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ABSTRACT

In this paper we use a time-evolving graph which consists of a se-

quence of graph snapshots over time to model many real-world net-

works. We study the path classification problem in a time-evolving

graph, which has many applications in real-world scenarios, for ex-

ample, predicting path failure in a telecommunication network and

predicting path congestion in a traffic network in the near future.

In order to capture the temporal dependency and graph structure

dynamics, we design a novel deep neural network named Long

Short-Term Memory R-GCN (LRGCN). LRGCN considers temporal

dependency between time-adjacent graph snapshots as a special

relation with memory, and uses relational GCN to jointly process

both intra-time and inter-time relations. We also propose a new

path representation method named self-attentive path embedding

(SAPE), to embed paths of arbitrary length into fixed-length vectors.

Through experiments on a real-world telecommunication network

and a traffic network in California, we demonstrate the superiority

of LRGCN to other competing methods in path failure prediction,

and prove the effectiveness of SAPE on path representation.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; • Com-

puting methodologies → Supervised learning by classifica-

tion;
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1 INTRODUCTION

Graph has been widely used to model real-world entities and the re-

lationship among them. For example, a telecommunication network

can be modeled as a graph where a node corresponds to a switch

and an edge represents an optical fiber link; a traffic network can be

modeled as a graph where a node corresponds to a sensor station

and an edge represents a road segment. In many real scenarios, the

graph topological structure may evolve over time, e.g., link failures

due to hardware outages; road closures due to accidents or natural

disasters. This leads to a time-evolving graph which consists of a

sequence of graph snapshots over time. In the literature some stud-

ies on time-evolving graphs focus on the node classification task,

e.g., [1] uses a random walk approach to combine structure and

content for node classification, and [4] improves the performance

of node classification in time-evolving graphs by exploiting genetic

algorithms. In this work, we focus on a more challenging but practi-

cally useful task: path classification in a time-evolving graph, which

predicts the status of a path in the near future. A good solution to

this problem can benefit many real-world applications, e.g., predict-

ing path failure (or path congestion) in a telecommunication (or

traffic) network so that preventive measures can be implemented

promptly.

In our problem setting, besides the topological structure, we also

consider signals collected on the graph nodes, e.g., traffic density

and traveling speed recorded at each sensor station in a traffic net-

work. The observed signals on one node over time form a time

series. We incorporate both the time series observations and evolv-

ing topological structure into our model for path classification.

The complex temporal dependency and structure dynamics pose

a huge challenge. For one thing, observations on nodes exhibit

highly non-stationary properties such as seasonality or daily peri-

odicity, e.g., morning and evening rush hours in a traffic network.

For another, graph structure evolution can result in sudden and

dramatic changes of observations on nodes, e.g., road closure due

to accidents redirects traffic to alternative routes, causing increased

traffic flow on those routes. To model the temporal dependency and

structure dynamics, we design a new time-evolving neural network



named Long Short-Term Memory R-GCN (LRGCN). LRGCN consid-

ers node correlation within a graph snapshot as intra-time relation,

and views temporal dependency between adjacent graph snapshots

as inter-time relation, then utilizes Relational GCN (R-GCN) [18]

to capture both temporal dependency and structure dynamics.

Another challenge we face is that paths are of arbitrary length.

It is non-trivial to develop a uniform path representation that pro-

vides both good data interpretability and classification performance.

Existing solutions such as [11] rely on Recurrent Neural Networks

(RNN) to derive fixed-size representation, which, however, fails to

provide meaningful interpretation of the learned path representa-

tion. In this work, we design a new path representation method

named self-attentive path embedding (SAPE), which takes advan-

tage of the self-attentive mechanism to explicitly highlight the

important nodes on a path, thus provides good interpretability and

benefits downstream tasks such as path failure diagnosis.

Our contributions are summarized as follows.

• We study path classification in a time-evolving graph, which,

to the best of our knowledge, has not been studied before.

Our proposed solution LRGCN achieves superior classifica-

tion performance to the state-of-the-art deep learning meth-

ods.

• We design a novel self-attentive path embedding method

called SAPE to embed paths of arbitrary length into fixed-

length vectors, which are then used as a standard input

format for classification. The embedding approach not only

improves the classification performance, but also provides

meaningful interpretation of the underlying data in two

forms: (1) embedding vectors of paths, and (2) node impor-

tance in a path learned through a self-attentive mechanism

that differentiates their contribution in classifying a path.

• We evaluate LRGCN-SAPE on two real-world data sets. In a

telecommunication network of a real service session, we use

LRGCN-SAPE to predict path failures and achieve a Macro-

F1 score of 61.89%, outperforming competing methods by at

least 5%. In a traffic network in California, we utilize LRGCN-

SAPE to predict path congestions and achieve a Macro-F1

score of 86.74%, outperforming competing methods by at

least 4%.

The remainder of this paper is organized as follows. Section 2

gives the problem definition and Section 3 describes the design of

LRGCN and SAPE. We report the experimental results in Section 4

and discuss related work in Section 5. Finally, Section 6 concludes

the paper.

2 PROBLEM DEFINITION

We denote a set of nodes as V = {v1,v2, . . . ,vN } which represent

real-world entities, e.g., switches in a telecommunication network,

sensor stations in a traffic network. At time t , we use an N × N
adjacency matrix At to describe the connections between nodes in
V . Ati j ∈ {0, 1} represents whether there is a directed edge from

node vj to node vi or not, e.g., a link that bridges two switches, a
road that connects two sensor stations. In this study, we focus on a

directed graph, as many real-world networks, e.g., telecommunica-

tion networks, traffic networks, are directed; yet our methodology is

also applicable to undirected graphs. We useX t = {xt1, x
t
2, . . . , x

t
N
}

M time steps
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Figure 1: A time-evolving graph in which four nodes

{a,b, c,d} correspond to four switches in a telecommunica-

tion network. Given the observations and graph snapshots

in the past M time steps, we want to infer if path 〈a,b, c,d〉
will fail or not in the next F time steps.

to denote the observations at each node at time t , where xti ∈ Rd is

a d-dimensional vector describing the values of d different signals
recorded at node vi at time t , e.g., temperature, power and other
signals of a switch.

We define the adjacency matrix At and the observed signals
X t on nodes in V as a graph snapshot at time t . A sequence of

graph snapshots with A = {A0,A1, . . . ,At } and the corresponding
observations X = {X 0,X 1, . . . ,X t } over time steps 0, 1, . . . , t is
defined as a time-evolving graph. Note that the graph structure

can evolve over time as some edges may become unavailable, e.g.,

link failure, road congestion/closure, and some new edges may

become available over time. For one node vi ∈ V , the sequence
of observations {x0i , x

1
i , . . . , x

t
i } over time is a multivariate time

series.

We denote a path as a sequence p = 〈v1,v2, . . . ,vm〉 of lengthm
in the time-evolving graph, where each node vi ∈ V . For the same
path, we use st =

〈
xt1, x

t
2, . . . , x

t
m

〉
to represent the observations

of the path nodes at time t . In this paper we aim to predict if a

given path is available or not in the future, e.g., a path failure in

a telecommunication network, or a path congestion in a traffic

network. Note the availability of a path is service dependent, e.g., a

path is defined as available in a telecommunication network if the

transmission latency for a data packet to travel through the path is

less than a predefined threshold. Thus the path availability cannot

be simply regarded as the physical connectivity of the path, but is

related to the “quality of service” of the path. To be more specific,

for a given path p at time t , we utilize the past M time steps to

predict the availability of this path in the next F time steps. We

formulate this prediction task as a classification problem and our

goal is to learn a function f (·) that can minimize the cross-entropy
loss L over the training set D:

argminL = −
∑
Pj ∈D

C∑
c=1

Yjc log fc (Pj ), (1)

where Pj = ([st−M+1j , . . . , stj ],pj , [A
t−M+1, . . . ,At ]) is a training

instance, Yj ∈ {0, 1}C is the training label representing the avail-

ability of this path in the next F time steps, fc (Pj ) is the predicted



probability of class c , andC is the number of classes. In our problem,

we have C = 2, i.e., path availability and path failure.
Figure 1 depicts a time-evolving graph in the context of a telecom-

munication network. a,b, c,d denote four switches. In the pastM
time steps, although the graph structure has changed, e.g., 〈b,d〉 be-
comes unavailable due to overload, path 〈a,b, c,d〉 is still available.
From this time-evolving graph, we want to predict the availability

of path 〈a,b, c,d〉 in the next F time steps.

3 METHODOLOGY

3.1 Framework

In the context of time-evolving graph, we observe three important

properties as follows.

Property 1. Node correlation. Observations on nodes are corre-

lated. For example, if a sensor station in a traffic network detects

low traffic density at time t , we can infer that nearby stations on
the same path also record low traffic at the same time with high

probability.

Property 2. Influence of graph structure dynamics. Observa-

tions on nodes are influenced by the changes on the graph structure.

For example, if a road segment becomes unavailable at time t (e.g.,
road closure), traffic shall be redirected to alternative routes. As

a result, nodes on the affected path may record a sudden drop of

traffic density, while nodes on alternative routes may record an

increase of traffic flow at the subsequent time steps which may

increase the probability of path congestion.

Property 3. Temporal dependency. The time series recorded on

each node demonstrates strong temporal dependency, e.g., high

traffic density and low traveling speed recorded at morning and

evening rush hours. This makes the time series non-stationary.

These three properties make our problem very complicated. A

desired model for path failure prediction should have built-in mech-

anisms to address these challenges. First, it should model the node

correlation and the influence of graph structure dynamics for an

accurate prediction. Second, it should capture the temporal de-

pendency especially the long term trends from the time series.

Moreover, the temporal dependency and graph structure dynam-

ics should be modeled jointly. Third, the model should be able to

represent paths of arbitrary length and generate a fixed-length

representation by considering all path nodes as a whole.

In this section, we present a novel end-to-end neural network

framework to address the above three requirements. The frame-

work (shown in Figure 2) takes as input the time-evolving graph,

and outputs the representation and failure probabilities for all the

training paths. To be more specific, our model uses a two-layer

Long Short-Term Memory R-GCN (LRGCN), a newly proposed

time-evolving graph neural network in this work, to obtain the hid-

den representation of each node by capturing both graph structure

dynamics and temporal dependency. Then it utilizes a self-attentive

mechanism to learn the node importance and encode it into a uni-

fied path representation. Finally, it cascades the path representation

with a fully connected layer and calculates the loss defined in Eq.

1. In the following, we describe the components in our model in

details.

3.2 Time-Evolving Graph Modeling

We propose a new time-evolving neural network to capture the

graph structure dynamics and temporal dependency jointly. Our

design is mainly motivated by the recent success of graph convolu-

tional networks (GCN) [8] in graph-based learning tasks. As GCN

cannot take both time series X and evolving graph structures A as

input, our focus is how to generalize GCN to process time series

and evolving graph structures simultaneously. In the following we

first describe how we model the node correlation within a graph

snapshot. Then we detail temporal dependency modeling between

two adjacent graph snapshots. Finally, we generalize our model to

the time-evolving graph.

3.2.1 Static graph modeling. Within one graph snapshot, the

graph structure does not change, thus it can be regarded as a static

graph. The original GCN [8] was designed to handle undirected

static graphs. Later, Relational GCN (R-GCN) [18] was developed to

deal with multi-relational graphs. A directed graph can be regarded

as a multi-relational graph with incoming and outgoing relations.

In this vein, we use R-GCN to model the node correlation in a

static directed graph. Formally, R-GCN takes as input the adjacency

matrix At and time series X t , and transforms the nodes’ features

over the graph structure via one-hop normalization:

Z = σ (
∑

ϕ ∈R

(Dt
ϕ
)
−1
At
ϕ
X tWϕ + X

tW0), (2)

where R = {in,out}, Atin = At represents the incoming rela-

tion, Atout = (At )T represents the outgoing relation and (Dt
ϕ
)
ii
=

∑
j (At

ϕ
)
i j
. σ (·) is the activation function such as ReLU (·). Eq. 2

can be considered as an accumulation of multi-relational normal-

ization whereWin is a weight matrix for incoming relation,Wout

for outgoing relation andW0 for self-connection.

To further generalize R-GCN and prevent overfitting, we can

view the effect of self-connection normalization as a linear combi-

nation of incoming and outgoing normalization. This provides us

with the following simplified expression:

Zs = σ (
∑

ϕ ∈R

Ãt
ϕ
X tWϕ ), (3)

where Ãt
ϕ
= (D̂t

ϕ
)−1Ât

ϕ
, Ât

ϕ
= At

ϕ
+ IN , (D̂

t
ϕ
)ii =

∑
j (Â

t
ϕ
)i j , and IN

is the identity matrix. Note we can impose multi-hop normalization

by stacking multiple layers of R-GCN. In our design, we use a

two-layer R-GCN:

Θs�д X
t =

∑

ϕ ∈R

Ãt
ϕ
σ (

∑

ϕ ∈R

Ãt
ϕ
X tW

(0)
ϕ

)W
(1)
ϕ
, (4)

where Θs represents the parameter set used in the static graph

modeling,W
(0)
ϕ

∈ Rd×h is an input-to-hidden weight matrix for

a hidden layer with h feature maps.W
(1)
ϕ

∈ Rh×u is a hidden-to-

output weight matrix,�д stands for this two-hop graph convolution
operation and shall be used thereafter.

Relation with the original GCN. The original GCN [8] was

defined on undirected graphs and can be regarded as a special

case of this revised R-GCN. One difference is that in undirected

graphs incoming and outgoing relations are identical, which makes



Figure 2: Schematic diagram of the framework designed for path classification. The time-evolving graph in the past M time

steps is fed into a LRGCN layer whose final states are used to initialize another LRGCN layer. Paths are then indexed from the

outputs of this LRGCN layer and SAPE is utilized to derive the final path representation for prediction.

Win =Wout in R-GCN for undirected graphs. Another difference

lies in the normalization trick. The purpose of this trick is to normal-

ize features of each node according to its one-hop neighborhood.

In undirected graphs the relation is symmetric, thus the symmetric

normalization is applied as D− 1
2AD− 1

2 , where Dii =
∑
j Ai j ; while

in directed graphs the relation is asymmetric, hence the asymmetric

normalization D−1A is used.

The discussion above focuses on a graph snapshot, which is

static. Next, we extend R-GCN to take as inputs two adjacent graph

snapshots.

3.2.2 Adjacent graph snapshots modeling. Before diving into

a sequence of graph snapshots, we first focus on two adjacent

time steps t − 1 and t as shown in Figure 3. A node at time t is
not only correlated with other nodes at the same time (which is

referred to as intra-time relation), but also depends on nodes at the

previous time step t − 1 (which is referred to as inter-time relation),

and this dependency is directed and asymmetric. For example, if

a sensor station detects high traffic density at time t , then nearby
sensor stations may also record high traffic density at the same

time due to the spatial proximity. Moreover, if a sensor station

detects a sudden increase of traffic density at time t−1, downstream
stations on the same path will record the corresponding increase

at subsequent time steps, as it takes time for traffic flows to reach

downstream stations. In our model, we use the Markov property to

model the inter-time dependency. In total, there are four types of

relations to model in R-GCN, i.e., intra-incoming, intra-outgoing,

inter-incoming and inter-outgoing relations. For nodes at time t ,
the multi-relational normalization expression is as follows:

G_unit(Θ, [X t ,X t−1]) = σ (Θs�д X
t + Θh�д X

t−1), (5)

where Θh stands for the parameter set used in inter-time modeling,
and it does not change over time. For Θh�д X t−1, Ãt−1

ϕ
is used

to represent the graph structure. This operation is named time-

evolving graphG_unit, which has a similar role of unit in Recurrent

Neural Networks (RNN). Note that here the normalization still

includes inter-time self-connection, as Ãt−1
ϕ

has self-loops.

Intuitively, Eq. 5 computes the new feature of a node by accu-

mulating transformed features via a normalized sum of itself and

neighbors from both the current and previous graph snapshots.

c

a a
bb

cc
dd

(t-1) (t)

inter-time 
relation

intra-time 
relation

Figure 3: Plot of intra-time relation (in solid line) and inter-

time relation (in dotted line)modeled for two adjacent graph

snapshots.

As nodes which are densely connected by inter-time and intra-

time relations tend to be proximal, this computation makes their

representation similar, thus simplifies the downstream tasks.

Relation with RNN unit. RNN unit was proposed to transform

an input by considering not only the present input but also the

input preceding it in a sequence. It can be regarded as a special case

of our time-evolving graph unit where at each time step a set of

input elements are not structured and Ãϕ = IN if we consider just

one-hop smoothing.

3.2.3 The proposed LRGCN model. Based on the time-evolving

graph unit proposed above, we are ready to design a neural network

working on a time-evolving graph. We use a hidden state H t−1 to

memorize the transformed features in the previous snapshots, and

feed the hidden state and current input into the unit to derive a

new hidden state:

H t = σ (ΘH�д [X t ,H t−1]), (6)

where ΘH includes Θs and Θh . When applied sequentially, as the

transformed features in H t−1 can contain information from an ear-

lier arbitrarily long window, it can be utilized to process a sequence

of graph snapshots, i.e., a time-evolving graph.

Unfortunately, despite the usefulness of this RNN-style evolving

graph neural network, it still suffers from the famous curse of

gradient exploding or vanishing. In this context, past studies (e.g.,



+

Figure 4: The proposed self-attentive path embedding method SAPE.

[19]) utilized Long Short-Term Memory (LSTM) [7] to model the

long-term dependency in sequence learning. Inspired by this, we

propose a Long Short-Term Memory R-GCN, called LRGCN, which

can take as input a long-term time-evolving graph and capture

the structure dynamics and temporal dependency jointly. Formally,

LRGCN utilizes three gates to achieve the long-term memory or

accumulation:

it = σ (Θi�д [X t ,H t−1]) (7)

ft = σ (Θf �д [X t ,H t−1]) (8)

ot = σ (Θo�д [X t ,H t−1]) (9)

ct = ft � ct−1 + it � tanh
(
Θc�д [X t ,H t−1]

)
(10)

H t = ot � ct (11)

where � stands for element-wise multiplication, it , ft , ot are input

gate, forget gate and output gate at time t respectively. Θi , Θf ,
Θo , Θc are the parameter sets for the corresponding gates and

cell. H t is the hidden state or output at time t , as used in Eq. 6.

�д denotes the two-hop graph convolution operation defined in
Eq. 4. Intuitively, LRGCN achieves long-term time-evolving graph

memory by carefully selecting the input to alter the state of the

memory cell and to remember or forget its previous state, according

to the tasks at hand.

To summarize, we use a two-layer LRGCN to generate hidden

representation of each node, in which the first-layer LRGCN serves

as the encoder of the whole time-evolving graph and is used to

initialize the second-layer LRGCN. Then we take the outputs of

the last time step in the second-layer LRGCN to derive the final

representation Ω ∈ RN×u . As we work on path classification, the

next task is how to obtain the path representation based on Ω.

3.3 Self-Attentive Path Embedding

In this subsection, we describe our method which produces a fixed-

length path representation given the output of the previous sub-

section. For a path instance P, we can retrieve its representation

P ∈ Rm×u directly from Ω. For the final classification task, however,
we still identify two challenges:

• Size invariance: How to produce a fixed-length vector repre-

sentation for any path of arbitrary length?

• Node importance: How to encode the importance of different

nodes into a unified path representation?

For node importance, it means different nodes in a path have

different degrees of importance. For example, along a path, a sensor

station at the intersection of main streets should be more important

than one at a less busy street in contributing to the derived em-

bedding vector. We need to design a mechanism to learn the node

importance, and then encode it in the embedding vector properly.

To this end, we propose a self-attentive path embedding method,

called SAPE, to address the challenges listed above. In SAPE, we

first utilize LSTM to sequentially take in node representation of a

path, and output representation in each step by balancing upstream-

ing node representation and current input node representation, as

proposed in [11, 15]. Then we use the self-attentive mechanism to

learn the node importance and transform a path of variable length

into a fixed-length embedding vector. Figure 4 depicts the overall

framework of SAPE.

Formally, for a path P ∈ Rm×u , we first apply LSTM to capture

node dependency along the path sequence:

Γ = LSTM(P), (12)

where Γ ∈ Rm×v . With LSTM, we have transformed the node

representation from au-dimensional space to av-dimensional space
by capturing node dependency along the path sequence.

Note that this intermediate path representation Γ does not pro-
vide node importance, and it is size variant, i.e., its size is still

determined by the number of nodes m in the path. So next we

utilize the self-attentive mechanism to learn node importance and

encode it into a unified path representation, which is size invariant:

S = softmax
(
Wh2tanh(Wh1Γ

T )
)
, (13)

whereWh1 ∈ Rds×v andWh2 ∈ Rr×ds are two weight matrices.

The function ofWh1 is to transform the node representation from

a v-dimensional space to a ds -dimensional space.Wh2 is used as r
views of inferring the importance of each node. Then softmax is

applied to derive a standardized importance of each node, which

means in each view the summation of all node importance is 1.

Based on all the above, we compute the final path representation

E ∈ Rr×v by multiplying S ∈ Rr×m with Γ ∈ Rm×v :

E = SΓ. (14)

E is size invariant since it does not depend on the number of nodes

m any more. It also unifies the node importance into the final

representation, in which the node importance is only determined

by the downstream tasks.



Table 1: Statistics of path instances

Telecom Traffic

No. of failure/congestion 385,896 85,083

No. of availability 6,821,101 346,917

Average length of paths 7.05±4.39 32.56±12.48

In all, our framework first uses a two-layer LRGCN to obtain

hidden representation of each node by capturing graph structure

dynamics and temporal dependency. Then it uses SAPE to derive the

path representation that takes node importance into consideration.

The output of SAPE is cascaded with a fully connected layer to

compute the final loss.

4 EXPERIMENTS

We validate the effectiveness of our model on two real-world data

sets: (1) predicting path failure in a telecommunication network,

and (2) predicting path congestion in a traffic network.

4.1 Data

4.1.1 Telecommunication network (Telecom). This data set tar-

gets a metropolitan LTE transmission network serving 10 million

subscribers. We select 626 switches and collect 3 months of data

from Feb 1, 2018 to Apr 30, 2018. For each switch, we collect two val-

ues every 15 minutes: sending power and receiving power. From the

network, we construct an adjacency matrix A by denoting Ai j = 1
if there is a directed optical link from vj to vi , and Ai j = 0 oth-

erwise. The graph structure changes when links fail or recover.

The observations on switches and the graph structure over time

form a time-evolving graph, where a time step corresponds to 15

minutes and the total number of time steps is 8449 over 3 months.

There are 853 paths serving transmission of various services. Using

a sliding window over time, we create 8449 × 853 path instances,

of which 5449 × 853 instances are used for training, 1000 × 853 for

validation, and 2000 × 853 for testing. We label a path instance at

time t as failure if alarms are triggered on the path by the alarm
system within time steps [t + 1, t + F ]. We use 24 hours’ history

data to predict if a path will fail in the next 24 hours, i.e.,M = 96
and F = 96.

4.1.2 Traffic network (Traffic). This data set targets District 7

of California collected from Caltrans Performance Measurement

System (PeMS). We select 4438 sensor stations and collect 3 months

of data from Jun 1, 2018 to Aug 30, 2018. For each station, we collect

two measures: average speed and average occupancy at the hourly

granularity by aggregation. From the traffic network, we construct

an adjacency matrixA by denotingAi j = 1 ifvj andvi are adjacent
stations on a freeway along the same direction. The graph structure

changes according to the node status (e.g., congestion or closure).

A time-evolving graph is constructed from observations recorded

in stations and the dynamic graph structure, where a time step is

an hour and the total number of time steps is 2160 over 3 months.

We sample 200 paths by randomly choosing two stations as

the source and target, then use Dijkstra’s algorithm to generate

the shortest path. Using a sliding window over time, we create

2160 × 200 path instances, of which 1460 × 200 instances are used

Figure 5: Sensor distribution in District 7 of California. Each

dot represents a sensor station.

for training, 200 × 200 for validation, and 500 × 200 for testing. We

label a path instance at time t as congestion if two consecutive

stations are labeled as congestion within time steps [t + 1, t + F ].
We use 24 hours’ history data to predict if a path will congest in

the next one hour, i.e.,M = 24 and F = 1.
Table 1 lists the statistics of path instances in the two data sets.

Figure 5 depicts the geographical distribution of sensors in Traffic

data. Please refer to Appendix A for detailed data preprocessing of

the two data sets.

4.2 Baselines and Metrics

• DTW [2], which first measures node similarity by the Dy-

namic Time Warping distance of time series observed on

each node, then models the path as a bag of nodes, and cal-

culates the similarity between two paths by their maximum

node similarity.

• FC-LSTM, which uses two-layer LSTM to capture the tem-

poral dependency and uses another LSTM layer to derive

the path representation. It only considers the time series

sequences, but does not model node correlation or graph

structure.

• DCRNN [13], which uses two-layer DCRNN to capture both

temporal dependency and node correlation and uses LSTM

to get path representation from the last hidden state of the

second DCRNN layer. It works on a static graph.

• STGCN [22], which is similar to DCRNN except that we

replace DCRNN with STGCN.

• LRGCN, which is similar to DCRNN except that we replace

DCRNN with LRGCN.

• LRGCN-SAPE (static), which is similar to LRGCN except

that we replace the path representation method LSTM with

SAPE.

• LRGCN-SAPE (evolving), which is similar to LRGCN-SAPE

(static) except that the underlying graph structure evolves

over time.

All neural network approaches are implemented using Tensor-

flow, and trained using minibatch based Adam optimizer with ex-

ponential decay. The best hyperparameters are chosen using early

stopping with an epoch window size of 3 on the validation set. All

trainable variables are initialized by He-normal [5]. For fair com-

parison, DCRNN, STGCN and LRGCN use the same static graph



structure and LSTM path representation methods. Detailed param-

eter settings for all methods are available in Appendix B.

We run each method three times and report the average Pre-

cision, Recall and Macro-F1. Precision and Recall are computed

with respect to the positive class, i.e., path failure/congestion, and

defined as follows.

Precision =
#true positives

#true positives + #false positives
, (15)

Recall =
#true positives

#true positives + #false negatives
. (16)

F1 score of the positive class is defined as follows:

F1(P) =
2 × Precision × Recall

Precision + Recall
. (17)

Macro-F1 score is the average of F1 scores of the positive and

negative classes, i.e., F1(P) and F1(N ):

Macro-F1 =
F1(P) + F1(N )

2
. (18)

4.3 Results

4.3.1 Classification performance. Tables 2 and 3 list the experi-

mental results on Telecom and Traffic data sets respectively. Among

all approaches, LRGCN-SAPE (evolving) achieves the best perfor-

mance. In the following, we analyze the performance of all methods

categorized into 4 groups.

Group 1: DTW performs worse than all neural network based meth-

ods. One possible explanation is that DTW is an unsupervised

method, which fails to generate discriminative features for classi-

fication. Another possibility is that DTW measures the similarity

of two time series by their pairwise distance and does not capture

temporal dependency like its competitors.

Group 2: FC-LSTM performs worse than the three neural network

methods in Group 3, in both Macro-F1 and Precision, which proves

the effectiveness of node correlation modeling in Group 3.

Group 3: All the three neural networks in this group model both

node correlation and temporal dependency, but the underlying

graph structure is static and does not change. LRGCN outperforms

both DCRNN and STGCN by at least 1% in Macro-F1 on both data

sets, indicating LRGCN is more effective in node correlation and

temporal dependency modeling. For STGCN and DCRNN, DCRNN

performs slightly better (0.19% in Macro-F1) on Traffic data and

STGCN performs better (1.87% in Macro-F1) on Telecom data.

Group 4: LRGCN-SAPE (static) works on a static graph and LRGCN-

SAPE (evolving) works on a time-evolving graph. LRGCN-SAPE

(static) outperforms Group 3 methods by at least 1% in Macro-F1 on

both data sets, which means that SAPE is superior to pure LSTM

in path representation. LRGCN-SAPE (evolving) further achieves

substantial improvement based on the time-evolving graph, i.e., it

improves Macro-F1 by 1.34% on Telecom and 1.90% on Traffic.

4.3.2 Training efficiency. To compare the training efficiency of

different methods, we plot the learning curve of different meth-

ods in Figure 6. We find that our proposed LRGCN-based methods

including LRGCN, LRGCN-SAPE (static) and LRGCN-SAPE (evolv-

ing) converge more quickly than other methods. Another finding is

that after three epochs, LRGCN-SAPE (evolving) outperforms other

Figure 6: Learning curve of differentmethods. LRGCN-SAPE

(evolving) achieves the lowest validation loss.

Table 2: Comparison of different methods on path failure

prediction on Telecom

Algorithm Precision Recall Macro-F1

1 DTW 15.47% 9.63% 53.23%

2 FC-LSTM 13.29 % 52.27 % 53.78 %

3

DCRNN 13.97 % 57.81 % 54.42 %

STGCN 16.35 % 52.53 % 56.29 %

LRGCN 17.38 % 61.34 % 57.70 %

4
LRGCN-SAPE (static) 17.67 % 65.28 % 60.55 %

LRGCN-SAPE (evolving) 19.23 % 65.07 % 61.89 %

methods by achieving the lowest validation loss, which indicates a

better training efficiency of our proposed method on time-evolving

graphs.

4.3.3 Benefits of graph evolution modeling. To further investi-

gate how LRGCN performs on time-evolving graphs, we target a

path which is heavily influenced by a closed sensor station and visu-

alize the node attention weight learned by LRGCN-SAPE (evolving)

and LRGCN-SAPE (static) respectively in Figure 7. In the visualiza-

tion, green color represents light traffic recorded by sensor stations,

red color represents heavy traffic, and a bigger radius of a node

denotes a larger attention weight, as the average across r views
inferred by SAPE. We find that LRGCN-SAPE (evolving) can cap-

ture the dynamics of graph structure caused by the closure of the

station, in the sense that the nearby station is affected subsequently,

thus receives more attention. In contrast, LRGCN-SAPE (static) is

unaware of the graph structure change and assigns a large attention

weight to a node that is far away from the closed station.

4.3.4 Effect of the number of views. We evaluate how the number

of views (r ) affects the model performance. Taking LRGCN-SAPE
(static) on Traffic as an example, we vary r from 1 to 32 and plot

the corresponding validation loss with respect to the number of

epochs in Figure 8. As we increase r , the performance improves
(as the loss drops) and achieves the best when r = 8 (the green

line). We also observe that the performance difference for different

r is quite small, which demonstrates that our model performs very
stably with respect to the setting of r .



Figure 7: Visualization of learned attention weights of a path on Traffic (left: the original map; middle: attention weights by

LRGCN-SAPE (evolving); right: attention weights by LRGCN-SAPE (static)). The star denotes a closed station. A bigger node

radius indicates a larger attention weight. Red color represents heavy traffic recorded by sensor stations while green color

represents light traffic.

Figure 8: Effect of the number of views (r) in SAPE on Traffic

Table 3: Comparison of different methods on path conges-

tion prediction on Traffic

Algorithm Precision Recall Macro-F1

1 DTW 12.05% 39.12% 51.62%

2 FC-LSTM 54.44 % 87.97 % 76.55 %

3

DCRNN 63.05 % 88.55 % 82.60 %

STGCN 64.52 % 86.15 % 82.41 %

LRGCN 65.15 % 87.65 % 83.74 %

4
LRGCN-SAPE (static) 67.74 % 88.44% 84.84 %

LRGCN-SAPE (evolving) 71.04 % 88.50 % 86.74 %

4.3.5 Path embedding visualization. To have a better understand-

ing of the derived path embeddings, we select 1000 path instances

from the test set of Traffic data. We apply LRGCN-SAPE (evolving)

and derive the embeddings of these 1000 testing instances. We then

project the learned embeddings into a two-dimensional space by

t-SNE [20], as depicted in Figure 9. Green color represents path

availability and red color represents path congestion. As we can

see from this two-dimensional space, paths of the same label have

a similar representation, as reflected by the geometric distance

between them.

Figure 9: Two-dimensional visualization of path embed-

dings on Traffic using SAPE. The nodes are colored accord-

ing to their path labels.

Table 4: Comparison of different normalization methods

Normalization Telecom Traffic

- Precision Recall Macro-F1 Precision Recall Macro-F1

D− 1
2AD− 1

2 15.39% 59.07% 56.40% 67.60% 89.14% 85.19%

D−1A 19.23% 65.07% 61.89% 71.04% 88.50% 86.74%

4.3.6 Effect of the normalization methods. We compare the per-

formance of asymmetric normalization D−1A and symmetric nor-

malization D− 1
2AD− 1

2 on both Telecom and Traffic data sets in the

LRGCN-SAPE (evolving) method. Other experimental settings re-

main the same with the experiments presented above. Results are

listed in Table 4. For both data sets, asymmetric normalization out-

performs symmetric normalization in both Precision and Macro-F1.

The advantage of asymmetric normalization is more significant on

Telecom than on Traffic. The reason is that most of the derived

sensor stations in the traffic network are connected bidirectionally,

while the switches in the telecommunication network are connected

unidirectionally. This demonstrates that asymmetric normalization

is more effective than symmetric normalization on directed graphs.



5 RELATEDWORK

Many real-world problems can be formulated as prediction tasks in

time-evolving graphs. We survey on two tasks: failure prediction

in telecommunication and traffic forecasting in transportation. For

failure prediction, the pioneer work [9] formulates this task as a

sequential pattern matching problem and the network topological

structure is not fully exploited. Later [3] formulates it as a clas-

sification problem and uses SVM [6] to distinguish failures from

normal behaviors. [17] makes use of Bayesian network to model

the spatial dependency and uses Auto-Regressive Integrated Mov-

ing Average model (ARIMA) to predict node failures. For traffic

forecasting, existing approaches can be generally categorized into

two groups. The first group uses statistical models [21], where they

either impose a stationary hypothesis on the time series or just

incorporate cyclical patterns like seasonality. Another group, on

the other hand, takes advantage of deep learning neural networks

to tackle non-linear spatial and temporal dependency. [10] uses

RNN to capture dynamic temporal dependency. [23] applies CNN to

model the spatial dependency between nodes. All the above studies

treat the underlying graph as a static graph, while our problem

setting and solution target time-evolving graphs. In addition, we

study path failure prediction instead of node failure prediction.

Although there are many studies on node representation learn-

ing [16], path representation has been studied less. Deepcas [11]

leverages bi-directional GRU to sequentially take in node represen-

tation of a path forwardly and backwardly, and represents the path

by concatenating the forward and backward hidden vectors. Prox-

Embed [15] uses LSTM to read node representation and applies

max-pooling operation on all the time step outputs to generate

the final path representation. However when it comes to a long

path, RNN may suffer from gradient exploding or vanishing, which

prohibits the derived representation from reserving long-term de-

pendency. In this sense, our proposed path representation method

SAPE utilizes the self-attentive mechanism, previously proven to

be successful in [12, 14], to explicitly encode the node importance

into a unified path representation.

There are many studies about neural network on static graphs

[8, 18]. However, research that generalizes neural network to time-

evolving graphs is still lacking. The closest ones are neural networks

on spatio-temporal data where graph structure does not change.

DCRNN [13] models the static structure dependency as a diffusion

process and replaces the matrix multiplications in GRU with the dif-

fusion convolution to jointly handle temporal dynamics and spatial

dependency. STGCN [22] models spatial and temporal dependency

with three-layer convolutional structure, i.e., two gated sequential

convolution layers and a graph convolution layer in between. Our

solution LRGCN is novel as it extends neural networks to handle

time-evolving graphs where graph structure changes over time.

6 CONCLUSION

In this paper, we study path classification in time-evolving graphs.

To capture temporal dependency and graph structure dynamics, we

design a new neural network LRGCN, which views node correlation

within a graph snapshot as intra-time relations, and views tempo-

ral dependency between adjacent graph snapshots as inter-time

relations, and then jointly models these two relations. To provide

interpretation as well as enhance performance, we propose a new

path representation method named SAPE. Experimental results on

a real-world telecommunication network and a traffic network in

California show that LRGCN-SAPE outperforms other competitors

by a significant margin in path failure prediction. It also generates

meaningful interpretations of the learned representation of paths.
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Table 5: Statistics of constructed static graphs

Data set Nodes Edges Density

Telecom 626 2464 0.63%

Traffic 4438 8996 0.05%

Table 6: A multivariate time series example recorded by

switches

SwitchID Time Sending power Receiving power

H0001 20180201 00:00 -0.7 dB 20.7 dB

H0001 20180201 00:15 -8.0 dB 18.1 dB

A DATA SETS

A.1 Telecommunication network

The telecommunication data set is provided by a large telecom-

munication company and records sensor data from a real service

session.

(1) Data preparationWe choose a metropolitan LTE transmis-

sion network as our target which contains 626 switches and

records sensor data from Feb 1, 2018 to Apr 30, 2018.

(2) Static graph Switches are linked by optical fiber in a di-

rected way. We treat a switch as a node in the graph and add

a directed edge with weight 1 between two nodes if there is

an optical fiber linking one switch to another. The statistics

of the constructed static graph are listed in Table 5.

(3) Feature matrix Each switch records several observations

every 15 minutes. Among these observations, we use the

average sending power and average receiving power as fea-

tures. For each switch, the sequence of features over time is a

multivariate time series. We exemplify a time series fragment

in a 30-minute window in Table 6. We normalize each feature

to the range of [0, 1]. Finally we get a 8449 × 626 × 2 feature

matrix (8449 corresponds to the number of time steps).

(4) Path labeling There are 853 paths serving various services

in this metropolitan transmission network. An alarm system

serves as an anomaly detector. Once a path fault (e.g., net-

work hardware outages, high transmission latency, or signal

interference, etc.) is detected, it issues a warning message.

If the number of warning messages within an hour exceeds

a threshold, we label it as “path failure”. We use 24 hours’

history data to predict if a path will fail in the next 24 hours.

Finally we get a 8449 × 853 label matrix.

(5) Time-evolving graph For an optical link, it can be catego-

rized into two status: failure and availability, based on a key

performance index called bit error rate. We construct the

time-evolving graph as follows: at time step t , we set the
adjacency matrix element Ati j = 0 if edge

〈
vj ,vi

〉
is labeled

failure, and set Ati j = 1 otherwise.

A.2 Traffic network

The traffic data set is collected by California Transportation Agen-

cies (CalTrans) Performance Measurement System (PeMS). The

details can be found on the website of CalTrans1.

(1) Data preparationWe use the traffic data in District 7 from

Jun 1, 2018 to Aug 30, 2018. There are two kinds of infor-

mation: real-time traffic and meta data. The former records

the traffic information at sensor stations such as the average

speed, average occupancy, etc. The latter records the general

information of the stations such as longitude, latitude, delay,

closure, etc. The number of stations used in this study is

4438.

(2) Static graph In themeta data, the order of the stations along

the freeway is indicated by the “Absolute Postmile” field. We

treat a station as a node in the graph and connect the adjacent

stations on a freeway along the same direction one by one

(in “Absolute Postmile” order). The weight of every edge is

set to 1.

(3) Feature matrix Each station records several kinds of traffic

information hourly. Among them, we use the average speed

and average occupancy as features. We replace missing val-

ues with 0, and normalize the features to the range of [0,

1]. Finally we get a 2160 × 4438 × 2 feature matrix (2160

corresponds to the number of time steps).

(4) Path labelingWe randomly choose two nodes on the static

graph as the source and target, then use Dijkstra’s algorithm

to find the shortest path from the source to target. We sample

200 paths and restrict the path length to the range of [2,

50]. For a node, its congestion information is indicated by

the “delay” field. For a path, if two consecutive nodes have

congestion at the same time, we label it as “path congestion”.

We use 24 hours’ history data to predict if a path will congest

in the next one hour. Finally we get a 2160× 200 label matrix.

(5) Time-evolving graphWe construct the time-evolving graph

according to the following rules.

• At time step t , if vi is labeled closure, we delete all its
incoming/outgoing edges in the graph snapshot at t .

• At time step t , if vi is labeled congestion, we shrink all its
incoming/outgoing edge weights by a factor of 0.5.

B DETAILED EXPERIMENT SETTINGS

This part details the implementation of each method and their

hyperparameter setting if any.

DTW: Dynamic Time Warping is an algorithm for measuring sim-

ilarity between two time series sequences. As the time series on

each node is multivariate, we calculate the sum of squared DTW

similarities for all variables. We consider a path as a bag of nodes,

and calculate the similarity between paths by their maximum node

similarity. In the DTW method, we do not model node correlations,

which means graph structure is not taken into consideration.

FC-LSTM uses two-layer LSTM neural networks for modeling

temporal dependency, another LSTM layer for path representation

and a fully connected layer. In the two-layer LSTM, the first layer is

initialized with zero, and its last hidden state is used to initialize the

second LSTM layer. The output dimension of these two LSTM is 8.

The LSTM path representation layer is used to derive a fixed-length

path representation. It works as follows:

• Indexing node representations of a path from the last hidden

state of the previous LSTM.

1http://pems.dot.ca.gov/



• Feeding this hidden representation sequence to a LSTM layer.

• The last hidden state of this LSTM is the final path represen-

tation.

The output dimension of this LSTM is also 8. FC-LSTM does not

model node correlations, and it can be regarded as LRGCN with

A = IN .
DCRNN uses two-layer DCRNN for static graph modeling, another

LSTM layer for path representation and a fully connected layer.

The difference between DCRNN and FC-LSTM is that the former

models the node correlation as a diffusion process while the latter

does not consider node correlation. For parameters, its maximum

diffusion step is 3 and the output dimensions of both DCRNN and

LSTM are 8.

STGCN uses two-layer STGCN for static graph modeling, another

LSTM layer for path representation and a fully connected layer.

STGCN models node correlation and temporal dependency with

three-layer convolutional structure, i.e., two convolution layers and

one GCN layer in between. For parameters, the graph convolution

kernel size is set to 1 and the temporal convolution kernel size is

set to 3. The output dimensions of both STGCN and LSTM are 8.

LRGCN is the same as DCRNN except that we replace the first

two-layer DCRNN with LRGCN. The hidden dimension h is 96.
LRGCN-SAPE (static): The difference between this method and

LRGCN is that the path representation is derived by SAPE instead

of LSTM. For parameters of SAPE, we set v = 8, ds = 32 and r = 8.
LRGCN-SAPE (evolving): The main advantage of LRGCN is that

it can model time-evolving graphs. In this method, graph structure

dynamics are modeled. The parameters of SAPE are set the same

as the above method.


