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Abstract

The application of frequent patterns in classification
appeared in sporadic studies and achieved initial suc-
cess in the classification of relational data, text docu-
ments and graphs. In this paper, we conduct a system-
atic exploration of frequent pattern-based classification,
and provide solid reasons supporting this methodol-
ogy. It was well known that feature combinations (pat-
terns) could capture more underlying semantics than
single features. However, inclusion of infrequent pat-
terns may not significantly improve the accuracy due
to their limited predictive power. By building a connec-
tion between pattern frequency and discriminative mea-
sures such as information gain and Fisher score, we
develop a strategy to set minimum support in frequent
pattern mining for generating useful patterns. Based
on this strategy, coupled with a proposed feature se-
lection algorithm, discriminative frequent patterns can
be generated for building high quality classifiers. We
demonstrate that the frequent pattern-based classifica-
tion framework can achieve good scalability and high
accuracy in classifying large datasets. Empirical stud-
ies indicate that significant improvement in classifica-
tion accuracy is achieved (up to 12% in UCI datasets)
using the so-selected discriminative frequent patterns.

1. Introduction

Frequent pattern mining has been a focused theme
in data mining research with a large number of scal-
able methods proposed for mining various kinds of pat-
terns including itemsets [2, 10, 27], sequences [3, 16, 26]
and graphs [11, 22]. Frequent patterns have found
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broad applications in areas like association rule min-
ing, indexing, and clustering [1, 23, 20]. The applica-
tion of frequent patterns in classification also achieved
some success in the classification of relational data
[14, 13, 25, 6, 19], text [15], and graphs [7].

Frequent patterns reflect strong associations be-
tween items and carry the underlying semantics of the
data. They are potentially useful features for classi-
fication. In this paper, we investigate systematically
the framework of frequent pattern-based classification,
where a classification model is built in the feature space
of single features as well as frequent patterns. The
idea of frequent pattern-based classification has been
exploited by previous studies in different domains, in-
cluding: (1) associative classification [14, 13, 25, 6, 19],
where association rules are generated and analyzed for
classification; and (2) graph classification [7], text cat-
egorization [15] and protein classification [12], where
subgraphs, phrases, or substrings are used as features.

All these related studies demonstrate, to some ex-
tent, the usefulness of frequent patterns in classifica-
tion. Although it is known that frequent patterns are
useful, there is a lack of theoretical analysis on their
principles in classification. The following critical ques-
tions remain unexplored.

• Why are frequent patterns useful for classification?
Why do frequent patterns provide a good substi-
tute for the complete pattern set?

• How does frequent pattern-based classification
achieve both high scalability and accuracy for the
classification of large datasets?

• What is the strategy for setting the minimum sup-
port threshold?

• Given a set of frequent patterns, how should we
select high quality ones for effective classification?

In this paper, we will systematically answer the above
questions.



Feature combinations are shown to be useful for
classification by mapping data to a higher dimensional
space. For example, word phrases can improve the ac-
curacy of document classification. Given a categori-
cal dataset D with n features, we can explicitly enu-
merate all (2n) feature combinations and use them in
classification. However, there are two significant draw-
backs for this approach. First, since the number of
feature combinations is exponential to the number of
single features, in many cases, it is computationally in-
tractable to enumerate them when the number of sin-
gle features is large (the scalability issue). Second, in-
clusion of combined features that appear rarely could
decrease the classification accuracy due to the “overfit-
ting” issue—features are not representative. The first
problem can be partially solved by the kernel tricks
which derive a subset of combined features based on
parameter tuning. However, the kernel approach re-
quires an intensive search for good parameters to avoid
overfitting.

Through analysis, we found that the discriminative
power of a low-support feature is bounded by a low
value due to its limited coverage in the dataset; hence
the contribution of low-support features in classifica-
tion is limited, which justifies the usage of frequent
patterns in classification. Furthermore, existing fre-
quent pattern mining algorithms can facilitate the pat-
tern generation, thus solving the scalability issue in the
classification of large datasets.

As to the minimum support (denoted as min sup)
threshold setting in frequent pattern mining, a map-
ping is built between support threshold and discrim-
inative measures such as information gain and Fisher
score, so that features filtered by an information gain
threshold cannot exceed the corresponding min sup
threshold either. This result can be used to set min sup
for generating useful patterns.

Since frequent patterns are generated solely based
on frequency without considering the predictive power,
the use of frequent patterns without feature selection
will still result in a huge feature space. This might not
only slow down the model learning process, but even
worse, the classification accuracy deteriorates (another
kind of overfitting issue—features are too many). In
this paper, we demonstrate that feature selection is
necessary to single out a small set of discriminative
frequent patterns, which is essential for high quality
classifiers. Coupled with feature selection, frequent
pattern-based classification is able to solve the scalabil-
ity issue and the overfitting issue smoothly and achieve
excellent classification accuracy.

In summary, our contributions include

• We propose a framework of frequent pattern-based

classification. By analyzing the relationship be-
tween pattern frequency and its predictive power,
we demonstrate that frequent patterns provide
high quality features for classification.

• Frequent pattern-based classification could exploit
the state-of-the-art frequent pattern mining algo-
rithms for feature generation, thus achieving much
better scalability than the method of enumerating
all feature combinations.

• We establish a formal connection between our
framework with an information gain-based fea-
ture selection approach and show that the min sup
threshold is equivalent to an information gain
threshold at filtering low quality features. Such an
analysis suggests a strategy for setting min sup.

• An effective and efficient feature selection algo-
rithm is proposed to select a set of frequent and
discriminative patterns for classification.

The rest of the paper is organized as follows. Sec-
tion 2 gives the problem formulation. In Section 3, we
provide a framework for frequent pattern-based classi-
fication. We study the usefulness of frequent patterns,
figure out a connection between support and feature fil-
tering measures, discuss the minimum support setting
strategy and propose a feature selection algorithm. Ex-
tensive experimental results are presented in Section 4,
and related work is discussed in Section 5, followed by
conclusions in Section 6.

2 Problem Formulation

Assume a dataset has k categorical attributes, where
each attribute has a set of values, and m classes C =
{c1, ..., cm}. Each (attribute, value) pair is mapped to
a distinct item in I = {o1, ..., od}. Assume a pair
(att, val) → oi, where att is an attribute and val is
a value. Let x be the feature vector of a data point
s. Then xi = 1 if att(s) = val; xi = 0 if att(s) 6= val.
For numerical attributes, the continuous values are dis-
cretized first. Following the mapping, the dataset is
represented in Bd as D = {x i, yi}n

i=1, where x i ∈ Bd

and yi ∈ C. xij ∈ B = {0, 1}, ∀i ∈ [1, n], j ∈ [1, d].

Definition 1 (Combined Feature) A combined
feature α = {oα1 ...oαk

} is a subset of I, where
oαi ∈ {o1, ..., od}, ∀1 ≤ i ≤ k. oi ∈ I is
a single feature. Given a dataset D = {xi},
the set of data that contains α is denoted as
Dα = {xi|xiαj = 1, ∀oαj ∈ α}.
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Figure 1. Information Gain vs. Pattern Length on UCI data

Definition 2 (Frequent Combined Feature) For
a dataset D, a combined feature α is frequent if
θ = |Dα|

|D| ≥ θ0, where θ = |Dα|
|D| is the relative support

of α, and θ0 is the min sup threshold, 0 ≤ θ0 ≤ 1. The
set of frequent combined features is denoted as F .

Given a dataset D = {x i, yi}n
i=1 and a set of fre-

quent patterns F , D is mapped into a higher dimen-
sional space Bd′ with d′ features in I ∪F . The data is
denoted as D′ = {x ′i, yi}n

i=1, where x ′i ∈ Bd′ . Notice
that F is parameterized with min sup θ0.

Frequent Pattern-Based Classification is learning a
classification model in the feature space of single fea-
tures as well as frequent patterns, where frequent pat-
terns are generated w.r.t. min sup.

3 The Framework of Frequent Pattern-
based Classification

In this section, we examine the framework of fre-
quent pattern-based classification which includes three
steps: (1) feature generation, (2) feature selection, and
(3) model learning.

In the feature generation step, frequent patterns are
generated with a user-specified min sup. The data is
partitioned according to the class label. Frequent pat-
terns are discovered in each partition with min sup.
The collection of frequent patterns F is the feature
candidates. In the second step, feature selection is ap-
plied on F . The set of selected features is Fs. Given
Fs, the dataset D is transformed to D′ in Bd′ . The
feature space includes all the single features as well as
the selected frequent patterns. Finally, a classification
model is built on the dataset D′.

3.1 Why Are Frequent Patterns Good Features?

Frequent patterns have two properties: (1) each pat-
tern is a combination of single features, and (2) they are
frequent. We will analyze these properties and explain
why frequent patterns are useful for classification.

3.1.1 The Usefulness of Combined Features

Frequent pattern is a form of non-linear feature com-
bination over the set of single features. With inclu-
sion of non-linear feature combinations, the expressive
power of the new feature space increases. The “Ex-
clusive OR” is an example where the data is linearly
separable in B3 = (x, y, xy), but not so in the original
space B2 = (x, y). Non-linear mapping is widely used,
e.g., string kernel [15, 12] for text or biosequence clas-
sification. In frequent pattern-based classification, the
single feature vector x is explicitly transformed from
the space Bd where d = |I| to a larger space Bd′ where
d′ = |I ∪ F|. This will likely increase the chance of in-
cluding important features.

In addition, the discriminative power of some fre-
quent patterns is higher than that of single features
because they capture more underlying semantics of the
data. We retrieved three UCI datasets and plotted in-
formation gain [17] of both single features and frequent
patterns in Figure 1. It is clear that some frequent pat-
terns have higher information gain than single features.

3.1.2 Discriminative Power versus Pattern
Frequency

In this subsection, we study the relationship between
the discriminative power of a feature and its support
and demonstrate that the discriminative power of low-
support features is limited. In addition, they could
harm the classification accuracy due to overfitting.



First, a classification model which uses frequent fea-
tures for induction has statistical significance, thus gen-
eralizes well to the test data. If an infrequent feature
is used, the model cannot generalize well to the test
data since it is built based on statistically minor obser-
vations. This is referred to as overfitting.

Second, the discriminative power of a pattern is
closely related to its support. Take information gain
as an example. For a pattern α represented by a ran-
dom variable X, the information gain is

IG(C|X) = H(C)−H(C|X) (1)

where H(C) is the entropy and H(C|X) is the con-
ditional entropy. Given a dataset with a fixed class
distribution, H(C) is a constant. The upper bound of
the information gain, IGub, is

IGub(C|X) = H(C)−Hlb(C|X) (2)

where Hlb(C|X) is the lower bound of H(C|X). As-
sume the support of α is θ, we will show in the fol-
lowing that, IGub(C|X) is closely related to θ. When
θ is small, IGub(C|X) is low. That is, the infrequent
features have a very low information gain upper bound.

To simplify the analysis, assume X ∈ {0, 1} and
C = {0, 1}. Let P (x = 1) = θ, P (c = 1) = p and
P (c = 1|x = 1) = q. Then

H(C|X) = −
∑

x∈{0,1}
P (x)

∑

c∈{0,1}
P (c|x) log P (c|x)

= −θq log q − θ(1− q) log(1− q)

+ (θq − p) log
p− θq

1− θ

+ (θ(1− q)− (1− p)) log
(1− p)− θ(1− q)

1− θ

H(C|X) is a function of p, q and θ. Given a dataset,
p is a fixed value. As H(C|X) is a concave function,
it reaches its lower bound w.r.t. q, for fixed p and θ
at the following conditions. If θ ≤ p, H(C|X) reaches
its lower bound when q = 0 or 1. If θ > p, H(C|X)
reaches its lower bound when q = p/θ or 1− (1− p)/θ.
The cases of θ ≤ p and θ ≥ p are symmetric. Due to
space limit, we only discuss the case when θ ≤ p and
the analysis for the other is similar.

Since q = 0 and q = 1 are symmetric for the case
θ ≤ p, we only discuss the case q = 1. In that case, the
lower bound Hlb(C|X) is

Hlb(C|X)|q=1 = (θ−1)(
p− θ

1− θ
log

p− θ

1− θ
+

1− p

1− θ
log

1− p

1− θ
)

(3)

The partial derivative of Hlb(C|X)|q=1 w.r.t. θ is

∂Hlb(C|X)|q=1

∂θ
= log

p− θ

1− θ
− p− 1

1− θ
− 1− p

1− θ

= log
p− θ

1− θ
≤ log 1
≤ 0

The above analysis demonstrates that the informa-
tion gain upper bound IGub(C|X) is a function of
support θ. Hlb(C|X)|q=1 is monotonically decreasing
with θ, i.e., the smaller θ is, the larger Hlb(C|X), and
the smaller IGub(C|X). When θ is small, IGub(C|X)
is small. Therefore, the discriminative power of low-
frequency patterns is bounded by a small value. For
the symmetric case θ ≥ p, a similar conclusion could
be drawn: The discriminative power of very high-
frequency patterns is bounded by a small value, ac-
cording to the similar rationale.

To support the analysis above, we depict empirical
results on three UCI datasets in Figure 2. The x axis
represents the (absolute) support of a pattern and the
y axis represents the information gain. We can clearly
see that the information gain of a low-support pattern
is bounded by a small value. In addition, for each abso-
lute support, we also plot the theoretical upper bound
IGub(C|X)|q=1 if θ ≤ p or IGub(C|X)|q=p/θ if θ > p,
given the fixed p = P (c = 1) from the real dataset.
We can see that the upper bound of information gain
at very low support (and very high support) is small,
which confirms our analysis. For example, for a sup-
port count of 31 (i.e., θ = 5%) in Figure 2 (a), the
information gain upper bound is as low as 0.06.

Another interesting observation is, at a medium
large support (e.g., support = 300 in Figure 2 (a))
where the upper bound reaches the maximum possi-
ble value IGub = H(C), there is a big margin between
the information gain of frequent patterns and the upper
bound. However, it does not necessarily demonstrate
that frequent patterns cannot have very high discrimi-
native power. As a matter of fact, the set of available
frequent patterns and their predictive power is closely
related to the dataset and the class distribution.

Besides information gain, Fisher score [8] is also
popularly used to measure the discriminative power of
a feature. We analyze the relationship between Fisher
score and pattern support. Fisher score is defined as

Fr =
∑c

i=1 ni(µi − µ)2∑c
i=1 niσ2

i

(4)

where ni is the number of data samples in class i, µi is
the average feature value in class i, σi is the standard
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Figure 2. Information Gain and the Theoretical Upper Bound vs. Support on UCI data
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Figure 3. Fisher Score and the Theoretical Upper Bound vs. Support on UCI data

deviation of the feature value in class i, and µ is the
average feature value in the whole dataset.

We use the notation of p, q and θ as defined before
and assume we only have two classes. Assume θ ≤ p
(the analysis for θ > p is symmetric), then Fr is,

Fr =
θ(p− q)2

p(1− p)(1− θ)− θ(p− q)2
(5)

In Eq. (5), let Y = p(1−p)(1−θ) and Z = θ(p−q)2.
Then Y ≥ 0 and Z ≥ 0. If Y = 0, we can verify that
Z = 0 too. Then Fr is undefined in Eq. (5). In this
case, Fr = 0 according to Eq. (4). For the case when
Y > 0 and Z ≥ 0, Eq. (5) is equivalent to

Fr =
Z

Y − Z

For fixed p and θ, Y is a positive constant. Then Fr
monotonically increases with Z = θ(p − q)2. Assume
p ∈ (0, 0.5] (p ∈ [0.5, 1) is symmetric), then when q = 1,
Fr reaches its maximum value w.r.t. q, for fixed p and
θ. We denote this maximum value as Frub. Put q = 1
into Eq. (5), we have

Frub|q=1 =
θ(1− p)
p− θ

(6)

According to Eq. (6), as θ increases, Frub|q=1 in-
creases monotonically, for a fixed p. For θ ≤ p, Fisher
score upper bound of a low-frequency pattern is smaller
than that of a high-frequency one. Note, as θ increases,
Frub|q=1 will have a very large value. When θ → p,
Frub|q=1 →∞.

Another interesting evidence to show the relation-
ship between Fr and θ is the sign of ∂Fr

∂θ . For Eq. (5),
the partial derivative of Fr w.r.t. θ is

∂Fr

∂θ
=

(p− q)2p(1− p)
(p− p2 − θq2 − θp + 2θpq)2

≥ 0 (7)

The inequality holds because p ∈ [0, 1]. Therefore,
when θ ≤ p, Fr monotonically increases with θ, for
fixed p and q. The result shows that, Fisher score of
a high-frequency feature is larger than that of a low-
frequency one, if p and q are fixed.

Figure 3 shows the Fisher score of each pattern vs.
its (absolute) support. We also plot the Fisher score
upper bound Frub w.r.t. support. As mentioned above,
for θ ≤ p, as θ increases, Frub will have very large val-
ues. Frub → ∞ as θ approaches p. Hence, we only
plot a portion of the curve which shows the trend very
clearly. The result is similar to Figure 2. These empir-



ical results demonstrate that, features of low support
have very limited discriminative power, which is due to
their limited coverage in the dataset. Features of very
high support have very limited discriminative power
too, which is due to their commonness in the data.

3.1.3 The Justification of Frequent Pattern-
Based Classification

Based on the above analysis, we will demonstrate that
the frequent pattern-based classification is a scalable
and effective methodology. The justification is done by
building a connection between a well-established infor-
mation gain-based feature selection approach and our
frequent pattern-based method.

Assume the problem context is using combined fea-
tures for classification. In a commonly used feature se-
lection approach, assume all feature combinations are
generated as feature candidates. A subset of high qual-
ity features are selected for classification, with an in-
formation gain threshold IG0 (or a Fisher score thresh-
old). According to the analysis in Section 3.1.2, one can
always find a min sup threshold θ∗, which satisfies:

θ∗ = arg max
θ

(IGub(θ) ≤ IG0) (8)

where IGub(θ) is the information gain upper bound
at support θ. That is, θ∗ is the maximum support
threshold where the information gain upper bound at
this point is no greater than IG0.

The feature selection approach filters all the com-
bined features whose information gain is less than IG0;
accordingly, in the frequent pattern-based method, fea-
tures with support θ ≤ θ∗ can be safely skipped be-
cause IG(θ) ≤ IGub(θ) ≤ IGub(θ∗) ≤ IG0. Compared
with the information gain-based approach, it is equiva-
lent to generate the feature with min sup = θ∗, then ap-
ply feature selection on the frequent patterns only. The
latter is our frequent pattern-based approach. Since
the number of all the feature combinations is usu-
ally very large, the enumeration and feature selection
over such a huge feature space is computationally in-
tractable. In contrast, frequent pattern-based method
achieves the same result but in a much more efficient
way. Obviously it can benefit from the state-of-the-art
frequent pattern mining algorithms. The choice of the
information gain threshold IG0 in the first approach
corresponds to the setting of the min sup parameter in
our framework. If IG0 is large, the corresponding θ∗ is
large and vice versa. As it is important to determine
the information gain threshold in most feature selec-
tion algorithms, the strategy of setting an appropriate
min sup is equally crucial. We will discuss this issue in
Section 3.2.

3.2 The Minimum Support Effect

Since the set of frequent patterns F is generated
according to min sup, we study the impact of min sup
on the classification accuracy and propose a strategy
to set min sup.

If min sup is set with a large value, the patterns
in F correspond to very frequent ones. In the con-
text of classification, they may not be the best feature
candidates, since they appear in a large portion of the
dataset, in different classes. We can clearly observe in
Figures 2 and 3 that at a very large min sup value, the
theoretical upper bound decreases, due to the “over-
whelming” occurrences of the high-support patterns.
This is analogous to the stop word in text retrieval
where those highly frequent words are removed before
document retrieval or text categorization.

As min sup lowers down, it is expected that the
trend of classification accuracy increases, as more dis-
criminative patterns with medium frequency are dis-
covered. However, as min sup decreases to a very low
value, the classification accuracy stops increasing, or
even starts dropping due to overfitting. As we ana-
lyzed in Section 3.1, features with low support have
low discriminative power. They could even harm the
classification accuracy if they are included for classifi-
cation, due to the overfitting effect. In addition, the
costs of time and space at both the frequent pattern
mining and the feature selection step become very high
with a low min sup.

We propose a strategy to set min sup, the major
steps of which are outlined below.

• Compute the theoretical information gain (or
Fisher score) upper bound as a function of sup-
port θ;

• Choose an information gain threshold IG0 for fea-
ture filtering purpose;

• Find θ∗ = arg maxθ (IGub(θ) ≤ IG0);

• Mine frequent patterns with min sup = θ∗.

First, compute the theoretical information gain up-
per bound as a function of support θ. This only in-
volves with the class distribution p, without generat-
ing frequent patterns. Then decide an information gain
threshold IG0 and find the corresponding θ∗. Then for
θ ≤ θ∗, IGub(θ) ≤ IGub(θ∗) ≤ IG0. In this way, fre-
quent patterns are generated efficiently without miss-
ing any feature candidates w.r.t. IG0. As there are
more mature studies on how to set the information
gain threshold in feature selection methods [24], we can
borrow their strategy and map the selected information
gain threshold to a min sup threshold in our method.



3.3 Feature Selection AlgorithmMMRFS

Although frequent patterns are shown to be useful
for classification, not every frequent pattern is equally
useful. It is necessary to perform feature selection
to single out a subset of discriminative features and
remove non-discriminative ones. In this section, we
propose an algorithm MMRFS. The notion is bor-
rowed from the Maximal Marginal Relevance (MMR)
[4] heuristic in information retrieval, where a document
has high marginal relevance if it is both relevant to the
query and contains minimal marginal similarity to pre-
viously selected documents. We first define relevance
and redundancy of a frequent pattern in the context of
classification.

Definition 3 (Relevance) A relevance measure S is
a function mapping a pattern α to a real value such
that S(α) is the relevance w.r.t. the class label.

Relevance models the discriminative power of a fre-
quent pattern w.r.t. the class label. Measures like infor-
mation gain and Fisher score can be used as a relevance
measure.

Definition 4 (Redundancy) A redundancy measure
R is a function mapping two patterns α and β to a
real value such that R(α, β) is the redundancy between
them.

Redundancy measures the extent by which two pat-
terns are similar. In this paper, we use a variant of
the Jaccard measure [18] to measure the redundancy
between different features.

R(α, β) =
P (α, β)

P (α) + P (β)− P (α, β)
×min(S(α), S(β))

(9)
According to the redundancy definition, we use the

closed frequent patterns [27] as features instead of fre-
quent ones in our framework, since for a closed pattern
α and its non-closed sub-pattern β, β is completely
redundant w.r.t. α.

The MMRFS algorithm searches over the feature
space in a heuristic way. A feature is selected if it
is relevant to the class label and contains very low re-
dundancy to the features already selected. Initially,
the feature with the highest relevance measure is se-
lected. Then the algorithm incrementally selects more
patterns from F with an estimated gain g. A pattern
is selected if it has the maximum gain among the re-
maining patterns. The gain of a pattern α given a set
of already selected patterns Fs is

g(α) = S(α)− max
β∈Fs

R(α, β) (10)

Algorithm 1 Feature Selection Algorithm MMRFS

Input: Frequent patterns F , Coverage threshold δ,
Relevance S, Redundancy R

Output: A selected pattern set Fs

1: Let α be the most relevant pattern;
2: Fs = {α};
3: while (true)
4: Find a pattern β such that the gain g(β) is the

maximum among the set of patterns in F − Fs;
5: If β can correctly cover at least one instance
6: Fs = Fs ∪ {β};
7: F = F − {β};
8: If all instances are covered δ times or F = φ
9: break;
10: return Fs

An interesting question arises: How many frequent
patterns should be selected for effective classification?
A promising method is to add a database coverage con-
straint δ, as in [13]. The coverage parameter δ is set to
ensure that each training instance is covered at least δ
times by the selected features. In this way, the num-
ber of features selected is automatically determined,
given a user-specified parameter δ. The algorithm is
described in Algorithm 1.

4 Experimental Results

In this section, we report a systematic experimental
study for the evaluation of our frequent pattern-based
classification framework and our proposed feature se-
lection algorithm MMRFS.

A series of datasets from UCI Machine Learning
Repository are tested. Continuous attributes are dis-
cretized. We use FPClose [9] to generate closed pat-
terns and MMRFS algorithm to do the feature selec-
tion. LIBSVM [5] and C4.5 in Weka [21] are chosen as
two classification models. Each dataset is partitioned
into ten parts evenly. Each time, one part is used for
test and the other nine are used for training. We did
10-fold cross validation on each training set and picked
the best model for test. The classification accuracies
on the ten test datasets are averaged and reported.

4.1 Frequent Pattern-based Classification

We test the performance of the frequent pattern-
based classification. For each dataset, a set of frequent
patterns F is generated. A classification model is built
using features in I ∪F , denoted as Pat All. MMRFS is



Table 1. Accuracy by SVM on Frequent Com-
bined Features vs. Single Features

Data Single Feature Freq. Pattern
Item AllItem FSItem RBF Pat AllPat FS

anneal 99.78 99.78 99.11 99.33 99.67
austral 85.01 85.50 85.01 81.79 91.14
auto 83.25 84.21 78.80 74.97 90.79
breast 97.46 97.46 96.98 96.83 97.78
cleve 84.81 84.81 85.80 78.55 95.04
diabetes 74.41 74.41 74.55 77.73 78.31
glass 75.19 75.19 74.78 79.91 81.32
heart 84.81 84.81 84.07 82.22 88.15
hepatic 84.50 89.04 85.83 81.29 96.83
horse 83.70 84.79 82.36 82.35 92.39
iono 93.15 94.30 92.61 89.17 95.44
iris 94.00 96.00 94.00 95.33 96.00
labor 89.99 91.67 91.67 94.99 95.00
lymph 81.00 81.62 84.29 83.67 96.67
pima 74.56 74.56 76.15 76.43 77.16
sonar 82.71 86.55 82.71 84.60 90.86
vehicle 70.43 72.93 72.14 73.33 76.34
wine 98.33 99.44 98.33 98.30 100
zoo 97.09 97.09 95.09 94.18 99.00

applied on F and a classifier is built using features in
I∪Fs, denoted as Pat FS. For comparison, we test the
classifiers built on single features, denoted as Item All
(using all single features) and Item FS (selected single
features), respectively. Table 1 shows the results by
SVM and Table 2 shows the results by C4.5. In LIB-
SVM, all the above four models use linear kernel. In
addition, an SVM model is built using RBF kernel on
single features, denoted as Item RBF.

From Table 1, it is clear that Pat FS achieves the
best classification accuracy in most cases. It has sig-
nificant improvement over Item All and Item FS. This
result is consistent with our theoretical analysis that
(1) frequent patterns are useful by mapping the data
to a higher dimensional space; and (2) the discrimi-
native power of some frequent patterns is higher than
that of single features.

Another interesting observation is that the perfor-
mance of Item RBF is inferior to that of Pat FS. The
reason is, RBF kernel has a different mechanism for fea-
ture generation from our approach. In our approach,
min sup is used to filter out low-frequency features and
MMRFS is applied to select highly discriminative fea-
tures. On the other hand, the RBF kernel maps the
original feature vector to a possibly infinite dimension.

Table 2. Accuracy by C4.5 on Frequent Com-
bined Features vs. Single Features

Dataset Single Features Frequent Patterns
Item All Item FS Pat All Pat FS

anneal 98.33 98.33 97.22 98.44
austral 84.53 84.53 84.21 88.24
auto 71.70 77.63 71.14 78.77
breast 95.56 95.56 95.40 96.35
cleve 80.87 80.87 80.84 91.42
diabetes 77.02 77.02 76.00 76.58
glass 75.24 75.24 76.62 79.89
heart 81.85 81.85 80.00 86.30
hepatic 78.79 85.21 80.71 93.04
horse 83.71 83.71 84.50 87.77
iono 92.30 92.30 92.89 94.87
iris 94.00 94.00 93.33 93.33
labor 86.67 86.67 95.00 91.67
lymph 76.95 77.62 74.90 83.67
pima 75.86 75.86 76.28 76.72
sonar 80.83 81.19 83.67 83.67
vehicle 70.70 71.49 74.24 73.06
wine 95.52 93.82 96.63 99.44
zoo 91.18 91.18 95.09 97.09

The degree (i.e., the maximum length) of combined fea-
tures depends on the value of γ where γ is the factor
in K(x,y) = e−γ‖x−y‖2 , i.e., the degree increases as
γ grows. Given a particular γ, the combined features
Fp of length ≤ p are used without discriminating their
frequency or predictive power, while the combined fea-
tures of length > p are filtered out.

We also observe that the performance of Pat All is
much worse than that of Pat FS, which confirms our
reasoning that, redundant and non-discriminative pat-
terns often overfit the model and deteriorate the clas-
sification accuracy. In addition, MMRFS is shown to
be effective. Generally, any effective feature selection
algorithm can be used in our framework. The emphasis
is that feature selection is an important step in frequent
pattern-based classification.

The above results are also observed in Table 2 for
decision tree-based classification.

4.2 Scalability Tests

Scalability tests are performed to show our frequent
pattern-based framework is very scalable with good
classification accuracy. Three dense datasets, Chess,



Waveform and Letter Recognition1 from UCI reposi-
tory are used. On each data, min sup = 1 is used to
enumerate all feature combinations and feature selec-
tion is applied over them. In comparison, the frequent
pattern-based classification method is tested with vari-
ant support threshold settings.

Table 3. Accuracy & Time on Chess Data

min sup #Patterns Time (s) SVM (%) C4.5 (%)
1 N/A N/A N/A N/A

2000 68,967 44.703 92.52 97.59
2200 28,358 19.938 91.68 97.84
2500 6,837 2.906 91.68 97.62
2800 1,031 0.469 91.84 97.37
3000 136 0.063 91.90 97.06

Table 4. Accuracy & Time on Waveform Data

min sup #Patterns Time (s) SVM (%) C4.5 (%)
1 9,468,109 N/A N/A N/A
80 26,576 176.485 92.40 88.35
100 15,316 90.406 92.19 87.29
150 5,408 23.610 91.53 88.80
200 2,481 8.234 91.22 87.32

Table 5. Accuracy & Time on Letter Recogni-
tion Data

min sup #Patterns Time (s) SVM (%) C4.5 (%)
1 5,147,030 N/A N/A N/A

3000 3,246 200.406 79.86 77.08
3500 2,078 103.797 80.21 77.28
4000 1,429 61.047 79.57 77.32
4500 962 35.235 79.51 77.42

In Table 3, we show the result by varying min sup
on the Chess data which contains 3, 196 instances, 2
classes and 73 items. #Patterns gives the number of
closed patterns. Time gives the sum of pattern min-
ing and feature selection time. We do not include the
classification time in the table because our goal is to
show that the proposed framework has good scalabil-
ity in feature generation and selection. The last two
columns give the classification accuracy by SVM and

1The discretized Letter Recognition data is obtained from
www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS-KDD-DN/DataSets

C4.5. When min sup = 1, the enumeration of all the
patterns cannot complete in days, thus blocking model
construction. Our framework, benefiting from higher
support threshold, can accomplish the mining of fre-
quent patterns in seconds and achieve satisfactory clas-
sification accuracy.

Tables 4 and 5 show similar results on the other two
datasets. When min sup = 1, millions of patterns are
enumerated. Feature selection fails with such a large
number of patterns. In contrast, our frequent pattern-
based method is very efficient and achieves good accu-
racy within a wide range of minimum support thresh-
olds.

5 Related Work

The frequent pattern-based classification is related
to associative classification. In associative classifica-
tion, a classifier is built based on high-confidence, high-
support association rules [14, 13, 25, 6, 19]. The asso-
ciation between frequent patterns and class labels is
used for prediction.

A recent work on top-k rule mining [6] discovers top-
k covering rule groups for each row of gene expression
profiles. Prediction is then performed based on a clas-
sification score which combines the support and confi-
dence measures of the rules.

HARMONY [19] is another rule-based classifier
which directly mines classification rules. It uses an
instance-centric rule-generation approach and assures
for each training instance, that one of the highest-
confidence rules covering the instance is included in
the rule set. HARMONY is shown to be more efficient
and scalable than previous rule-based classifiers. On
several datasets that were tested by both our method
and HARMONY, our classification accuracy is signifi-
cantly higher, e.g., the improvement is up to 11.94%
on Waveform and 3.40% on Letter Recognition.

Our work is different from associative classification
in the following aspects: (1) We use frequent patterns
to represent the data in a different feature space, in
which any learning algorithm can be used, whereas
associative classification builds a classification model
using rules only; (2) in associative classification, the
prediction process is to find one or several top ranked
rule(s) for prediction, whereas in our case, the predic-
tion is made by the classification model; and (3) more
importantly, we provide in-depth analysis on why fre-
quent patterns provide a good solution for classifica-
tion, by studying the relationship between the discrim-
inative power and pattern support. By establishing
a connection with an information gain-based feature
selection approach, we propose a strategy for setting



min sup as well. In addition, we demonstrate the im-
portance of feature selection on the frequent pattern
features and propose a feature selection algorithm.

Other related work includes classification which uses
string kernels [15, 12], or word combinations in NLP or
structural features in graph classification [7]. In all
these studies, frequent patterns are generated and the
data is mapped to a higher dimensional feature space.
Data which are not linearly separable in the original
space become linearly separable in the mapped space.

6 Conclusions

In this paper, we propose a systematic framework
for frequent pattern-based classification and give the-
oretical answers to several critical questions raised by
this framework. Our study shows frequent patterns are
high quality features and have good model generaliza-
tion ability. Connected with a commonly used feature
selection approach, our method is able to overcome two
kinds of overfitting problems and shown to be scal-
able. A strategy for setting min sup is also suggested.
In addition, we propose a feature selection algorithm
to select discriminative frequent patterns. Experimen-
tal studies demonstrate that significant improvement
is achieved in classification accuracy using the frequent
pattern-based classification framework.

The framework is also applicable to more complex
patterns, including sequences and graphs. In the fu-
ture, we will conduct research in this direction.
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