛 𝑠𝑢𝑝.

Definition 3.11 (Discriminative Pattern). A pat-
tern is discriminative if its discriminative score is no less
than a user defined threshold 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐.

Definition 3.12 (Closed Pattern). A pattern p1 is
closed if there does not exist another pattern p2 with the
same support and discriminative score, where either one of
the following conditions holds:

(𝐶𝑜𝑛𝑑 1) 𝑝1.𝐿𝑒𝑓𝑡 ⊑ 𝑝2.𝐿𝑒𝑓𝑡 ∧ 𝑝1.𝑅𝑖𝑔ℎ𝑡 ⊑ 𝑝2.𝑅𝑖𝑔ℎ𝑡

(𝐶𝑜𝑛𝑑 2) 𝑝1.𝐿𝑒𝑓𝑡 ⊑ 𝑝2.𝑅𝑖𝑔ℎ𝑡 ∧ 𝑝1.𝑅𝑖𝑔ℎ𝑡 ⊑ 𝑝2.𝐿𝑒𝑓𝑡

In this paper, when we refer to closed patterns, unless oth-
erwise stated, the patterns are also frequent.
Problem Definition. Given a sequence pair database 𝐷𝐵,
a minimum support threshold𝑚𝑖𝑛 𝑠𝑢𝑝, and a minimum dis-
criminativeness threshold𝑚𝑖𝑛 𝑑𝑖𝑠𝑐, find all closed, frequent,
and discriminative dyadic sequential patterns.

Example. Consider the database shown in Table 1. Some
frequent and discriminative patterns mined with 𝑚𝑖𝑛 𝑠𝑢𝑝 =
4 and 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 = 0.1 are shown in Table 2. The set of
closed patterns is shown in Table 3. There are totally 52
frequent and discriminative patterns; out of those, only 5
are closed. Many patterns are non-closed due to another
longer pattern with the same support and discriminative
score. For example, the patterns numbered 1, 2, and 3 in
Table 2 are subsumed by the first pattern in Table 3.

3

Num Pattern P sup(P) disc(P)
1 ⟨𝑎, 𝑑, 𝑑⟩ - ⟨𝑑, 𝑑⟩ 8 0.102
2 ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ 5 0.229
3 ⟨𝑎, 𝑑, 𝑑⟩ - ⟨𝑐, 𝑑⟩ 8 0.102
4 ⟨𝑏, 𝑑, 𝑑⟩ - ⟨𝑒⟩ 7 0.320
5 ⟨𝑑, 𝑑⟩ - ⟨𝑒⟩ 7 0.143

Table 3: Mined Closed Discriminative Patterns from
ExDB @ min sup = 4, min disc = 0.1

<a>-

<a,a>- <a>-<b,a>

<a,a>-<b,a> <a>-<b,a>

<a>-<a>

…

<a>-<c>

…

…

Base Patterns

<a,a>-<a> <a>-<a,a>

<a,a,a>-

Figure 1: Basic Search Space Traversal

4. SEARCH SPACE TRAVERSAL
To mine for closed, frequent, and discriminative patterns,

we need to characterize and traverse the search space of all
possible patterns. In this section, we describe several search
space traversal strategies from the most basic to the one that
we eventually use in this paper. In the process, we highlight
the challenges of designing a good search space traversal
strategy for mining dyadic sequential patterns.

4.1 Basic Traversal
The search space of all possible patterns are all possible

pairs of sequences. A basic approach to traverse all the pat-
terns in this search space is to start with patterns of size two,
i.e., a pair of sequences each containing one event. Each of
these patterns could then be grown by appending events to
the left and right sequences of the pattern. We call the re-
sultant patterns grown from a pattern 𝑃 as 𝑃 ’s descendants.
This is illustrated in Figure 1 where each directed arrow or
edge in the search space lattice corresponds to a pattern
growth operation. All the patterns could be generated by
traversing all edges in the search space.

4.2 Preventing the Generation of Redundant
Patterns

There is an issue with the basic approach as some patterns
are visited more than once. For example, all patterns rooted
at node ⟨𝑎, 𝑎⟩ − ⟨𝑏, 𝑎⟩ in Figure 1 would be visited multiple
times. To address this issue we need to eliminate some edges
in the search space lattice. Let us label the edges as L and
R, to represent the expansion of the left sequence or the
right sequence of a pattern respectively. We refer to the
resultant patterns generated by traversing the L and R edges
as the left-extension patterns and right-extension patterns
respectively.
To ensure that all nodes in the search space is visited

only once, for every node visited though the traversal of
L edges, we enforce that only L edges could be traversed
in the subsequent pattern growth operations. By this rule,
every node in the search space would only be visited once.
We would not miss any patterns, as every pattern could
be grown from a size-2 pattern by first performing right-
extensions followed by left-extensions. The traversal scheme
is shown in Figure 2.

<a>-

<a,a>- <a>-<b,a>

<a,a>-<b,a> <a>-<b,a,a>

<a>-<a>

…

<a>-<c>

…

…

Base Patterns

L R

RL

<a,a,a>-

<a,a>-<a>

L

L

<a>-<a,a>

R

Figure 2: Non-Redundant Search Space Traversal

4.3 Preventing the Generation of Isomorphic
Patterns

Another issue arises due to pattern isomorphisms. Note
that the dyadic pattern ⟨𝑎, 𝑏⟩ − ⟨𝑐, 𝑑⟩ is isomorphic to the
pattern ⟨𝑐, 𝑑⟩−⟨𝑎, 𝑏⟩ and they both have the same meaning.
The second pattern is just the first pattern where the left
sequence is made the right and the right is made the left.
To prevent the generation of isomorphic patterns, we first

define a lexicographic ordering on sequences in Definition 4.1.
We then enforce a canonical representation of pattern as
specified in Definition 4.2.

Definition 4.1 (Sequence Lexicographic Order).
Each event comes from an alphabet with elements having a
linear order. Consider two sequences A = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩
and B = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑚⟩. We say that A < B, if and only if
one the following conditions holds:

(𝐶𝑜𝑛𝑑 1) ∃0<𝑦≤ 𝑚𝑖𝑛(𝑚,𝑛).(∀𝑥<𝑦.𝑎𝑥 = 𝑏𝑥) ∧ (𝑎𝑦 < 𝑏𝑦)

(𝐶𝑜𝑛𝑑 2) ∀𝑥≤𝑛.(𝑎𝑥 = 𝑏𝑥) ∧ (𝑛 < 𝑚)

Definition 4.2 (Canonical Pattern). A pattern P =
⟨𝐴,𝐵⟩ is a canonical pattern iff the left sequence 𝐴 is lexi-
cographically smaller than or equal to the right sequence 𝐵,
i.e., A ≤ B.

Next, we state a useful property of canonical patterns in
Property 1. The implication of Property 1 is as follows: All
patterns grown from a non-canonical pattern would not be
canonical. Thus, we could avoid generating and checking
many patterns based on this property.

Property 1 (Canonical Pruning). A canonical left-
extension pattern can only be grown from a canonical left- or
right- extension pattern. A canonical right-extension pattern
can only be grown from a canonical right-extension pattern.

Proof. Part 1: Left-Extension. Consider for contradic-
tion that a canonical left-extension pattern 𝑄 is grown from
a non-canonical left- or right-extension pattern 𝑃 . There
are two conditions where 𝑄 is deemed canonical.
The first condition requires the existence of an element 𝑥

in the left sequence of 𝑄 to be smaller than the corresponding
element having the same index in the right sequence, where
all other previous elements are the same. As 𝑄 is grown from
𝑃 , 𝑃 must be a smaller pattern. As 𝑄 is a left extension
pattern, they must have the same right sequence. Thus there
are again two cases. The first case is such that 𝑥 exists in the
left sequence of 𝑃 ; if this is the case, then 𝑃 is canonical too
and thus a contradiction. The second case is such that 𝑥 does
not exist in the left sequence of 𝑃 implying that all elements
of the left sequence are the same as corresponding ones (i.e.,
those having the same indices) in the right sequence, also it

4

must be the case that the length of the right sequence is more
than that of the left. Thus, there is also a contradiction.
The second condition requires that all elements of the left

sequence of 𝑄 match with the corresponding ones of the right
sequence, and the right sequence is longer than or equal to
the left. For this case, as 𝑃 is a smaller pattern with a
shorter left sequence and the same right sequence as 𝑄, it
must be the case that all elements of 𝑃 ’s left sequence match
with the corresponding ones of 𝑃 ’s right sequence and that
the right sequence is longer than the left. If this is the case,
𝑃 is canonical, and hence a contradiction.
Part 2: Right-Extension. Consider for contradiction that

a canonical right-extension pattern 𝑄 is grown from a non-
canonical right-extension pattern 𝑃 . There are only two con-
ditions where a pattern 𝑄 is considered canonical.
The first condition requires the existence of an element 𝑥

in the left sequence of 𝑄 to be smaller than the corresponding
one in the right sequence, and all other previous elements
are the same. As 𝑄 is grown from 𝑃 , 𝑃 must be a smaller
pattern. As 𝑃 and 𝑄 are right extension patterns, they must
have the same left sequence. Thus there are again two cases.
The first case is such that the length of the right sequence
of 𝑃 is longer than the element 𝑥, if this is the case 𝑃 is
canonical and thus a contradiction. The second case is such
that the right sequence of 𝑃 is shorter than the position of
element 𝑥. For this to happen the right sequence must be
shorter than the left. This is an impossible condition as for
all right extension patterns the right sequence is longer than
the left. Thus, there is a contradiction.
The second condition requires that all elements of the left

sequence of 𝑄 to match with corresponding ones of the right
sequence, and the right sequence is longer than the left. There
are two cases. The first case is such that P’s right sequence
is longer or equal than the left. If this is the case than P
is also canonical which is a contradiction. The second case
is such that P’s right sequence is shorter than the left, but
this is impossible for right extension patterns. Thus, it is a
contradiction.

Summary. Combining the above points, our strategy to
visit all the patterns in the search space is as follows:
1 Grow left-extension patterns leftwards (i.e., by only

appending the left sequence) and grow right-extension
patterns in both directions to prevent the same pattern
from being generated multiple times.

2 Only generate canonical patterns.
3 We do not need to grow non-canonical patterns further.

In the following sections we elaborate on how we incor-
porate our search space traversal strategy with an effective
data structure and search space pruning strategies into a
holistic mining algorithm.

5. TANDEM PROJECTED DATABASE
To speed up the mining process, we propose a new data

structure referred to as tandem projected database. This data
structure extends the projected database first proposed in
PrefixSpan to mine standard sequential patterns [20]. Sim-
ilar to the original use of the projected database in [20],
our tandem projected database is used to facilitate effective,
fast, and incremental computation of pattern statistics, i.e.,
support and discriminative score. We refer to the operation
of creating a tandem projected database as tandem projec-

tion. The reason of using the word“tandem”would be made
clear in the following paragraphs.
Tandem projection operation takes in a database which

is a set of sequence pairs and a dyadic sequential pattern.
It then outputs suffixes of the pairs of sequences in the
database that have the pattern as its prefix. Formally, we
define it in Definition 5.1.

Definition 5.1 (Tandem Projection). Consider a
database 𝐷𝐵 and a pattern 𝑃 = 𝑝1− 𝑝2. The tandem pro-
jection of DB with respect to P is defined as:

{[(𝑎, 𝑏), (𝑐, 𝑑)] ∣ 𝑠 = 𝑠1− 𝑠2 ∈ 𝐷𝐵 ∧
(𝑠1 = 𝑝𝑟𝑒1++𝑎) ∧ (𝑠2 = 𝑝𝑟𝑒2++𝑏) ∧
(𝑠2 = 𝑝𝑟𝑒3++𝑐) ∧ (𝑠1 = 𝑝𝑟𝑒4++𝑑) ∧

𝑝𝑟𝑒1 = 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑠1 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑝1 𝑜𝑟,
𝑖𝑓 𝑛𝑜 𝑠𝑢𝑐ℎ 𝑝𝑟𝑒𝑓𝑖𝑥 𝑒𝑥𝑖𝑠𝑡𝑠, 𝑠1 ∧

𝑝𝑟𝑒2 = 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑠2 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑝2 𝑜𝑟,
𝑖𝑓 𝑛𝑜 𝑠𝑢𝑐ℎ 𝑝𝑟𝑒𝑓𝑖𝑥 𝑒𝑥𝑖𝑠𝑡𝑠, 𝑠2 ∧

𝑝𝑟𝑒3 = 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑠2 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑝1 𝑜𝑟,
𝑖𝑓 𝑛𝑜 𝑠𝑢𝑐ℎ 𝑝𝑟𝑒𝑓𝑖𝑥 𝑒𝑥𝑖𝑠𝑡𝑠, 𝑠2 ∧

𝑝𝑟𝑒4 = 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑠1 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑝2 𝑜𝑟,
𝑖𝑓 𝑛𝑜 𝑠𝑢𝑐ℎ 𝑝𝑟𝑒𝑓𝑖𝑥 𝑒𝑥𝑖𝑠𝑡𝑠, 𝑠1 ∧

(𝑎 ∕= 𝜖 ∧ 𝑏 ∕= 𝜖) ∨ (𝑐 ∕= 𝜖 ∧ 𝑑 ∕= 𝜖)}
The resultant tandem projected database of database 𝐷𝐵

with respect to a pattern 𝑃 is denoted as 𝐷𝐵𝑡𝑛𝑑𝑃 .

Each tandem projected database entry denoted as [(𝑎, 𝑏),
(𝑐, 𝑑)] in Definition 5.1 is composed of two elements (𝑎, 𝑏)
and (𝑐, 𝑑). These are two simple projected database entries
corresponding to a single sequence pair in the database. As
there are two sequences in a sequence pair in the database,
it is possible to map the left sequence of the pattern to the
left sequence of the sequence pair, or alternatively, to the
right sequence of the pair. The first one captures the left
to left and right to right mapping. The other one captures
the left to right and right to left mapping. We refer to (𝑎, 𝑏)
and (𝑐, 𝑑) as the first and second simple projected database
entry, respectively. We denote them as 𝐷𝐵𝑡𝑛𝑑𝑃 .𝐹𝑖𝑟𝑠𝑡 and
𝐷𝐵𝑡𝑛𝑑𝑃 .𝑆𝑒𝑐𝑜𝑛𝑑. We refer to 𝑎 in (𝑎, 𝑏) as 𝐷𝐵𝑡𝑛𝑑𝑃 .𝐹𝑖𝑟𝑠𝑡.𝐿𝑒𝑓𝑡;
b, c, d are denoted in a similar fashion.
Each simple projected database entry captures the two

suffixes of the corresponding sequence pair whose prefixes
are the shortest prefixes containing the pattern’s two se-
quences (lines 2-11 in Definition 5.1).
Note that for a sequence pair it is possible that only either

one of (𝑎, 𝑏) or (𝑐, 𝑑) exists. If this is the case, we assign (𝜖,𝜖)
to either (𝑎, 𝑏) or (𝑐, 𝑑) correspondingly. As we do not want
to capture empty projected database entries, we restrict that
either (𝑎, 𝑏) or (𝑐, 𝑑) must contain non-epsilon values (the
last line in Definition 5.1).
Each simple projected database entry of a pattern 𝑝1-𝑝2 in

a sequence pair 𝑠 in a database 𝐷𝐵 is represented by (𝑖, 𝑙,
𝑟, 𝑖𝑑𝑥𝑙, 𝑖𝑑𝑥𝑟, 𝑎𝑙𝑡), with the symbols defined as:

𝑖 Index of 𝑠 in 𝐷𝐵.
𝑙 Index of the sequence in the pair 𝑠 mapped to 𝑝1
𝑟 Index of the sequence in the pair 𝑠 mapped to 𝑝2
𝑖𝑑𝑥𝑙 Starting index of the corresponding suffix of 𝑠[𝑙]
𝑖𝑑𝑥𝑟 Starting index of the corresponding suffix of 𝑠[𝑟]
𝑎𝑙𝑡 Pointer to another simple projected database entry

in the tandem (if any)

The last element 𝑎𝑙𝑡 contains a pointer to another simple
projected database entry which is a fellow member of the
corresponding tandem projected database entry.

5

A tandem projected database is thus a set of all such
tuples representing the simple projected database entries.
Related simple projected database entries are tied together
in tandem via the 𝑎𝑙𝑡 element of the tuple.

Example. Consider the database shown in Table 1. The
tandem projected database entry of the first sequence pair
with respect to pattern ⟨𝑎, 𝑑⟩ - ⟨𝑐, 𝑑⟩ is [(⟨𝑑⟩,⟨𝑑, 𝑒⟩), (𝜖, 𝜖)].
The first simple projected database entry in the tandem is
internally represented as (1, 1, 2, 4, 4, 𝑛𝑢𝑙𝑙), where the
first ‘1’ denotes the index of the first sequence pair in the
database, the second ‘1’ denotes that the left sequence of
the pattern is mapped to the left sequence of the sequence
pair (index = 1), the ‘2’ denotes that the right sequence of
the pattern is mapped to the right sequence of the sequence
pair (index = 2), the first ‘4’ denotes the index of the suffix
⟨𝑑⟩, and the last ‘4’ denotes the index of the suffix ⟨𝑑, 𝑒⟩. As
the second simple projected database entry in the tandem is
(𝜖, 𝜖), the 𝑎𝑙𝑡 element of the tuple is set to null.

6. PROPERTIES & THEOREMS
In this section, we present some pruning properties to

prune the uninteresting (i.e., infrequent, non-closed, or non-
discriminative) patterns en masse. First, we describe the
anti-monotonicity property of support in Property 2. With
this property, we do not need to grow an infrequent pattern
further as all its descendants would not be frequent either.

Property 2 (Anti-Monotonicity of Support). The
support of a pattern 𝑃 is always greater than or equal to the
support of its descendants.

Proof. Without any loss of generality, consider an arbi-
trary descendant 𝑄 of 𝑃 and an arbitrary sequence pair 𝑆
in a database 𝐷𝐵. Since 𝑄 is grown from 𝑃 , 𝑃 ⊑𝑝 𝑄. If
𝑄 occurs in 𝑆, it must be the case that 𝑄 ⊑𝑝 𝑆. It is clear
that the ⊑𝑝 operator is transitive. Thus since 𝑃 ⊑𝑝 𝑄, if 𝑄
⊑𝑝 𝑆, it must be the case that 𝑃 ⊑𝑝 𝑆, i.e., 𝑃 occurs in the
sequence pair 𝑆. Thus for any arbitrary sequence 𝑆 where
𝑄 occurs, 𝑃 also occurs in 𝑆. Thus the support of 𝑃 must
always be greater than or equal to the support of 𝑄. Thus
the above property holds.
Next we describe two properties related to a pattern’s dis-

criminative score in Properties 3 & 4. From these two prop-
erties, it is clear that if 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃) < 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐, there is no
need to grow 𝑃 further. This is the case as the discrimi-
native score upper bound of all descendants of 𝑃 would be
no larger than 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃), which in turn is smaller than the
𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 threshold. Thus, all descendants of 𝑃 are not dis-
criminative.

Property 3 (Upper Bound of Discrimin. Score).
For pattern 𝑃 and database 𝐷𝐵, disc(𝑃 ,𝐷𝐵) is bounded by:

𝑑𝑖𝑠𝑐𝑢𝑏(𝑃) = max(𝐼𝐺(𝑠𝑢𝑝+𝑣𝑒(𝑃), 0), 𝐼𝐺(0, 𝑠𝑢𝑝−𝑣𝑒(𝑃)))

We denote the upper bound on the discriminative score of a
pattern 𝑃 as 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃).

Proof. Consider the discriminative score defined in Def-
inition 3.9. Let 𝑝 = 𝑠𝑢𝑝+𝑣𝑒(𝑃) and 𝑞 = 𝑠𝑢𝑝−𝑣𝑒(𝑃). If we
take a partial derivative wrt. 𝑝 and 𝑞 respectively, we have

∂𝐼𝐺(𝑝, 𝑞)

∂𝑝
=

1

∣𝐷𝐵∣ log
𝑝(∣𝐷𝐵∣ − (𝑝+ 𝑞))

(𝑝+ 𝑞)(𝐷𝐵.𝑃𝑜𝑠− 𝑝)
,

∂𝐼𝐺(𝑝, 𝑞)

∂𝑞
=

1

∣𝐷𝐵∣ log
𝑞(∣𝐷𝐵∣ − (𝑝+ 𝑞))

(𝑝+ 𝑞)(𝐷𝐵.𝑁𝑒𝑔 − 𝑞)
.

if
𝑝

𝐷𝐵.𝑃𝑜𝑠
>

𝑞

𝐷𝐵.𝑁𝑒𝑔
,
∂𝐼𝐺(𝑝, 𝑞)

∂𝑝
> 0,

∂𝐼𝐺(𝑝, 𝑞)

∂𝑞
< 0;

if
𝑝

𝐷𝐵.𝑃𝑜𝑠
<

𝑞

𝐷𝐵.𝑁𝑒𝑔
,
∂𝐼𝐺(𝑝, 𝑞)

∂𝑝
< 0,

∂𝐼𝐺(𝑝, 𝑞)

∂𝑞
> 0.

Then we have the following conclusions:

if
𝑝

𝐷𝐵.𝑃𝑜𝑠
>

𝑞

𝐷𝐵.𝑁𝑒𝑔
, 𝐼𝐺(𝑝, 𝑞) ≤ 𝐼𝐺(𝑝, 0);

if
𝑝

𝐷𝐵.𝑃𝑜𝑠
<

𝑞

𝐷𝐵.𝑁𝑒𝑔
, 𝐼𝐺(𝑝, 𝑞) ≤ 𝐼𝐺(0, 𝑞).

Therefore, we prove

𝑑𝑖𝑠𝑐𝑢𝑏(𝑃) = max(𝐼𝐺(𝑝, 0), 𝐼𝐺(0, 𝑞))

= max(𝐼𝐺(𝑠𝑢𝑝+𝑣𝑒(𝑃), 0), 𝐼𝐺(0, 𝑠𝑢𝑝−𝑣𝑒(𝑃)))

Property 4 (Anti-Monotonicity of Disc. Bound).
For pattern 𝑃 and its descendant 𝑃 ′, 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃) ≥ 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃

′).

Proof. Let 𝑝 = 𝑠𝑢𝑝+𝑣𝑒(𝑃) and 𝑞 = 𝑠𝑢𝑝−𝑣𝑒(𝑃); 𝑝′ =
𝑠𝑢𝑝+𝑣𝑒(𝑃

′) and 𝑞′ = 𝑠𝑢𝑝−𝑣𝑒(𝑃 ′). Since 𝑃 ′ is a descendant
of 𝑃 , we have 𝑝′ ≤ 𝑝 and 𝑞′ ≤ 𝑞. According to Property 3,
for the patterns 𝑃 and 𝑃 ′ we have:

𝑑𝑖𝑠𝑐𝑢𝑏(𝑃) = max(𝐼𝐺(𝑝, 0), 𝐼𝐺(0, 𝑞))

and

𝑑𝑖𝑠𝑐𝑢𝑏(𝑃
′) = max(𝐼𝐺(𝑝′, 0), 𝐼𝐺(0, 𝑞′))

According to the proof in Property 3, if 𝑝
𝐷𝐵.𝑃𝑜𝑠

> 𝑞
𝐷𝐵.𝑁𝑒𝑔

,
∂𝐼𝐺(𝑝,𝑞)

∂𝑝
> 0, we can conclude

𝐼𝐺(𝑝, 0) ≥ 𝐼𝐺(𝑝′, 0)

as 𝑝 ≥ 𝑝′ and 𝑞 = 0 here. Similarly, we have

𝐼𝐺(0, 𝑞) ≥ 𝐼𝐺(0, 𝑞′)

Without loss of generality, assume 𝐼𝐺(𝑝′, 0) ≥ 𝐼𝐺(0, 𝑞′).
Then

𝑑𝑖𝑠𝑐𝑢𝑏(𝑃
′) = 𝐼𝐺(𝑝′, 0) ≤ 𝐼𝐺(𝑝, 0) ≤ max(𝐼𝐺(𝑝, 0), 𝐼𝐺(0, 𝑞))

Therefore, we prove 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃) ≥ 𝑑𝑖𝑠𝑐𝑢𝑏(𝑃
′).

Before we present a property that could be used to cut the
search space containing non-closed patterns, we first need
to define some terms. In Definitions 6.1 & 6.2, we define
some concepts pertaining to the occurrences of a sequence
in another sequence. We present the concepts of in-between
event sets and strict in-between event sets in Definitions 6.3
& 6.4 respectively.

Definition 6.1 (First instance). Given a sequence S
containing a sequence P = ⟨𝑒1, . . . 𝑒𝑛⟩. The first instance of
P in S is the shortest prefix 𝑝𝑟𝑒 of S where 𝑃 ⊑ 𝑝𝑟𝑒.

Definition 6.2 (Last instance). Given a sequence S
containing a sequence P = ⟨𝑒1, . . . 𝑒𝑛⟩. The last instance of
P in S is the prefix of S ending with the last occurrence of
𝑒𝑛 in S.

Example. Consider a sequence 𝑆 = ⟨𝑎, 𝑏, 𝑏, 𝑏, 𝑐, 𝑏, 𝑐, 𝑑⟩ and
another sequence 𝑃 = ⟨𝑎, 𝑏⟩. The first instance of 𝑃 in 𝑆
is the prefix ⟨𝑎, 𝑏⟩. The last instance of 𝑃 in 𝑆 is the prefix
⟨𝑎, 𝑏, 𝑏, 𝑏, 𝑐, 𝑏⟩.

6

Definition 6.3 (In-Between Event Sets). Given a
pattern P=p1-p2, where p1 = ⟨𝑎1, . . . , 𝑎𝑛⟩ and p2 = ⟨𝑏1, . . .
, 𝑏𝑛⟩, and a sequence pair S=s1-s2, there are ∣𝑝1∣ + ∣𝑝2∣ in-
between event sets: 𝐿1, . . . , 𝐿∣𝑝1∣, 𝑅1, . . . , 𝑅∣𝑝2∣, of P in S.

The 𝐿𝑖 in-between event set is defined as:
(If i = 1) Let 𝐿1𝑆𝐿 be the set of events occurring before the

first occurrence of 𝑎1 in S.Left iff p1 ⊑ s1 and p2 ⊑ s2, and
{} otherwise. Also, let 𝐿1𝑆𝑅 be the set of events occurring
before the first occurrence of 𝑎1 in S.Right iff p1 ⊑ s2 and
p2 ⊑ s1, and {} otherwise. Then, 𝐿1 = 𝐿1𝑆𝐿 ∪ 𝐿1𝑆𝑅 .
(If i > 1) Let 𝐿𝑖𝑆𝐿 be the set of events occurring between

the first instance of ⟨𝑎1 . . . 𝑎𝑖−1⟩ in S.Left, to the last occur-
rence of 𝑎𝑖 in the last instance of 𝑝1 in S.Left iff p1 ⊑ s1
and p2 ⊑ s2, and {} otherwise. Also, let 𝐿𝑖𝑆𝑅 be the set of
events occurring between the first instance of ⟨𝑎1 . . . 𝑎𝑖−1⟩ in
S.Right, to the last occurrence of 𝑎𝑖 in the last instance of
𝑝1 in S.Right iff p1 ⊑ s2 and p2 ⊑ s1, and {} otherwise.
Then, 𝐿𝑖 = 𝐿𝑖𝑆𝐿 ∪ 𝐿𝑖𝑆𝑅 .

The 𝑅𝑖 in-between event set is defined as:
(If i = 1) Let 𝑅1𝑆𝐿 be the set of events occurring before the

first occurrence of 𝑏1 in S.Left iff p1 ⊑ s2 and p2 ⊑ s1, and
{} otherwise. Also, let 𝑅1𝑆𝑅 be the set of events occurring
before the first occurrence of 𝑏1 in S.Right iff p1 ⊑ s1 and
p2 ⊑ s2, and {} otherwise. Then, 𝑅1 = 𝑅1𝑆𝐿 ∪𝑅1𝑆𝑅

(If i > 1) Let 𝑅𝑖𝑆𝐿 be the set of events occurring between
the first instance of ⟨𝑏1 . . . 𝑏𝑖−1⟩ in S.Left, to the last occur-
rence of 𝑏𝑖 in the last instance of 𝑝1 in S.Left iff p1 ⊑ s2
and p2 ⊑ s1, and {} otherwise. Also, let 𝑅𝑖𝑆𝑅 be the set
of events occurring between the first instance of ⟨𝑏1 . . . 𝑏𝑖−1⟩
in S.Right, to the last occurrence of 𝑏𝑖 in the last instance
of 𝑝2 in S.Right iff p1 ⊑ s1 and p2 ⊑ s2, and {} otherwise.
Then, 𝑅𝑖 = 𝑅𝑖𝑆𝐿 ∪𝑅𝑖𝑆𝑅

We denote the 𝐿𝑖 and 𝑅𝑖 in-between event sets of a pattern
P in sequence S as 𝐿𝑖(𝑃, 𝑆) and 𝑅𝑖(𝑃, 𝑆), respectively.

Example. Consider a sequence pair 𝑆 = ⟨𝑎, 𝑏, 𝑏, 𝑏, 𝑐, 𝑏, 𝑐, 𝑑⟩
- ⟨𝑎, 𝑐, 𝑏, 𝑏, 𝑐, 𝑑, 𝑥⟩ and a pattern 𝑃 = ⟨𝑏, 𝑐⟩ - ⟨𝑥⟩. The sets
𝐿1𝑆𝐿(P,S), 𝐿1𝑆𝑅(P,S), and 𝐿1(P,S) are {𝑎}, {𝑎, 𝑐}, and {𝑎, 𝑐}
respectively. The sets 𝐿2𝑆𝐿(P,S), 𝐿2𝑆𝐿(P,S), and 𝐿2(P,S)
are {𝑏, 𝑐}, {𝑏}, and {𝑏, 𝑐} respectively. The sets 𝑅1𝑆𝐿(P,S),
𝑅1𝑆𝑅(P,S), and 𝑅1(P,S) are {}, {𝑎, 𝑏, 𝑐, 𝑑}, and {𝑎, 𝑏, 𝑐, 𝑑}
respectively.

Definition 6.4 (Strict In-Between Event Sets).
Given a pattern P=p1-p2, where p1 = ⟨𝑎1, . . . , 𝑎𝑛⟩ and p2 =
⟨𝑏1, . . . , 𝑏𝑛⟩, and a sequence pair S=s1-s2, there are ∣𝑝1∣ +
∣𝑝2∣ strict in-between event sets: 𝐿𝑇1, . . . , 𝐿𝑇∣𝑝1∣, 𝑅𝑇1,
. . . , 𝑅𝑇∣𝑝2∣, of P in S.

The 𝐿𝑇𝑖 strict in-between event set is defined as:
(If i = 1) Let 𝐿𝑇1𝑆𝐿 be the set of events occurring before

the first occurrence of 𝑎1 in S.Left iff p1 ⊑ s1 and p2 ⊑ s2,
and the alphabet Δ otherwise. Also, let 𝐿𝑇1𝑆𝑅 be the set of
events occurring before the first occurrence of 𝑎1 in S.Right
iff p1 ⊑ s2 and p2 ⊑ s1, and the alphabet Δ otherwise. Then,
if 𝐿𝑇1 = 𝐿𝑇1𝑆𝐿 ∩ 𝐿𝑇1𝑆𝑅 .
(If i > 1) Let 𝐿𝑇𝑖𝑆𝐿 be the set of events occurring between

the first instance of ⟨𝑎1 . . . 𝑎𝑖−1⟩ in S.Left, to the last occur-
rence of 𝑎𝑖 in the first instance of 𝑝1 in S.Left iff p1 ⊑ s1
and p2 ⊑ s2, and the alphabet Δ otherwise. Also, let 𝐿𝑇𝑖𝑆𝑅

be the set of events occurring between the first instance of
⟨𝑎1 . . . 𝑎𝑖−1⟩ in S.Right, to the last occurrence of 𝑎𝑖 in the
first instance of 𝑝1 in S.Right iff p1 ⊑ s2 and p2 ⊑ s1, and
the alphabet Δ otherwise. Then, 𝐿𝑇𝑖 = 𝐿𝑇𝑖𝑆𝐿 ∩ 𝐿𝑇𝑖𝑆𝑅 .

The 𝑅𝑇𝑖 strict in-between event set is defined as:
(If i = 1) Let 𝑅𝑇1𝑆𝐿 be the set of events occurring before

the first occurrence of 𝑏1 in S.Left iff p1 ⊑ s2 and p2 ⊑ s1,
and the alphabet Δ otherwise. Also, let 𝑅𝑇1𝑆𝑅 be the set of
events occurring before the first occurrence of 𝑏1 in S.Right
iff p1 ⊑ s1 and p2 ⊑ s2, and the alphabet Δ otherwise. Then,
𝑅𝑇1 = 𝑅𝑇1𝑆𝐿 ∩𝑅𝑇1𝑆𝑅

(If i > 1) Let 𝑅𝑇𝑖𝑆𝐿 be the set of events occurring between
the first instance of ⟨𝑏1 . . . 𝑏𝑖−1⟩ in S.Left, to the last occur-
rence of 𝑏𝑖 in the first instance of 𝑝1 in S.Left iff p1 ⊑ s2
and p2 ⊑ s1, and the alphabet Δ otherwise. Also, let 𝑅𝑇𝑖𝑆𝑅

be the set of events occurring between the first instance of
⟨𝑏1 . . . 𝑏𝑖−1⟩ in S.Right, to the last occurrence of 𝑏𝑖 in the
first instance of 𝑝2 in S.Right iff p1 ⊑ s1 and p2 ⊑ s2, and
the alphabet Δ otherwise. Then, 𝑅𝑇𝑖 = 𝑅𝑇𝑖𝑆𝐿 ∩𝑅𝑇𝑖𝑆𝑅 .
We denote the 𝐿𝑇𝑖 and 𝑅𝑇𝑖 strict in-between event sets

of a pattern P in sequence S as 𝐿𝑇𝑖(𝑃, 𝑆) and 𝑅𝑇𝑖(𝑃, 𝑆),
respectively.

Example. Consider a sequence pair 𝑆 = ⟨𝑎, 𝑏, 𝑏, 𝑏, 𝑐, 𝑏, 𝑐, 𝑑⟩
- ⟨𝑎, 𝑐, 𝑏, 𝑏, 𝑐, 𝑑, 𝑥⟩ and a pattern 𝑃 = ⟨𝑏, 𝑐⟩ - ⟨𝑥⟩. The sets
𝐿𝑇1𝑆𝐿(P,S), 𝐿𝑇1𝑆𝑅(P,S), and 𝐿𝑇1(P,S) are {𝑎}, {𝑎, 𝑐}, and
{𝑎} respectively. The sets 𝐿𝑇2𝑆𝐿(P,S), 𝐿𝑇2𝑆𝐿(P,S), and
𝐿𝑇2(P,S) are {𝑏}, {𝑏}, and {𝑏} respectively. The sets 𝑅𝑇1𝑆𝐿

(P,S), 𝑅𝑇1𝑆𝑅(P,S), and 𝑅𝑇1(P,S) are Δ, {𝑎, 𝑏, 𝑐, 𝑑}, and
{𝑎, 𝑏, 𝑐, 𝑑} respectively.
Definitions 6.3 & 6.4 capture events that appear between

the occurrences of two events (or before the occurrence of
the first event) of a pattern in a sequence pair containing
it. From the definition, we could notice that a strict in-
between event set is a subset of the corresponding in-between
event set. Remember that there are two different ways to
match a pattern to a sequence pair: left to left and right
to right, or left to right and right to left. Also, there could
be multiple occurrences of a pattern in a sequence. An in-
between event set captures events that occur in between two
pattern’s events for at least one possible occurrence of the
pattern in the sequence in at least one possible matching.
A strict in-between event set captures events that occur in
between two pattern’s events for all possible occurrences of
the pattern in the sequence in both possible matchings (if
they exist)1.
We next define the concept of forward extension and back-

ward extension in Definitions 6.5 & 6.6. Two properties
specifying how these two sets can be computed are given in
Properties 5 & 6.

Definition 6.5 (Forward Extension). A forward ex-
tension event of a pattern 𝑃 is an event that could be ap-
pended to 𝑃 (i.e., any sequence of P) resulting in another
pattern with the same support.

Example. Consider the example database ExDB shown in
Table 1 and a pattern 𝑃 = ⟨𝑎⟩ - ⟨𝑑⟩. Event 𝑑 is a forward
extension event of 𝑃 as there is a pattern 𝑄 = ⟨𝑎, 𝑑⟩ - ⟨𝑑⟩
that could be formed from 𝑃 by appending the event 𝑑 at
the end of the left sequence of 𝑃 and sup(𝑃) = sup(𝑄) = 8.

Property 5 (Forward Extension Set). The forward

1Notice that Definition 6.3 uses the last occurrence in the
first instance, {}, and set union operator while Definition 6.4
uses the last occurrence in the last instance, Δ, and set
intersection operator.

7

extension event set of a pattern P is the set:

{𝑒∣∀[𝑒𝑓, 𝑒𝑠] ∈ 𝐷𝐵𝑡𝑛𝑑𝑃 .(𝑒 ∈ 𝑒𝑓.𝐿𝑒𝑓𝑡 ∨ 𝑒 ∈ 𝑒𝑠.𝐿𝑒𝑓𝑡 ∨
𝑒 ∈ 𝑒𝑓.𝑅𝑖𝑔ℎ𝑡 ∨ 𝑒 ∈ 𝑒𝑠.𝑅𝑖𝑔ℎ𝑡)}

Proof.

Part 1: If 𝑒 is a forward extension event, 𝑒 is in the set.
Since 𝑒 is appended to 𝑃 , 𝑒 must be in the projected database
of 𝑃 . Since the support of 𝑃 appended by 𝑒 is the same as 𝑃 ,
𝑒 must appear in all tandem projected database entries of 𝑃 ;
𝑒 could appear either in the first or second simple projected
database entries in the tandem (either in the left sequence
or the right sequence).
Part 2: If 𝑒 is in the set, 𝑒 is a forward extension event.

If 𝑒 is in the set, 𝑒 appears in all tandem projected database
entries (either in the first or the second entry in each tandem
entry, either in the left or in the right sequence). Thus we
could extend 𝑃 with 𝑒 (either in the left or right sequence)
resulting in another pattern 𝑄 with no less support than 𝑃 .
From the anti-monotonicity property, 𝑄 could not have a
higher support. Thus, sup(𝑃) = sup(𝑄).

Definition 6.6 (Backward Extension). A backward
extension of a pattern 𝑃 is an event that could be inserted
to 𝑃 (i.e., any sequence of P) resulting in another pattern
with the same support.

Example. Consider the example database ExDB shown in
Table 1 and a pattern 𝑃 = ⟨𝑎, 𝑑⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩. Event 𝑏
is a backward extension event of 𝑃 as there is a pattern 𝑄
= ⟨𝑎, 𝑏, 𝑑⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩ that could be formed from 𝑃 by
inserting the event 𝑏 to the left sequence of 𝑃 and sup(𝑃) =
sup(𝑄) = 5.

Property 6 (Backward Extension Set). The back-
ward extension set of a pattern 𝑃 are events appearing in
one of the in-between event sets of 𝑃 in all sequence pairs
supporting 𝑃 in the database. Mathematically, this is the
set:

{𝑒∣∃𝑥 ∈ {𝐿1, . . . , 𝐿∣𝑃.𝐿𝑒𝑓𝑡∣, 𝑅1, . . . , 𝑅∣𝑃.𝑅𝑖𝑔ℎ𝑡∣}.
∀(𝑆∈𝐷𝐵)∧(𝑃⊑𝑆).𝑒 ∈ 𝑥(𝑃, 𝑆)}

Proof.

Part 1: If 𝑒 is a backward extension event, 𝑒 is in the set.
Since 𝑒 is a backward extension event, it must be inserted be-
tween one of the events of the pattern or before the first event
of the pattern. This together with the fact that the support
after the insertion of 𝑒 is the same as the original support
guarantee that 𝑒 must appear in the same in-between event
sets for all sequence pairs in the database supporting 𝑃 .
Part 2: If 𝑒 is in the set, 𝑒 is a backward extension event.

If 𝑒 is in the set, for all sequence pair 𝑆 supporting 𝑃 , it is
possible to insert event 𝑒 such that the resulting pattern 𝑄 is
a super-sequence of 𝑃 and is a subsequence of 𝑆, i.e., 𝑃 ⊑𝑝
𝑄 ⊑𝑝 𝑆. Thus the support of the resultant pattern 𝑄 is the
same as 𝑃 , and thus 𝑒 is a backward extension event.

Next, Property 7 describes a relationship between the sup-
port and the discriminative score of two related patterns.
From the property, it could be inferred that appending or
inserting backward and forward extension events at the cor-
responding locations would result in patterns not only hav-
ing the same support, but also the same discriminative score.

Property 7 (Support and Disc. Score). Consider
two patterns P and Q where P ⊑𝑝 Q. If sup(P) = sup(Q),
then disc(P) = disc(Q).

Proof. Without any loss of generality, consider an arbi-
trary sequence pair S in the input database. If Q ⊑𝑝 S, it
must be the case that P ⊑𝑝 𝑆 too. Thus any sequence pair
supporting Q will also support P. If furthermore, sup(P) =
sup(Q), it must be the case that the patterns P and Q are
supported by the same set of sequence pairs. Thus disc(P)
must be equal to disc(Q).

Based on the above definitions and properties, Property 8
specifies a way to check if a pattern is closed. This check
is useful as we could use it to output a closed pattern right
away instead of comparing it with the set of all frequent and
discriminative patterns to decide whether it is closed or not.
Next, Property 9 defines a way to prune the search space
containing non-closed patterns.

Property 8 (Closure Check). If a pattern has no for-
ward extension and no backward extension, then it is closed.

Proof. A pattern can only be grown to another pattern
either by appending an event, or inserting an event. From
the anti-monotonicity of pattern support, if appending or in-
serting an event reduces the support of a pattern, appending
or inserting more events would not increase the support any-
more. Thus, if there is no event either being inserted (i.e.,
backward extension) or appended (i.e., forward extension)
to result in another pattern having the same support, the
pattern must be closed.

Example. Consider the example database ExDB shown in
Table 1 and a pattern 𝑃 = ⟨𝑎, 𝑏, 𝑑, 𝑑⟩ - ⟨𝑒, 𝑐, 𝑑, 𝑑, 𝑒⟩. Since
𝑃 has no forward and no backward extension, it is a closed
pattern.

Property 9 (Non-Closedness Pruning). If there is
an event in one of 𝑃 strict in-between event sets for all se-
quences containing 𝑃 in 𝐷𝐵, then 𝑃 and all descendants of
𝑃 are not closed.

Proof. If there exists such an event 𝑒, it means for every
sequence pair containing 𝑃 in the database, it is possible
to insert 𝑒 in 𝑃 resulting in another pattern 𝑄 such that
𝐷𝐵𝑃 = 𝐷𝐵𝑄. Thus, any extensions that could be appended
to 𝑃 resulting in a pattern 𝑅 could also be appended to 𝑄
resulting in a pattern 𝑅′ such that sup(𝑅) = sup(𝑅′). From
Property 7, it must also be the case that disc(𝑅) = disc(𝑅′).
Thus, 𝑃 and its descendants are not closed.

Example. Consider the example database ExDB shown in
Table 1 and a pattern 𝑃 = ⟨𝑎⟩ - ⟨𝑒, 𝑐, 𝑒⟩. For all sequence 𝑆
containing 𝑃 , there is an event 𝑑 in 𝑅𝑇3(𝑃, 𝑆), thus 𝑃 and
all descendants of 𝑃 are not closed.

7. MINING ALGORITHMS
We describe three algorithm variants to mine discrimina-

tive dyadic sequential patterns: baseline, all-frequent,
and closed. The baseline variant is a simple approach that
does not utilize much pruning properties and data structure.
The all-frequent variant employs a number of pruning
properties to mine all frequent and discriminative dyadic
sequential patterns. The closed variant employs pruning
properties to remove non-closed dyadic sequential patterns
early to result in a closed set of discriminative and frequent
dyadic sequential patterns.

8

7.1 Baseline Algorithm Variant
In this variant, we employ a simple approach to mine dis-

criminative and frequent dyadic sequential patterns. The
steps are:

1 Combine the left and right sequences of the pairs in the
database into one sequence database 𝑆𝐷𝐵.

2 Mine frequent sequential patterns with support no less
than the user-defined 𝑚𝑖𝑛 𝑠𝑢𝑝 from 𝑆𝐷𝐵.

3 Pair every frequent sequential pattern to build a set of
candidate dyadic patterns 𝐶𝑎𝑛𝑑.

4 For every candidate pattern in 𝐶𝑎𝑛𝑑, test its support
and discriminative score. Only output patterns that
satisfy the minimum support and discriminative thresh-
old, 𝑚𝑖𝑛 𝑠𝑢𝑝 and 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 respectively.

The approach simply decomposes the problem to stan-
dard sequential pattern mining, then re-assembling mined
patterns to form discriminative and frequent dyadic sequen-
tial patterns. Note that we need to mine all frequent stan-
dard sequential patterns – closed standard sequential pat-
terns could not be employed – as otherwise some dyadic
sequential patterns would be lost.

7.2 Mining All Frequent and Discriminative
Patterns

In this variant, we would like to mine all frequent and
discriminative patterns. We make use of the search space
traversal strategy described in Section 4 and the dyadic
projected database described in Section 5. Several prun-
ing properties described in Section 6 would also be utilized.
The pseudocode is shown in Figure 3.
We start with patterns of size 2, i.e., those composed

of two sequences each having one event, that satisfy the
𝑚𝑖𝑛 𝑠𝑢𝑝 and 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 thresholds (line 1). From this base
set of patterns, we grow it leftwards and rightwards follow-
ing the procedure in Section 4 (lines 3-5). We only grow
patterns that are canonical following Property 1 (lines 1,
12, and 20). For every pattern that is generated, its tan-
dem project database is computed and is used to quickly
compute the tandem projected database of its immediate
descendants (lines 2, 13, and 21). Thus, partial result when
computing the support of a dyadic pattern could be used to
help compute the support of its descendants.
The anti-monotonicity of support, i.e., Property 2 is used

to prune the search space of infrequent patterns en-masse
(Lines 1, 14, and 22). If a pattern is not frequent there is no
need to grow the pattern further. Indeed all descendants of
the pattern would also be not frequent. Similarly the upper
bound of the discriminative score and the anti-monotonicity
of this upper bound, i.e., Properties 3 & 4 are used to prune
the search space of non discriminative patterns en-masse
(lines 1, 14, and 22). If a pattern’s discriminative score
upper bound does not satisfy the 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 threshold, we
could stop growing the pattern further, as all extensions of
the pattern would not be discriminative either.

7.3 Mining Closed Discriminative Patterns
In this variant, we push the early elimination of non-closed

patterns into the search space traversal. In particular, we
use Property 9 to prune the search space of non-closed pat-
terns en-masse. We also use Property 8 to immediately
check if a pattern is closed. Thus, no intermediate patterns
need to be stored in memory. Any patterns that are detected

Procedure MineAllFrequent
Inputs:
𝐷𝐵 : Database of sequence pairs
𝑚𝑖𝑛 𝑠𝑢𝑝 : Minimum support threshold
𝑚𝑖𝑛 𝑑𝑖𝑠𝑐: Minimum discriminative threshold
Output:
All patterns that are frequent and discriminative
Methods:
1: Let Base = {p=p1-p2∣sup(p) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝 ∧ ∣p1∣=∣p2∣=1

∧ disc𝑢𝑏(𝑝) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 ∧ p is canonical}
2: Compute tandem projected databases for all patterns

in Base wrt. DB
3: For each p in Base
4: Grow(p, “L”, 𝑚𝑖𝑛 𝑠𝑢𝑝, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
5: Grow(p, “R”, 𝑚𝑖𝑛 𝑠𝑢𝑝, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)

Procedure Grow
Inputs:
𝑝 = 𝑝1-𝑝2 : Pattern to be grown
𝐷𝑖𝑟 : Direction of extension (“L” or “R”)
𝑚𝑖𝑛 𝑠𝑢𝑝 = Minimum support threshold
𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 = Minimum discriminative threshold
Output:
Extended patterns that are discriminative and frequent
Methods:
6: If (disc(𝑝) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
7: Output 𝑝
8: Let PDB = projected database of 𝑝
// Grow Left
9: Let 𝐿𝐹𝐸𝐿 = {ev∣exists ≥ n entries [(a,b),(c,d)]

in PDB with ev ∈ a or 𝑒𝑣 ∈ c}
10: For each event 𝑒𝐿 in 𝐿𝐹𝐸𝐿
11: Let p’ = (𝑝1++ 𝑒𝐿)-𝑝2
12: If p’ is canonical
13: Compute projected database of p’ from PDB
14: If (sup(p’) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝 ∧ disc𝑢𝑏(p’) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
15: Grow(p’, “L”, 𝑚𝑖𝑛 𝑠𝑢𝑝, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
// Grow Right
16: If (Dir=“R”)
17: 𝐿𝐹𝐸𝑅 = {ev∣exists ≥ n entries [(a,b),(c,d)]

in PDB with ev ∈ b or ev ∈ d}
18: For each event 𝑒𝑅 in 𝐿𝐹𝐸𝑅
19: Let p’ = 𝑝1-(𝑝2++𝑒𝑅)
20: If p’ is canonical
21: Compute projected database of p’ from PDB
22: If (sup(p’) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝 ∧ disc𝑢𝑏(p’) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
23: Grow(p’, “R”, 𝑚𝑖𝑛 𝑠𝑢𝑝, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)

Figure 3: Mining All Frequent Discriminative Patterns

as closed and discriminative could directly be output.
The pseudocode of the closed variant is similar to the one

shown in Figure 3, with a few differences related to the two
points mentioned in the proceeding paragraph. In Figure 4,
we only highlight several locations that are changed. Note
that we add non-closedness pruning checks following Prop-
erty 9 at lines c1 and c2. Before outputing a pattern we also
perform the closure check based on Property 8 at line 6.

8. EXPERIMENTS
In this section, we first describe our experimental setting.

We then present the results of our scalability experiments
followed by our case study on duplicate bug reports.

8.1 Experimental Settings & Datasets
Experimental Settings. All experiments are performed
on an Intel Xeon E5540 2.53GHz server with 24.0 GB of
RAM running Windows Server 2008 R2 Standard (64 bit).
Algorithms are written in Visual C#.Net.
Synthetic Datasets. Our synthetic data generation con-

9

Procedure MineClosed
Output:
All patterns that are closed, frequent, and discriminative
. . .

Procedure Grow
Output:
Extended pat. that are closed, discriminative, and frequent
Methods:
6: If (disc(𝑝) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 ∧ 𝑝 satisfies Property 8)
7: Output 𝑝
. . .
// Grow Left
. . .
14: If (sup(p’) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝 ∧ disc𝑢𝑏(p’) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
c1: If (p’ is not prunable by Property 9)
15: Grow(p’, “L”, 𝑚𝑖𝑛 𝑠𝑢𝑝, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
// Grow Right
. . .
22: If (sup(p’) ≥ 𝑚𝑖𝑛 𝑠𝑢𝑝 ∧ disc𝑢𝑏(p’) ≥ 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)
c2: If (p’ is not prunable by Property 9)
23: Grow(p’, “R”, 𝑚𝑖𝑛 𝑠𝑢𝑝, 𝑚𝑖𝑛 𝑑𝑖𝑠𝑐)

Figure 4: Mining Closed Discriminative Patterns

sists of two steps: labeled sequence generation step, and se-
quence pairings step. We build our synthetic data generator
on top of the IBM Data Generator [5].
Labeled Sequence Pair Generation Step. We modify the

IBM data generator to generate sequences of events rather
than sequences of sets of events. We set all parameters of the
IBM Data Generator to its default value except for the num-
ber of sequences 𝐷. We randomly assign each sequence to
one of the two classes with equal likelihood. We split each
sequence into a pair of sequences of approximately equal
length (i.e., the lengths differ by one if the original sequence
has an odd number of events).
Discriminative Pattern Insertion. Next, we randomly cre-

ate discriminative patterns with size (i.e., the number of
events in the pattern) randomly chosen between 2 and 𝑃𝑆𝑖𝑧𝑒.
We created 𝑃𝑁𝑢𝑚 patterns. We inject half of them into
𝑃𝐼𝑛𝑠𝑡 randomly chosen sequence pairs with +ve labels. The
other half is injected into 𝑃𝐼𝑛𝑠𝑡 randomly chosen sequence
pairs with -ve labels. At the end of this step, we have two
sets of labeled sequence pairs.
Real Dataset. For the real dataset, we use bug reports
from the bug repositories of three large open source projects:
the Eclipse project [1], the Mozilla Firefox project [2] and the
OpenOffice project [3]. Eclipse is a popular open source in-
tegrated development environment written in Java; Firefox
is a well-known open source web browser written in C/C++,
and OpenOffice is an open source counterpart of Microsoft
Office. We use the bug reports submitted to OpenOffice in
year 2008 (12,732 bug reports), the bug report submitted
to Eclipse in year 2008 (44,652 bug reports), and the bug
reports submitted to Firefox from mid 2002 to mid 2007
(47,704 bug reports).
The bug repositories contain information on duplicated

pairs of bug reports. The older report is called master, while
the newer report is called duplicate. For each pair of dupli-
cated bug reports, we form a sequence pair by the following
process2:

1 Extract the word tokens from the summary field of the
master and duplicate bug reports.

2In this study, we do not generate a sequence pair for du-
plicate bug reports having the same master. This could also
be done.

2 Perform stemming and stop word removal on the word
tokens.

3 Convert the two sequences of word tokens into two se-
quences of integers by mapping a token to an integer.
We ended up with a sequence pair.

4 Assign class label +ve to these sequence pairs.

To create the negative sequence pairs, we perform the fol-
lowing steps:

1 For each bug report marked as duplicate, randomly find
another master bug report which is not its master.

2 Perform a similar list of steps as done for the pair of
duplicated bug reports to get a pair of sequences.

3 Assign class label -ve to these sequence pairs.

We perform the steps mentioned above on the three sets
of bug reports and combine the resultant sequence pairs.
This dataset contains 11,898 pairs (5,949 +ve, and 5,949 -
ve) composed from 8,601 different events. The pairs have on
average 13.75 events. The largest pair has 62 events.

8.2 Scalability Experiments
We investigate the effect of changing various parameters,

including 𝑚𝑖𝑛 𝑠𝑢𝑝, number of sequences 𝐷, number of in-
jected patterns 𝑃𝑁𝑢𝑚, and maximum size of injected pat-
terns 𝑃𝑆𝑖𝑧𝑒. We fix the values of the other parameters:
𝑚𝑖𝑛 𝑑𝑖𝑠𝑐 = 0.0001 (to test scalability), and 𝑃𝐼𝑛𝑠𝑡 = 100.
Varying the Minimum Support Threshold. The ex-
periment results for varying support is shown in Figures 5–7.
We plot the runtime and number of mined patterns that are
generated on three configurations: a synthetic dataset with
10,000 sequences, a synthetic dataset with 25,000 sequences,
and the real bug report dataset respectively. We vary the
support threshold from 20 to 100 sequences.
From Figure 5, we notice that mining closed patterns

could be up to two degrees of magnitude (more than 300
times) faster than mining all frequent and discriminative
patterns. The number of all frequent and discriminative pat-
terns could be more than 15,000 times larger than the num-
ber of closed ones. Compared to the number of injected pat-
terns, even the closed variant mines more patterns as new
frequent and discriminative patterns could be introduced by
injecting this pattern on the original sequence pair dataset
built using IBM data generator. The basic variant is not
able to complete on any of the support thresholds consid-
ered after running for more than 8 hours. When we reduce
the support threshold, the runtime and number of mined
patterns increase for both closed and all variants. The
absolute amounts of increment in the runtime and number
of mined patterns are higher for all than closed variants.
Note the graphs are plotted in log scale. Also, we inject
frequent discriminative patterns in 100 sequences; thus min-
ing at support level lower than 100 only adds “background”
patterns. For these “background” patterns, many of the fre-
quent and discriminative ones are not subsumed by a super-
pattern with the same support and discriminative score.
From Figure 6, we notice that only closed configuration

is able to complete. The basic and all variants are not able
to complete after running for more than 8 hours.
From Figure 7, we notice that on the real dataset the

closed variant could complete on all thresholds even on a
very low support threshold of 2 sequence pairs. For the real
dataset, we need to run with low thresholds as the dataset
of software problems expressed in English is sparse: there

10

101

101

102

103

104

20 40 60 80 100
min_sup (number of sequences)

R
u

n
ti

m
e

(s
)

-
(l

o
g

-s
ca

le
)

Basic
All
Closed

Basic could not complete.

103

104

105

106

107

108

109

20 40 60 80 100
min_sup (number of sequences)

|D
is

c.
 P

at
te

rn
s|

 -
 (

lo
g

-s
ca

le
) All

Closed

Figure 5: Varying the minimum support threshold

𝑚𝑖𝑛 𝑠𝑢𝑝 with 𝐷 = 10k, 𝑃𝑁𝑢𝑚 = 10, and 𝑃𝑆𝑖𝑧𝑒 = 30:

runtime (left), and number of patterns (right)

105

102

103

104

20 40 60 80 100
min_sup (number of sequences)

R
u

n
ti

m
e

(s
)

-
(l

o
g

-s
ca

le
) Basic

All
Closed

Basic and All could not complete.

103

104

105

106

107

108

109

20 40 60 80 100
min_sup (number of sequences)

|D
is

c.
 P

at
te

rn
s|

 -
 (

lo
g

-s
ca

le
)

All

Closed

Figure 6: Varying the minimum support threshold

𝑚𝑖𝑛 𝑠𝑢𝑝 with 𝐷 = 25k, 𝑃𝑁𝑢𝑚 = 30, and 𝑃𝑆𝑖𝑧𝑒 = 30:

runtime (left), and number of patterns (right)

are many problems and each problem could be expressed
using a variety of word sequences. The all variant could
complete on all thresholds except 𝑚𝑖𝑛 𝑠𝑢𝑝 = 2. The dif-
ferences in runtime and number of mined patterns between
all and closed increase as the support threshold is reduced.
At 𝑚𝑖𝑛 𝑠𝑢𝑝 = 4, all variant is 131 times slower than the
closed variant; also, all variant mines 1681 times more
patterns (a total of 38,475,467 patterns are mined) than the
closed variant. The basic variant is not able to complete
after running for more than 8 hours.
Varying the Number of Sequences. Figure 8 plots the
runtime needed and the number of patterns mined when we
increase the size of the sequence pair dataset from 5,000 to
25,000 sequences. In general, when we increase the number
of sequences, the runtime increases. There is not much in-
crease in the number of patterns as we injected the same
set of patterns. Only minor variations to the number of
patterns exist due to the injection of the patterns into the
randomly generated sequence pair database. A higher cost
is incurred when mining a similar amount of patterns from a
larger database as more events would need to be traversed.
Varying the Number of Injected Patterns. Figure 9
plots the runtime needed and the number of patterns mined
when we increase the number of injected patterns from 10 to
50 sequences. We note that the runtime increases as there
are more patterns to be mined.
Varying the Size of Injected Patterns. Figure 10 plots
the runtime needed and the number of patterns mined when
we increase the size of the injected patterns from 30 to 38.
We note that the runtime and the number of patterns do
not vary much. This shows the power of the closed pattern
mining strategy that prunes the search space of non-closed
patterns en-masse.

8.3 Case Study: Duplicate Bug Reports
In this section, we use mined patterns as features to detect

whether two bug reports are duplicate of each other or not.

104

103

102

101

100

2 4 6 8 10
min_sup (number of sequences)

R
u

n
ti

m
e

(s
)

-
(l

o
g

-s
ca

le
)

Basic
All
Closed

Basic could not complete.

104

105

106

107

108

109

1010

2 4 6 8 10
min_sup (number of sequences)

|D
is

c.
 P

at
te

rn
s|

 -
 (

lo
g

-s
ca

le
) All

Closed

Figure 7: Varying the minimum support threshold

𝑚𝑖𝑛 𝑠𝑢𝑝 on the real dataset: runtime (left), and number

of patterns (right)

105

101

102

103

104

5 10 15 20 25
Number of Sequences (in '000)

R
u

n
ti

m
e

(s
)

-
(l

o
g

-s
ca

le
)

Basic
All
Closed

Basic and All could not complete.

102

103

104

105

5 10 15 20 25
Number of Sequences (in '000)

|D
is

c.
 P

at
te

rn
s|

 -
 (

lo
g

-s
ca

le
)

All

Closed

Basic and All could not complete.

Figure 8: Varying the number of sequences 𝐷 with

𝑚𝑖𝑛 𝑠𝑢𝑝 = 60, 𝑃𝑁𝑢𝑚 = 30, and 𝑃𝑆𝑖𝑧𝑒 = 30: runtime

(left), and number of patterns (right)

We use the same dataset as we use to mine patterns shown
in Figure 7. We split the dataset into training and test.
Given a training data containing pairs of bug reports, we
extract features and learn a discriminative model.
We use LIBSVM [6] with probability estimates as the clas-

sification model. Classification accuracy, defined as the per-
centage of test cases correctly classified, is used as one mea-
sure. The measure AUC which is the area under a ROC
curve is also used. ROC curve shows the trade-off between
true positive rate and false positive rate for a given classi-
fier [13]. A good classifier would produce a ROC curve as
close to the top-left corner as possible. AUC is a measure
of the model accuracy, in the range of [0, 1.0]. The best
possible classifier would generate an AUC value of 1.0.
We consider three feature sets for LIBSVM classification:
1 Single Tokens. We use a vector corresponding to the

set of tokens appearing in each pair of bug report.
2 Dyadic Patterns. we use a vector corresponding to the

appearance/non-appearance of mined patterns in each
pair of bug report. Patterns are mined from the train-
ing set with the minimum support and discriminative
score thresholds set at 2 and 0.0001 respectively.

3 Both. We combine the above two feature sets.

We perform 10-fold cross validation, where for each we
keep 1/10 of the data for testing and the other for training.
We keep the class distribution for the test and training set
to be (almost) equal. The results for the three feature sets
in terms of accuracy and AUC are shown in Table 4.
The result shows that by using dyadic patterns as features

we are able to classify pairs of bug reports accurately with
more than 80% accuracy and 0.90 AUC. Using patterns to

Configuration Accuracy AUC
Single Tokens 60.38% 0.65
Dyadic Patterns 82.86% 0.90
Both 81.23% 0.89

Table 4: Accuracy: Duplicate Bug Report Detection

11

101

102

103

104

10 20 30 40 50
Number of Injected Patterns

R
u

n
ti

m
e

(s
)

-
(l

o
g

-s
ca

le
)

Basic
All
Closed

Basic could not complete.
All only complete for PNum = 10.

108

107

106

105

104

103

102

101

10 20 30 40 50
Number of Injected Patterns

|D
is

c.
 P

at
te

rn
s|

 -
 (

lo
g

-s
ca

le
)

All
Closed

Basic could not complete.
All only complete for PNum = 10.

Figure 9: Varying number of patterns 𝑃𝑁𝑢𝑚 with

𝑚𝑖𝑛 𝑠𝑢𝑝 = 60, 𝐷 = 10k, and 𝑃𝑆𝑖𝑧𝑒 = 30: runtime (left),

and number of patterns (right)

104

103

102

101

105

30 32 34 36 38
Max. Pattern Size

R
u

n
ti

m
e

(s
)

-
(l

o
g

-s
ca

le
)

Basic
All
Closed

Basic and All could not complete.

102

103

104

105

30 32 34 36 38
Max. Pattern Size

|D
is

c.
 P

at
te

rn
s|

 -
 (

lo
g

-s
ca

le
) All

Closed

Basic and All could not complete.

Figure 10: Varying maximum pattern size 𝑃𝑆𝑖𝑧𝑒 with

𝑚𝑖𝑛 𝑠𝑢𝑝 = 60, 𝐷 = 10k, and 𝑃𝑁𝑢𝑚 = 30: runtime (left),

and number of patterns (right)

classify bug reports improves both accuracy and AUC by an
addition of 22.48% and 0.35 respectively.

9. CONCLUSION AND FUTURE WORK
In this work, we propose a new problem of mining from a

database of labeled sequence pairs. We are interested in min-
ing dyadic sequential patterns that appear frequently in the
database, and could discriminate between two classes, +ve
and -ve. Rather than mining all possible patterns satisfying
the above criteria, we only mine a compact representation
of such patterns referred to as closed patterns.
To realize our solution, we propose a new search space

traversal strategy, canonical representation of patterns, and
a pruning strategy based on the canonical representation of
patterns, which avoids the generation and test of many re-
dundant patterns. We also propose a new projected database
data structure to address the issue with having two sequences
in a pattern causing two possible ways to project a pattern
on a sequence pair. We propose a number of new search
space pruning strategies that leverage anti-monotonicity prop-
erties on support and the upper bound of discriminative
score. We also present a closure checking property that
could detect closed patterns on the fly and a new property
to eliminate non-closed patterns en-masse. We embed the
above strategy, data structure, and properties in several al-
gorithm variants.
We experiment on synthetic and real datasets to test the

scalability and utility of our mining solution. We show that
mining closed patterns could be much faster than mining
all frequent and discriminative patterns. The latter could
also be much faster than our baseline solution. On many
settings, the closed variant can complete, while all and
baseline can not. Patterns mined from the real software
bug report dataset show that mined patterns could be used
to detect duplicate bug reports.
As a future work, it is interesting to improve the scalabil-

ity of the mining process further, experiment with more case
studies (including cases where the two sequences in the pairs
are asymmetric, i.e., representing different domains/concepts),
and extend the study to mine even more expressive patterns,
e.g., triadic sequential patterns, etc.

Acknowledgement. We would like to thank the anony-
mous reviewers for their valuable and constructive comments
and advice. This work was supported in part by the Hong
Kong Research Grants Council (RGC) General Research
Fund (GRF) Project No. CUHK 411310.

10. REFERENCES
[1] Eclipse Bug Repository. https://bugs.eclipse.org/bugs/.
[2] Mozilla Bug Repository. https://bugzilla.mozilla.org/.
[3] OpenOffice Bug Repository.

http://www.openoffice.org/issues/query.cgi.
[4] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In VLDB, 1994.
[5] R. Agrawal and R. Srikant. Mining sequential patterns. In

ICDE, 1995.
[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support

vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼/cjlin/libsvm.

[7] H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative frequent
pattern analysis for effective classification. In ICDE, pages
716–725, 2007.

[8] H. Cheng, X. Yan, J. Han, and P. Yu. Discriminative frequent
pattern analysis for effective classification. In ICDE, 2008.

[9] S. Cong, J. Han, and D. Padua. Parallel mining of closed
sequential patterns. In KDD, 2005.

[10] B. Ding, D. Lo, J. Han, and S.-C. Khoo. Efficient mining of
closed repetitive gapped subsequences from a sequence
database. In ICDE, 2009.

[11] G. Dong and J. Li. Efficient mining of emerging patterns:
Discovering trends and differences. In KDD, 1999.

[12] C. Gao, J. Wang, Y. He, and L. Zhou. Efficient mining of
frequent sequence generators. In WWW, 2008.

[13] J. Han and M. Kamber. Data Mining: Concepts and
Techniques (2nd ed.). Morgan Kaufmann, 2006.

[14] W. S. Jr. and E. White. The Elements of Style, 4th Ed.
Longman.

[15] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of software behaviors for failure detection: a
discriminative pattern mining approach. In KDD, 2009.

[16] D. Lo, S.-C. Khoo, and J. Li. Mining and ranking generators of
sequential patterns. In SDM, 2008.

[17] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of iterative
patterns for software specification discovery. In Proc. 2007
ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD’07), pages 460–469, San Jose, CA, Aug. 2007.

[18] D. Lo, S.-C. Khoo, and L. Wong. Non-redundant sequential
rules - theory and algorithm. Information Systems,
34(4-5):438–453, 2009.

[19] P. Nakov and H. Ng. Improved statistical machine translation
for resource-poor languages using related resource-rich
languages. In EMNLP, pages 1358–1367, 2009.

[20] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. Prefixspan: Mining sequential patterns
efficiently by prefix-projected pattern growth. In ICDE, 2001.

[21] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[22] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate bug
report retrieval. In ICSE, pages 45–54, 2010.

[23] T. Uno, T. Asai, Y. Uchida, and H. Arimura. Lcm ver. 2:
Efficient mining algorithms for frequent/closed/maximal
itemsets. In FIMI, 2004.

[24] J. Wang and J. Han. Bide: Efficient mining of frequent closed
sequences. In ICDE, 2004.

[25] J. Wang, J. Han, and J. Pei. Closet+: searching for the best
strategies for mining frequent closed itemsets. In KDD, pages
236–245, 2003.

[26] X. Yan, H. Cheng, J. Han, and P. Yu. Mining significant graph
patterns by leap search. In SIGMOD, 2008.

[27] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed
sequential patterns in large databases. In SDM, 2003.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

