Mining Compressed Frequent-Pattern Sets*

Dong Xin Jiawei Han

Xifeng Yan Hong Cheng

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Abstract

A major challenge in frequent-pattern mining
is the sheer size of its mining results. In many
cases, a high min_sup threshold may discover
only commonsense patterns but a low one may
generate an explosive number of output pat-
terns, which severely restricts its usage.

In this paper, we study the problem of com-
pressing frequent-pattern sets. Typically, fre-
quent patterns can be clustered with a tight-
ness measure ¢ (called d-cluster), and a repre-
sentative pattern can be selected for each clus-
ter. Unfortunately, finding a minimum set of
representative patterns is NP-Hard. We de-
velop two greedy methods, RPglobal and RPlo-
cal. The former has the guaranteed compres-
sion bound but higher computational com-
plexity. The latter sacrifices the theoretical
bounds but is far more efficient. Our per-
formance study shows that the compression
quality using RPlocal is very close to RPglobal,
and both can reduce the number of closed fre-
quent patterns by almost two orders of magni-
tude. Furthermore, RPlocal mines even faster
than FPClose[11], a very fast closed frequent-
pattern mining method. We also show that
RPglobal and RPlocal can be combined to-
gether to balance the quality and efficiency.

1 Introduction

Frequent-pattern (or itemsets) mining has been a fo-
cused research theme in data mining due to its broad
applications at mining association [2, 3], correlation
[6], causality [17], sequential patterns [4], episodes [15],

* The work was supported in part by the U.S. National
Science Foundation NSF I11S-02-09199/11S-03-08215.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

multi-dimensional patterns [14], max-patterns [5], par-
tial periodicity [12], emerging patterns [8], and many
other important data mining tasks.

The problem of frequent-itemsets mining can be de-
fined as follows. Given a transaction database, let
O ={01,09,...,04} be the set of items that appear in
the database, 7 = {t1,t2,...,tx} be the transaction
set, and I(t;) € O be the set of items in transaction
t;. For any itemset P, let O(P) be the corresponding
set of items, and T(P) = {t € T|O(P) C I(t)} be
the corresponding set of transactions. We say O(P)
is the expression of P, and |T(P)| is the support of
P. An itemset P is frequent if |[T(P)| > min_sup,
where min_sup is a user-specified threshold. The task
of frequent-itemsets mining is to find all the frequent
itemsets.

There have been many scalable methods developed
for frequent-pattern mining [3, 13, 19]. However, the
real bottleneck of the problem is not at the efficiency
but at the usability. Typically, if min_sup is high, min-
ing may generate only commonsense patterns, how-
ever, with a low min_sup, it may generate an explosive
number of results. This has severely restricted the us-
age of frequent-pattern mining.

To solve this problem, it is natural to explore how
to “compress” the patterns, i.e., find a concise and
succinct representation that describes the whole col-
lection of patterns. Two major approaches have been
developed in this direction: lossless compression and
lossy approximation. The former, represented by the
closed frequent itemsets[16, 18, 19] (a frequent item-
set P is closed if there is no itemset P’ such that
O(P) C O(P) and T(P) = T(P)), emphasizes too
much on the supports of patterns so that its compres-
sion power is quite limited. The latter, represented by
the mazimal frequent itemsets[5, 10, 11] (a frequent
itemset P is mazimal if there is no frequent itemset
P such that O(P) € O(P")), as well as the boundary
cover sets proposed recently [1], only consider the ez-
pressions of patterns, while the support information in
most of the itemsets is lost. To achieve high-quality
pattern compression, it is desirable to build up a pat-
tern compression framework that concerns both the
expressions and supports of the patterns. A motiva-
tion example is shown as follows.

Example 1 Table 1 shows a subset of frequent item-

sets on accidents data set [9], where 39, 38, 16, 18, 12,
17 are the name of individual items. The closed item-
sets cannot get any compression on this subset. The
mazimal itemsets will only report the itemset P3. How-
ever, we observe that itemsets Py, P3 and Py are signif-
icantly different w.r.t. their supports, and the mazximal
itemset totally loses this information. On the other
hand, the two pairs (Py,Ps) and (Py,Ps) are very sim-
ilar w.r.t. both expressions and supports. We suggest
a high-quality compression as Ps, P3 and Pjy.

Table 1: A Subset of Frequent Itemsets

1D Itemsets Support
P {38, 16, 18,12} 205227
Py {38,16,18,12,17} 205211
P; | {39,38,16,18,12,17} | 101758
P, {39,16,18,12,17} 161563
P {39,16, 18,12} 161576

A general proposal for high-quality compression is
to cluster frequent patterns according to certain simi-
larity measure, and then select and output only a rep-
resentative pattern for each cluster. However, there
are three crucial problems that need to be addressed:
(1) how to measure the similarity of the patterns, (2)
how to define quality guaranteed clusters where there
is a representative pattern best describing the whole
cluster, and (3) how to efficiently discover these clus-
ters (and hence the representative patterns)?

This paper addresses these problems. First, we pro-
pose a distance measure between two frequent pat-
terns, and show it is a valid distance metric. Second,
we define a clustering criterion, with which, the dis-
tance between the representative pattern and every
other pattern in the cluster is bounded by a thresh-
old §. The objective of the clustering is to minimize
the number of clusters (hence the number of repre-
sentative patterns). Finally, we show the problem is
equivalent to set-covering problem, and it is NP-hard
w.r.t. the number of the frequent patterns to be com-
pressed. We propose two greedy algorithms: the first
one, RPglobal, has bounded compression quality but
higher computational complexity; whereas the second
one, RPlocal, sacrifices the theoretical bound but is
far more efficient. Our performance study shows that
the quality of the compression using RPlocal is very
close to RPglobal, and both can reduce the number of
patterns generated by about two orders of magnitude
w.r.t. the original collection of closed patterns. More-
over, RPlocal directly mines representative patterns
from database and runs even faster than FPClose[11],
a fast closed frequent-itemset mining algorithm. We
also show that RPglobal and RPlocal can be integrated
together to balance the quality and efficiency.

The remaining of the paper is organized as follows.
In Section 2, we formally introduce the problem. The
NP-hardness is proved in Section 3. Section 4 proposes
the RPglobal and RPlocal methods. Our performance
study is presented in Section 5. A discussion on po-

tential extensions is in Section 6, and we conclude the
study in Section 7.

2 Problem Statement

In this section, we first introduce a new distance mea-
sure on closed frequent patterns, and then discuss the
clustering criterion.

2.1 Distance Measure

Definition 1 (Distance measure) Let Py and Py be
two closed patterns. The distance of P and Py is
defined as:

|T(P1) NT(P)|
T(P1) UT ()]
Example 2 Let Py and Py be two patterns: T(Py) =
{t17t27t37t4,t5} and T(Pg) = {tl,tz,tg,t4,t6}, where

t; 18 a transaction in the database. The distance be-
tween Py and Py is D(P1,Py) =1 — % =

D(P,P)=1-

1
g-
Theorem 1 The distance measure D is a valid dis-
tance metric, such that:

1. D(Py,Py) >0, VP, 7é P,

2. D(Py,Py) =0, VP, =

3. D(Py, P,) = (Pg,Pl)

4. D(PL, Py) + D(Py, P5) > D(Py, Ps), VP, Py, Ps

Proof. It is easy to verify that the first three properties
are true. We prove the fourth statement is true.

To simplify the presentation, we define the follow-
ing variables: |T'(Py)| = a, |T(P)| = b, |T(Ps)| = c,
T(P) N T(Py)| = by, [T(Ps) ~ T(Py) A T(Py)] = ba,
T(P) NT(Py)| = c1, [T(Py) - T(P) N T(Py)] = ca,
IT(P)NT(P) NT(Ps)| = dy, and |T(P) NT(P3) —
T(P)NT(P) NT(P3)] = do. The meanings of the
variables are shown in Fig. 1.

T(PL) I+HI+HI+VI 22
I+I+V+IV b
I+IHVAVIL
1+11 :bl
1+111 :c1
VHV b2
IVHVII 62

fan
@) E

T(F2) T(P3) IV :d2

Figure 1: Meanings of Variables
Since (T'(Py) NT(P)) U (T(Py) NT(Ps)) C T(P),

we have
I T(P) NT(P)| + |T(P1) N T(Ps)]
—|T(P) NT(R)NT(Ps)| < |T(P)]
— by +c1—di <a (1)

Plug in all the variables into the distance definition,

D(Pl,PQ) + D(PQ,PS) > D(Pl,P3)

di+ds

b1 C1
— a-+bs + atcy — <1+ b1+ba+ci+co—di—d2

Using Eq. (1), we have:

dy+ds
1 + bi+ba4c14+co—di—d2
d
= L+ b1+b2+011+02*d1 (d2 = O)
d
> S (Eq.1)
— atdi+botco
a+ba+ca
bi+citbotco
E a+1b2+02 (qu)
— b1 +co c1+by
a+ba+c2 a+ba+c2
b c
2 a+1b2 a+1c2 (a’ + b2 > bla C2 > 0)
(a+02 Z Cl,bg Z O)
Thus the fourth statement is true. []

Remark. The distance measure can be extended to the
general frequent patterns except that for non-closed
patterns, we may have D(P;, P») = 0 for some P; #
P,. This happens when P; and P, share the same
support transactions set.

2.2 Clustering Criterion

By defining the distance on the set of transactions, the
support information of patterns are well incorporated.
We further consider the expressions of the patterns.
Given two patterns A and B, we say B can be ez-
pressed by A if O(B) C O(A). Following this defini-
tion, assume patterns P, Ps,..., P, are in the same
cluster. The representative pattern P, of the clus-
ter should be able to express all the other patterns.
Clearly, we have U¥_,O(P;) C O(P,).

Using the distance measure defined in Section 2.1,
we can simply apply a clustering method, such as k-
means, on the collection of frequent patterns. How-
ever, it introduces two problems. First, the quality
of the clusters cannot be guaranteed; and second, it
may not be able to find a representative pattern for
each cluster (i.e., the pattern P, may not belong to
the same cluster). To overcome these problems, we in-
troduce the concept of d-cluster, where ¢ (0 < < 1)
is the tightness measure of a cluster.

Definition 2 (§-cluster) A pattern P is 0-covered
by another pattern P if O(P) < O(P') and
D(P, Pl) < 6. A set of patterns form a 0-cluster

if there exists a representative pattern P, such that for
each pattern P in the set, P is §-covered by P,.

Remark. First, in d-cluster, one pattern can belong
to multiple clusters. Second, using d-cluster, we only
need to compute the distance between each pattern
and the representative pattern in a cluster. Since a
pattern P is d-covered by a representative pattern P,
only if O(P) C O(P,), we can simplify the distance
calculation by only considering the supports of the

. _ |[T(P)NT(Pr)| |T(P;)]
patterns. D(P,P’,) =1- W =1- T(P)]

Finally, if we extend the distance definition to non-
closed patterns, it is easy to verify that a non-closed

pattern must be d-covered by a representative pattern
if its corresponding closed pattern is covered. We have
the following lemma with the proof omitted.

Lemma 1 Given a transaction database, a minimum
support M and a cluster quality measure 0, if a repre-
sentative pattern set R d-covers all the closed frequent
patterns, then R §-covers all the frequent patterns.

In the remaining of the paper, when we refer to
frequent patterns, we mean closed frequent patterns.
For simplicity, we use cover and cluster to represent
d-cover and J-cluster, respectively.

If we restrict the representative pattern to be fre-
quent, then the number of representative patterns (i.e.,
clusters) is no less than the number of maximal fre-
quent patterns. This is because a maximal frequent
pattern can only be covered by itself. In order to
achieve more succinct compression, we relax the con-
straints on representative patterns, i.e., allow the sup-
ports of representative patterns to be somewhat less
than min_sup, M.

For any representative pattern P,., assume its sup-
port is k. Since it has to cover at least one frequent
pattern (i.e., P) whose support is at least M, we have

@,k

TP - M

§>D(P,P,) =1

That is, & > (1 — 6)M. This is the min_sup for a
representative pattern. To simplify the notation, we
use M to represent (1 — ¢)M.

The pattern compression problem is defined as fol-
lows.

Definition 3 (Pattern Compression Problem)
Given a transaction database, a min_sup M and the
cluster quality measure §, the pattern compression
problem is to find a set of representative patterns R,
such that for each frequent pattern P (w.r.t. M), there

is a representative pattern P, € R (w.r.t. M) which
covers P, and the value of |R| is minimized.

3 NP-Hardness
We show that the problem defined above is NP-Hard.

Theorem 2 The problem of finding the minimum
number of representative patterns is NP-hard.

Proof. We show that the pattern compression problem
can be reduced from the set-covering problem.

First, for any pattern compression problem, we
can construct a corresponding set-covering problem.
There are two min_sups in the pattern compression
problem: min_sup M and the representative pattern’s
min_sup M. We denote the set of frequent patterns
(wr.t. M) as FP(M), the set of frequent patterns

(w.r.t. M) as FP(M). For each pattern P € FP(M),
we generate a set whose elements are all the patterns

P € FP(M) which are coverd by P. The set-covering

problem is to find a minimum number of sets which
cover all the elements, where each set corresponds to
a representative pattern.

We then show that for any set-covering prob-
lem, we can construct a corresponding pattern com-
pression problem. Let the given set-covering prob-
lem contain N elements (e1,es,...,en) and K sets

(S1,52,...,5K). Each set S; contains n; elements
(e}, e?,...,el"). We assume that (1) there exist no

two sets S; and S; such that S; C S;; and (2) there
exists no single set covering all the elements.

By considering these elements as individual items,
we first construct a(> 0) transactions , each of which
contains N items (eq,ea,...,en); then construct 5(>
1) transactions for each individual set (i.e., for each set
S;, there will be 3 transactions (e}, e?,...,el'")). Now
we have a database containing o + SK transactions.
If there is any individual item e; whose support is less
than o« + K, we further insert transactions with only
one item (e;) until its support reaches « + SK. Let

M =a+ (K and § = gfﬁ_li’ then M = a + 1. Since
« and (B can be chosen arbitrarily, the value of § can
be selected as any value in (0, 1).

Now we have a database where the longest pattern
(e1,€2,...,en) is not frequent w.r.t. M. It will not
be considered as a representative pattern. Each set
in the original set-covering problem corresponds to an
itemset whose support is at least a4+ § > M (we de-
note the set of all of these itemsets as RP) and can be
considered as representative patterns. Each element
in the set-covering problem corresponds to an item
whose support is exactly M and has to be covered.
We show that the solution of the pattern compres-
sion problem will only choose representative patterns
from RP. This is because RP is the maximal pat-
tern set w.r.t. M. If there is a representative pattern
P ¢ RP, we can always find a P' € RP, such that
O(P) C O(P'). Since all the frequent patterns cov-
ered by P have supports at most M, they can also be
covered by P'. We conclude that the optimal selec-
tion of the representative patterns corresponds to the
solution of the original set-covering problem. []

In the rest of the paper, we treat the following terms
as equivalent: element vs. frequent pattern (w.r.t. M);

set vs. frequent pattern (w.r.t. M}, and set-cover vs.
set of representative patterns. For any frequent pattern

P (w.r.t. M), we denote the set of patterns which can
be covered by P as set(P).

4 Discovering Representative Patterns

In this section, we describe algorithms for computing
representative patterns.

4.1 The RPglobal Method

Generally, the size of the frequent patterns is quite
large. It is undesirable to enumerate all the combina-
tions to find the optimal selection. Since the problem

is equivalent to the set-covering problem, it is natural
to consider some approximate algorithms available in
the set-covering problem. The well-known one is the
greedy algorithm [7] which iteratively finds the current
largest set. The pseudo-code for the pattern compres-
sion problem is shown in Fig. 2. Since the precondition
for this method is to collect the complete information
over the elements and sets, we refer it as global method
(in contrast to the local method to be discussed in the
next section).

Algorithm 1 (RPglobal) Compute
Patterns by Greedy Set-Covering.

Representative

Input: (1) A collection of frequent patterns F P w.r.t.
M, (2) a minimum support, M, and (3) a quality mea-
sure for clustering, 0.

Output: The set of representative patterns.
Method: The algorithm is described in Figure 2.

BEGIN
for each P € FP s.t. support(P) > M
Insert P into the set E;
for each Q € FP, s.t. QQ covers P
Insert P into set(Q);
while E # ¢
Find a RP that maximizes |set(RP)l;
for each @ € set(RP)
Remove @ from E and the remaining sets;
Output RP;
END

Figure 2: The RPglobal algorithm

The code is self-explanatory. Following the result of
greedy set-covering[7], the ratio between the number
of the representative patterns selected by RPglobal and
that of the optimal one is bounded.

Theorem 3 Given a collection of frequent patterns
F, let the set of representative patterns selected by
RPglobal be C,, the set of optimal(i.e., minimal num-
ber) representative patterns be C*, then |Cy| < |C*| x
H(max per|set(P)]), where H(n) =>"p_, 1.

Proof. See [7].

The RPglobal method contains two steps. The first
one is to collect the complete coverage information
(i.e., find all the frequent patterns @ that can cover
P), and the second one is to find the set-covers (i.e.,
find the set of representative patterns). The greedy
set-covering step can be implemented in time complex-
ity of O(>_ per |set(P)|)[7]. The computational chal-
lenge comes from finding the pattern coverage infor-
mation. Note this coverage problem is different from
closedness checking, which can be handled more effi-
ciently because of the following reasons. First, closed-
ness checking only needs to find one super-pattern

which subsumes the query pattern, whereas the cov-
erage checking has to find all super patterns that can
cover it. Second, the closedness checking can utilize
transaction ID-based hash functions to do fast check-
ing [19], while the coverage checking cannot benefit
from it since there is a § tolerance between the sup-
port transaction sets. To facilitate the coverage search,
we use an FP-tree-like structure [13] to index all the

frequent patterns (w.r.t M). An example of FP-tree
is shown in Fig. 3. The FP-tree has a head table as-
sociated with it. Single items are stored in the head
table. The entry for an item also contains the head of
a list that links all the nodes with the same name.

Head table
item head of node-links

p -

Cc
a
b S
m
p

Figure 3: A sample FP-tree

The construction of the index tree is similar to FP-
tree, except that in FP-tree, the counts of the nodes
are updated by summing the counts of the inserted
itemsets, while here, the counts of the nodes are up-
dated by choosing the maximum count over the in-
serted itemsets. To differentiate from traditional FP-
tree, we call our index tree as RP-tree (representa-
tive pattern tree). The coverage checking using RP-
tree works as follows. Suppose the current pattern is
Q, 0(Q) = {o1,02,...,0} (items are ordered as in
the RP-tree head table), and its support is C. The
support region for a valid representative pattern is
[C x (1 —§),0]. Following the linked list of o in
RP-tree, for each node n in the list, we test whether
(1) the count is within the support region; and (2) the
query itemset is a subset of the ancestors of n.

The worst case computation complexity for cover-
age checking could be O(|F|?). The RPglobal method
works well when |F| is not large. However, when
the number of frequent patterns to be compressed in-
creases, the method does not scale well. It is necessary
to develop an alternative method which discovers the
set of representative patterns efficiently, while still pre-
serves the high quality of the results.

4.2 The RPlocal Method

In this subsection, we introduce the idea of a local
method and show how this method can be efficiently
incorporated into the frequent-pattern mining process.

4.2.1 Local Greedy Method

Computing the complete coverage information is nec-
essary for RPglobal, since the method needs to find
a globally maximum set at each step. To develop

a scalable method, this expensive computational re-
quirement has to be relaxed. Our objective is to report
the representative patterns by an almost linear scan of
the whole collection of patterns, without knowing the
complete coverage information. The intrinsic relation-
ship among the nearby patterns (according to the or-
der generated by frequent pattern mining algorithms)
can be utilized for this purpose.

Most frequent pattern mining algorithms conduct
depth-first enumerations in the pattern space. It
starts from an empty pattern set, recursively calls
the pattern-growth routine to expand the pattern set.
Since the individual items are sorted, at any stage of
the algorithm, all the single items can be partitioned
into three disjoint sets: the conditional set (the items
appearing in the current pattern), the todo-set (the
items to be expanded based on the current pattern)
and the done-set (all the other items).

Example 3 Fig. 4 shows a search space with five sin-
gle items a,b,c,d,e. At the time when the depth-first
search reaches pattern {a,c}, the conditional set is
(a,c), the todo-set is (d,e) and the done-set is (b).

{a

s e

{abc} {abd} {abe} {acd} {ace} {ade
{abcd {abce {abde}{acde}

{abcde}

Figure 4: Depth-First Search in Pattern Space

The depth-first search scans each pattern twice: the
first visit from its parent, and the second visit after
finishing the calls to its children. One can verify that
after a pattern is visited in its second time, all the pat-
terns that can possibly cover it have been enumerated.
The future patterns are not able to cover it.

We output a pattern in its second visit. The lo-
cal greedy method sequentially scans the output pat-
terns, at any time when an uncovered pattern (called
probe pattern) is found, the algorithm finds the current
largest set (i.e., a representative pattern) which covers
it. Here the current largest set has the same meaning
as it has in the global greedy method (i.e., the already
covered pattern does not count for the set size). The
following theorem shows a bound of the local method.

Theorem 4 Given a collection of frequent patterns
F, let the set of representative patterns selected by the
local method be Cj, the set of optimal representative
patterns be C*. Assume the minimum number of pat-
terns that cover all the probe patterns be T. Then

|C)| < |C*| x (/2T x maz per|set(P)| + 1)).
Proof. See Appendix.

The difference between the local method and the
global method is the selections of the probe patterns.

Clearly, if the probe patterns are selected as patterns
in the current largest set, the local method is identical
to the global method. Since the complete coverage
information is not available, the bound on the local
method is worse than the global method. However,
in our experiments, we found that the performance of
the local method is very close to that of the global
method. This is because in the pattern compression
problem, the layout of the patterns and their coverage
is not arbitrary. Instead, most frequent patterns are
strongly connected if they are in the same cluster, i.e.,
a pattern P is covered by the representative pattern P,
if and only if P, subsumes P and the distance between
P and P, is within §. As a result, for each pattern
P,, set(P,) preserves local compactness, that makes
the selections of probe patterns not a dominant factor
for compression quality. Meanwhile, in most pattern
compression problem, the sizes of sets are somewhat
balanced. It is unlikely to have a very large set which
is selected by the global method but missed by the
local method, thus leads to a significant performance
difference.

The local method relaxes the requirement of global
comparison of sets sizes. However, it still needs to find
the current largest set at each step, which involves the
coverage checking for the future patterns. We further
relax the method by finding a reasonably large set,
instead of the largest set. The reasonably large set is
expected to cover more future patterns. Intuitively,
the candidate set should be as long as possible, since
longer patterns generally have larger coverage. The
candidate set should also contain more items within
the probe pattern’s todo-set. This is because items in
todo-set are expected to appear more in the future.

12
1+
08 -

ok

4300 4952 5043
Pattern Position

normalized future coverage

Normalized Future Coverage

Figure 5: Patterns’ Positions and Their Coverage

1.2

[normalized pattern length

1+

0.8

0.6 r

04

Normalized Pattern Length

0.2 . .
4300 4952 5043

Pattern Position

Figure 6: Patterns’ Positions and Their Length

These intuitions are well justified by the real exper-
imental statistics. Fig. 5 (connect data set [9] with
minsup = 0.8 X #transactions,d = 0.1) shows the fu-
ture coverage w.r.t. a probe pattern which is output at
position 5043. The future coverage counts the number

of coverable patterns which are output after the probe
pattern. We ignore the patterns which cannot cover
the probe pattern (i.e., the future coverage is 0). The
values on the y-axis are normalized w.r.t. the largest
coverage. The z-axis is the order in which patterns
are output. The probe pattern is first visited at po-
sition 4952. Fig. 6 shows the corresponding pattern
length (normalized w.r.t. the longest length). We ob-
serve that the largest future coverage appears between
the first visit and second visit of probe pattern, and
it also has the longest length within the same region.
Based on the above observations, we select the reason-
ably large set as the longest pattern, which can cover
the probe pattern, among all the patterns between the
first visit and second visit of the probe pattern (i.e.,
patterns expanded by the probe pattern).

Since the local method only requires the knowledge
on already-discovered patterns, we further integrate it
into frequent pattern mining process in order to im-
prove the computational efficiency. The new method
is called RPlocal.

4.2.2 The Algorithm

We develop an FP-growth-like algorithm [13, 11] to
discover representative patterns. Since FP-growth is a
well-known method, we omit the detailed description
here due to the limited space.

The RPlocal algorithm is described as below.

Algorithm 2 (RPlocal) Compute
Patterns by Local Search.

Representative

Input: (1) a transaction database D, (2) a minimum
support, M and (3) a quality measure for clustering,

Output: The set of representative patterns.
Method: The algorithm is described in Figure 7.

We explain the algorithm line by line. Line 1 picks
an item to be expanded from the head table. Line 2
pushes the item onto a global stack IS which keeps
track of the itemsets along the path from the root
in the pattern space. Each entry of IS has the fol-
lowing fields: item name, counts, covered, and cover
pattern (among its children). Line 3 checks whether
closed pruning can be applied on IS(top). We discuss
the challenge and our solution to the closed pruning
problem in the next subsection. Line 4 traces all the
itemsets in the IS stack to check whether the current
itemset can cover the itemsets in the stack. If yes, and
the current pattern is longer than the one stored in
the cover pattern field, then the cover pattern field is
updated by the current pattern. Line 5 checks current
itemset’s support. If it is less than M, then it is not
required to be covered. It also checks whether it is cov-
ered by a previous representative pattern (the previous
representative patterns are indexed in RP-tree R, as
shown in RPglobal). Line 8-11 are the same as the
FP-growth algorithm. It collects the todo-set based
current itemset, constructs a conditional FP-tree and a

BEGIN
1S = ¢; // global stack to keep itemsets
scan D, create FP-tree F’;
Initiate an empty RP-tree R;
call FPrepresentative(F, R);
END

procedure F Prepresentative(F, R) {
1. for each item in F.headtable {
push item into IS,

2.
. if (closed_pruning(IS(top)) = true) continue;
. set_representative();
5. if F.headtablelitem].count < M

or coverage_checking(1S(top), R) = false;
6. 1S[top].covered = true;

else

7. 1S[top].covered = false;

. Todo — set = {frequent (w.r.t M) items based on
the current conditional set };

0. Build a new FP-tree F,.,, based on Todo — set;

10. Initiate Fjcw’s RP-tree, Ryew;

11. call FPrepresentative(Fpew, Rnew);

2. if ((RP = get_representative()) # NULL)

13. Insert RP into R and its predecessor RP-trees;
14. Output RP;

15. pop item from IS;

Figure 7: The RPlocal algorithm

conditional RP-tree for the coverage checking, then re-
cursively calls the F' Prepresentative routine with the
new trees. The conditional RP-tree shares the same
conditional set with the corresponding FP-tree. The
approach is shown more efficient in [11] since the con-
ditional RP-trees are more compact than the global
RP-tree. Line 12 checks whether the current itemset
can be a probe pattern. If it is, then the cover pattern
stored in the IS stack is selected as a new representa-
tive pattern. Meanwhile, the covered fields of all the
other itemsets in the I.S stack are set as true if they
can be covered by the new representative pattern. The
new representative pattern is inserted into all RP-trees
for future coverage checking.

4.2.3 Prune Non-Closed Patterns

Here we discuss the implementation of closed_pruning
in the RPlocal algorithm.

Assume a pattern P is not closed, and the related
closed pattern is P.. There are two possibilities for P,.
One is (O(P;) — O(P)) N done — set # ¢, then P, is
a pattern discovered before the first visit of P. The
other is (O(P.) — O(P)) Ndone — set = ¢, then P, is a
pattern expanded by P (i.e., P, is discovered between
the first visit and the second visit of P).

The second case is intrinsically handled by the RPlo-
cal algorithm at line 8, where items with the same fre-
quency as P are directly merged into the conditional

set, and the non-closed itemsets are skipped. The first
case is more interesting w.r.t. the computation prun-
ing. The following lemma has been widely used in
most of the closed frequent pattern mining methods
[18, 19], and we state it without proof.

Lemma 2 In the RPlocal method, for any pattern P,
if there exists a pattern P, which was discovered before
the first visit of P, s.t. O(P) C O(P.) and |T(P)| =
|T(P.)|, then all the patterns being expanded by P (i.e.,
patterns within the first and second visits of P) are not
closed.

We call this pruning technique as closed pruning.
The function closed_pruning is to check whether the
pattern is not closed w.r.t. a previously discovered pat-
tern.

The challenge for closed pruning in the RPlocal al-
gorithm is that only representative patterns are kept,
and generally it is a small subset of closed patterns.
It is not possible to check the closedness of a pattern
using the previous outputs. Keeping all the closed
patterns is one option. However, an interesting obser-
vation from our experiments shows that even without
closed pruning, RPlocal runs faster than the closed fre-
quent pattern mining algorithm. This is because the
coverage checking in RPlocal is much more efficient
than the closedness checking in closed frequent pattern
mining since the number of representative patterns to
be checked with is significantly less than the number of
closed frequent patterns in closedness checking. Keep-
ing all the closed patterns obviously will degrade the
performance of RPlocal.

Instead of checking the closedness with the previ-
ous output, RPlocal uses a closedness checking method
which tries to memorize the information of items in
done-set. Since we only need to know whether an item
is present or not in the closed pattern, we use 1 bit
to represent an item’s presence. If there are N sin-
gle frequent items, we use a N-bit array (referred as
closed_index) for each pattern. The closed_index of a
pattern is computed by the bit-and operation between
the closed_indices of all the related transactions. An
example on how to use closed_index is shown as fol-
lows.

Example 4 Given a database having 5 transactions:
{f;ciaim7p}7 {.f767a7b7m}7 {f;b}i {C7b7p}; {f,c,a,m,p},
we use N = 6 bits for the closed_index. Items
f,c,a,b,m,p are assigned to the 1st to 6th bits, accord-
ing to the computation order. The closed_indices of
transactions 1 and 5 are 111011, and the closed_index
of transaction 2 is 111110. The closed_index of pat-
tern {c,a} is 111010. Since item f is in the done-set
of pattern {c,a} and f’s bit is 1. We conclude that the
closed pruning can be applied on pattern {c,a}.

To efficiently compute the closed_index for each
pattern, we attach closed_index to each node in the
FP-tree. The closed_index can be aggregated along
with the count measure, except that the count is up-
dated by sum, while the closed_index is updated by

bit-and. Since the closed_index is attached to every
node, the method is limited by the memory require-
ment. Fortunately, our task is not to identify all closed
pruning. Instead, we aim to prune as much as possi-
ble, and the unpruned non-closed patterns will go to
the coverage checking. The problem turns out: Given
a fixed number of k for closed_index, if the total num-
ber of single frequent items is larger than k, how to
select k items from them, and how much pruning can
be achieved?

It is natural to choose the first k items according
to the computation order because the closed pruning
checks patterns with items in done-set. The experi-
mental statistics on pumsb_star [9] data set is shown
in Fig. 8, where we collect the percentage of closed
pruning achieved, by setting k as 32 and 64. We ob-
serve this simple optimization works quite well. With
only one integer (k = 32) as closed_index, the method
misses less than 2% and 15% closed pruning when the
number of frequent items are 2 and 6 times of k, respec-
tively. Using two integers (k = 64) as closed_index,
the method misses less than 1% of the closed pruning.

Percentage

08 -

0.7 -

0.6

. . . .
40 80 120 160 200
Number of Items

Figure 8: Percentage of Closed Pruning achieved

The similar phenomena are also observed on all the
other data sets (e.g., mushroom, connect, accidents,
chess) in our experimental evaluations. It is interest-
ing to see that these limited k bits achieve good prun-
ing percentages. We give a detailed explanation in the
rest of this subsection.

Assume there are totally n independent
frequent items, whose computation order is
01,02, ..,0k,...,0, (for simplicity, we assume

the order of items keeps unchanged). We leave the
first k for closed_index, and r = n — k as left items.
The percentage of the closed pruning by closed_index
is defined as function h(k,r).

For any pattern, let the conditional set be
{041,005, .- -,0i, }, where i1 < iy < ... <ip, wesay m
is the length of the pattern and i,, is the span of the
pattern. The position j is called a hole if j < i, and
j ¢ {i1,i2,...,im}. If the set of holes is not empty
(i.e., the done-set is not empty), then this pattern is
possible to be subsumed by a previously output pat-
tern (i.e., the closed pruning is possible to be applied
on). A hole is active if the closed pruning takes effect.

The items in the conditional set are distributed into

two parts: the first k items set and the rest r items
set. Let the number of items falling in the rest r items
set be v, and the number of holes falling in the rest
r items set be u (referred as (u,v)-configuration). To
estimate the percentage of closed pruning for a (u,v)-
configuration (defined as g(k, u, v)), we need to further
define two parameters: the expect number of active
holes ¢ and the maximal pattern length [.

Assume items are independent, every hole has an
equal opportunity to be active. If there is one hole,
which exists in the first k items, then the closed prun-
ing is caught by the closed_index, otherwise, it misses.
Since there are at most [— v items falling into the first
k items set, for each 0 < i < m = max(l — v, k),
there are (f) different patterns. For each pattern, the
number of all different placements for ¢ active holes
is (k72+“), and the number of placements that all ¢

active holes falling in the rest 7 items set is (). Thus

()

the pruning percentage by closed_index is 1 — W,
We have: ’

u

ol = geltha) x (4
X (2)

Now we examine the value of h(k,r). Among
all patterns, there are two cases which are divided
evenly. First, the last item is not in the conditional
set. In this case, the pruning percentage is same as
h(k,r —1). Second, the last item is in the conditional
set. In this case, we enumerate all possible (u,v)-
configurations. There are at most [— 1 bits to be
placed within the latter r items (since the last item
is already in, there are r — 1 selections). For each
0 <i<m=mazx(l—1,r —1), there are (Tzl) dif-
ferent (u,v) configurations(u = r —1—i,v =i+ 1),
and for each configuration, the pruning percentage is
gk, —1—14,i+ 1), we have:

g(k,u,v) =

+Z§lo ("N x glk,r —1—d,i+1)

h(k, T) = %h(lﬁ T_l) 9 an (7’71)
=0 i

The base case is h(k,0) = 1. We run simulations by
setting £ = 32 and varying r from 0 to 64. We observe
that, in most cases, the maximal pattern length is ap-
proximately proportional to the number of frequent
items. Typically, we select the ratio as %, which is
close to the experiments in pumsb_star data set. The
value of expected active closed bits c¢ is varying from
1 to 4.

The simulation result in Fig. 9 shows that the per-
centage of pruning increases as c increases. This is
because when c is large, the probability that at least
one active holes are caught by closed_index is high.
Typically, when ¢ = 4, the simulation curve is close
to the real experimental results. Note ¢ = 1 is the
base line where the corresponding curve represents
the lower bound of closed pruning. We believe the

Percentage

Ta2 48 64 80 %
Number of Items

Figure 9: Simulation Results: Percentage of Closed
Pruning achieved

closed_index method has practical usage in real ap-
plications. The reason is as follows. The number of
frequent patterns is exponentially explosive w.r.t. the
number of items. Within the current computational
limit, if the number of items is large, either the maxi-
mal length of the pattern is small or the pattern length
is not small but the value of ¢ is reasonably large (thus
the output closed patterns can be kept in a reasonable
size). In the former case, the effect of closed pruning
(using whatever methods) to the whole computational
efficiency is limited; while in the latter case, our study
shows that closed_index can achieve considerable im-
provement. Furthermore, the closed_index approach
only involves bit operations, which is very efficient.

4.3 Combining RPglobal and RPlocal

We have developed two algorithms for the pattern
compression problem. The RPglobal method has guar-
anteed compression bound but is worse on scalability,
whereas the RPlocal method is efficient but worse on
the compression. In this subsection, we discuss a com-
bined method: RPcombine.

The main idea of RPcombine is to first use RPlocal
to get a small subset of candidate representative pat-
terns, then use RPglobal to find the final results. To
ensure that all the frequent patterns (w.r.t. M) are
d-covered, we need to choose the parameters for each
step carefully.

Assume the quality measures for RPlocal and RP-
global are 0; and d4, respectively. Any frequent pattern
P must be §;-covered by a candidate representative
pattern P, which is further d,-covered by a final repre-
sentative pattern Py. An obvious result from Theorem
1 shows if we choose §; + 4, = ¢, then P is guaranteed
to be covered by P,. Here we exploit a better assign-
ment. We have:

T(P)|
DP,P)=1- <y
T(P)|
T(Py)|
=129l <
DU = 1= gy =
The constraint given by the problem is:

TP~

To achieve more compression, we would like the values
of §; and d, to be as large as possible. This implies:

(1—6)x(1-8)=1-10

We use A to control the tradeoff between 6; and d,

such that ; = Ad and 64 = (}33{5-

We further discuss the selection of min_sup for RPlo-
cal and RPglobal: M; and M,. Since the original com-
pression problem has parameter M and §, we have
M = (1 — §) x M for representative patterns. The
RPlocal step needs to keep the same min_sup for rep-
resentative patterns. Thus,

v Mo M (1-0)M
PTIIS, 1-6, 1-X6

All the frequent patterns(w.r.t. M) are d;-covered in
the RPlocal step. To ensure that they are J-covered
finally, the RPglobal step needs to d4-cover all the
patterns that possibly §;-cover the frequent patterns
(w.r.t. M). Thus,

My=(01-6)xM=(1-X6)xM

In conclusion, RPcombine takes three parameters:
M,d,\. The RPlocal step uses parameters M;,d; on
the database, and the RPglobal step uses parameters
My, d, on the outputs of the first step.

5 Performance Study

To compare the proposed algorithms, a comprehensive
performance study is conducted by testing our imple-
mentations on the data sets in the frequent itemset
mining dataset repository [9]. All the algorithms were
implemented in C++4, and all the experiments were
conducted on an Intel Pentium-4 2.6GHz system with
1GB RAM. The system ran Linux with the 2.6.1 kernel
and gcc 3.3.2.

We summarize the methods to be compared as fol-
lows. In the FPClose method, we generate all the
closed frequent patterns w.r.t. M (we use FPClose
package[11], which is the winner of FIMI workshop
2003 [9]). In the RPglobal method, we first use FPClose
to get all the closed frequent itemsets with min_sup
M = M x (1 —), then use RPglobal to find a set of
representative patterns covering all the patterns with
min_sup M. In the RPlocal method, we directly com-
pute all the representative patterns from database. For
the clear presentation, we temporarily exclude the RP-
combine method in the first three groups of experi-
ments. One can imagine that the performance of RP-
combine fits in somewhere between RPlocal and RP-
global. We will return to RPcombine later in the sec-
tion.

5.1 Number of Presentative Patterns

The first set of experiments compare three algorithms
w.r.t. the number of output patterns. We select ac-
cidents, chess, connect and pumsb_star data sets [9)].

1e+07 1le+08
FPclose —F—
RPlocal %

RPglobal -

FPclose —+—
RPlocal %
RPglobal %

1e+07
1e+06

1e+06
100000
100000

10000 10000

Number of Patterns

1000

Number of Patterns

1000
1 100

100

L 10§

%

10 L L 1
07 05 03

06
Minsup

02
Minsup

Figure 10: Number of Out-
put Patterns w.r.t. min_sup,
Accidents Data Set

Figure 11: Number of Out-
put Patterns w.r.t. min_sup,
Chess Data Set

FPclose —F—
RPlocal -
RPglobal -

500

FPciose —+— ¥
RPlocal 3
RPglobal -

Runing Time
Running Time(Seconds)

1e+07 1e+07

FPclose —F—
RPlocal -
RPglobal -

FPclose —F—
RPlocal %
RPglobal ¥

1e+06 1e+06

100000 100000
10000 10000

1000 1000

Number of Patterns
Number of Patterns

00} 100

10 10

1 L L L L 1
0.8 0.6 0.4 0.2

Minsup

03 02 0.1 0.06
Minsup

Figure 12: Number of Out-

put Patterns w.r.t. min_sup,
Connect Data Set

Figure 13: Number of Out-
put Patterns w.r.t. min_sup,
Pumsb_star Data Set

500 1000
FPclose —+—
RPiocal -

RPglobal -

FPclose —+—
RPiocal % | %
RPglobal -

@

3
o
5]
3

Running Time(Seconds)
@

Running Time(Seconds)

08 0.6

Minsup

07
Minsup

Figure 15: Running Time
w.r.t. min_sup, Chess Data
Set

Figure 14: Running Time
w.r.t. min_sup, Accidents
Data Set

For each data, we vary the value of min_sup as the
percentage of the number of total transactions and fix
d = 0.1 (we think it is a reasonably good compression
quality).

The results are shown from Fig. 10 to Fig. 13. We
have the following observations: First, both RPglobal
and RPlocal are able to find a subset of representa-
tive patterns, which is almost two orders of magnitude
less than the whole collection of the closed patterns;
Second, although RPlocal outputs more patterns than
RPglobal, the performance of RPlocal is very close to
RPglobal. Almost all the outputs of RPlocal are within
two times of RPglobal. The results of RPglobal are par-
tial in that when minimum support becomes low, the
number of closed patterns grows very fast, the running
times of RPglobal exceed the time limit (30 minutes).

5.2 Running Time

The corresponding running time of the three methods
are shown from Fig. 14 to Fig. 17. The times for RP-
global include FPClose procedure.

The results show that RPglobal does not scale well
w.r.t. the number of patterns, and is much slower
than RPlocal. Comparing FPClose and RPlocal, we ob-
serve that although RPlocal examines more patterns
than FPClose (i.e., RPlocal examines the patterns with
min_sup M, while FPClose only examines the patterns
with min_sup M), RPlocal runs faster than FPClose,
especially when min_sup is low.

We further investigate the benefit of closed pruning.
Fig. 18 shows the results on pumsb_star data set, with

05

0.4

03
Minsup

0.6 0.4 0.2 01 004

Minsup

02

Figure 17: Running Time
w.r.t. min_sup, Pumsb_star
Data Set

Figure 16: Running Time
w.r.t. min_sup, Connect
Data Set

three configurations: FPClose, RPlocal (6 = 0.1) with
and without closed pruning. We observe that even
without closed pruning, RPlocal is more efficient than
FPClose. This is because in RPlocal, the number of rep-
resentative patterns is much less than the number of
closed patterns. As a result, both the construction and
query on RP-trees are more efficient. We use two in-
tegers as closed_index and the improvement by apply-
ing closed pruning is significant. When M = 0.04, the
closed pruning version runs three times faster than the
version without closed pruning, and four times faster
than FPClose. At that time, the number of frequent
items is 173.

5.3 Distribution of Representative Patterns

The distributions of representative patterns w.r.t. pat-
tern lengths and pattern supports are shown from
Fig. 19 to Fig. 22. We use accidents data set, with
min_sup = 0.4. In order to get a high-level summary
of support distributions, we group supports into 10
buckets. The bucket id is computed by L%J

Fig. 19 shows the distributions w.r.t. the pattern
lengths for three methods: FPClose, RPglobal and
RPlocal(§ = 0.1). We observe that the overall shape of
the distributions of RPglobal and RPlocal are similar
to the shape of closed patterns. RPglobal and RPlocal
have certain shifts to longer length because the nature
of the compression problem favors larger itemsets. Fig.
20 compares the distributions (w.r.t. pattern supports)
of close itemsets, maximal itemsets, and representative
itemsets by RPglobal and RPlocal(d = 0.2). While the

1000

FPciose —F—

RPlocal wio closed pruning %
RPlocal w closed pruning -

Running Time(Seconds)

*

0/;)8 0.06
Minsup
Figure 18: Running

Time w.r.t closed pruning,
Pumsb_star Data Set

100000
FPclose —F—

RPlocal %

RPglobal %

10000

1000

Number of Patterns
=
S
3
*
¥

H
5
KX,

-

Length of Itemsets

Figure 19: Distribution
of Patterns w.r.t. Pattern

100000

1000 = —
RPI0CAl0.1) —+—

Close ——
Maximal RPlocal(0.2) -
RPlocal ¥ RPlocal(0.3) *:
10000 | LRPalobal &
g 2 100
5 5
§ 1000 X 5
N *i s
H 100 Nl H
3 B EREE)
10
A = 4
1 i L 1 J
9 7 5 12
Support Buckets Length of Itemsets
Figure 20: Distribution Figure 21: Distribution

of Patterns w.r.t. Support
Buckets, Accident Data Set

of Patterns w.r.t. Pattern
Length, Accident Data Set

Length, Accident Data Set

1000 o
RPlocal(01) —F—

RPlocal(0.2) -
RPlocal(0.3)

RPcombine —F—
RPlocal -

2200 | L_RPglobal -

2000

100
1800

1600

Number of Patterns
Number of Patterns

X 1400

1200

10000

Beyond ——
Not Beyond %
_ Maximal -

RPcombine —F—
F| RPlocal -
RPglobal -

1000

o
1]
3

=
15}
Number of Patterns

Running Time(Seconds)

1 3 1000
02

Support Buckets lambda

Figure 22: Number of Out-
put Patterns w.r.t. Support
Buckets, Accidents Data
Set

Figure 23: Number of Out-
put Patterns w.r.t A, Chess
Data Set

maximal itemsets catch the boundary supports only,
RPglobal and RPlocal are able to get a reasonable dis-
tribution which is similar to the original closed item-
sets. These suggest that both RPglobal and RPlocal
achieve high quality compressions.

We also run RPlocal with different § from 0.1 to
0.3. Fig. 21 and Fig. 22 show the pattern distribu-
tions w.r.t. lengths and supports. As we expected, the
number of representative patterns decreases when the
value of § increases, because a larger value of ¢ en-
ables a representative pattern to cover more patterns.
Increasing the value of § also shifts the distributions
of the patterns to longer and lower support patterns.

5.4 Additional Tests

We examine the performance of RPcombine w.r.t. the
different values of A. Fig. 23 shows the final number of
representative patterns by RPglobal, RPlocal and RP-
combine on chess data set (with M = 0.6,6 = 0.1).
Fig. 24 shows the corresponding running time. The
times of RPcombine are the sums of local and global
steps. The A for RPcombine is varied from 0.01 to
0.4. When X is small (i.e., 0.01), the local step re-
ports more candidates and the global step takes more
time, but the compression quality is better. The com-
pression quality degrades as A increases, the number
of representative patterns is even larger than RPlocal
when A = 0.4. This is because at that time, M, de-
creases a lot in order to guarantee all the original fre-
quent patterns are covered, and ¢, also decreases. As

1000
0. 0.2

Delta

0.2
lambda

Figure 24: Running Time Figure 25: Number of
w.r.t. A, Chess Data Set Output Patterns, Accidents
Data Set

a result, the global step needs to cover more pattern
with tighter quality measure. In most applications, we
suggest to choose A = 0.1.

The final experiment is designed to verify the ben-
efit to allow the support of representative patterns to
be beyond of min_sup M. We compare the number of
output patterns with three different options: (1) the
Beyond case where the min_sup of representative pat-
terns is M; (2) the Not Beyond case where the min_sup
of representative patterns is M; and (3) maximal pat-
terns with min_sup M. We use the accident data set,
varying d from 0.05 to 0.3, while fixing M as 0.3. The
results in Fig. 25 show that the beyond case gets fewer
number of representative patterns, especially in the
case when § is large, while the not beyond case has
maximal patterns as its lower bound.

6 Discussion

In this section, we discuss several related issues. First,
to approximate a collection of frequent patterns, peo-
ple always favor the more succinct compression. How-
ever, the explosive output pattern size restricts the
application of most advanced algorithms. The RPlocal
method can be used as sampling procedure as we did
in RPcombine, since it is efficient and achieves con-
siderable compression. Second, the compressed pat-
tern sets generated by our method can be used for
queries of finding approximate supports. We can con-
struct an RP-tree with all the representative patterns.
The query process is similar to the coverage check-

ing, except that in coverage checking, the query pat-
tern comes with its support, while here, the support
is unknown. Among all the patterns which subsume
the query pattern, we report the maximum support
C. 'lc’he support of the query pattern is bounded in
[C’ m]

7 Conclusions

We have considered the problem of compressing fre-
quent patterns. The problem was shown to be NP-
Hard. Several methods have been proposed. The RP-
global method has theoretical bound, and works well
on small collections of frequent patterns. The RPlo-
cal method is quite efficient, and preserves reasonable
compression quality. We also discuss a combined ap-
proach, RPcombine, to balance the quality and effi-
ciency.

There are several interesting directions that we are
considering for future work: (1) Compression of se-
quence, graph and structure patterns; (2) Using com-
pressed patterns for associations, correlations and clas-
sifications; and (3) Compressing frequent patterns over
incrementally updated data (e.g., data streams).

8 Appendix: Proof of Theorem 4

Proof. For the simplicity of presentation, we prove the
theorem in the set-covering framework. Let the se-
quence of probe elements be ey, ez,...,¢; (I = |Ci]),
the sets selected by the local method be S1,.5,,...,.S].
Similar to the approaches in [7], we assign a cost 1 to
each set which is selected by the local method, dis-
tribute this cost evenly over the elements covered for
the first time. If e is covered for the first time by S;,
then ¢, = |Si—(51U521U.4.USi,1)\’ and |Cj| = > ¢.. The
cost assigned to the optimal cover is Y Jgocw D ocg Ce-
Since each element is in at least one set in the optimal
cover, we have

Gl =)< > DY =) Ks

SeC* ecS SeC*

NS
Where Ks =) cgcCe 25’601% and

R(Sl) =S; — (51 USyU...U Sifl).

Let the minimum sets covering all the probe el-
ements be {M;, My,...,Mr}. We further assume
that set M;, i € {1,2,...,T}, covers probe elements
E;, = {eil,eig,...,eip} (’Ll < dg < ... < ’ip), where
E;NE; = ¢, (VZ =+ j), and UzrzlEi = {61,62, .. .,el}.

Let the set (selected by the local method) associated
with probe element e;; be S;,. Since S;, is one of the
current largest sets which cover probe pattern e;,, we
have |R(S;1)| > |R(M;)|. Because e;,,¢;,,...,¢e;, are
in the order of probe elements, these elements must
have not been covered at the time when e;; is selected
as probe element. Thus, |R(M;)| > p, and we conclude
|R(Si,)| > p. Similarly, we have |R(S;,)| > p — 1,
|R(Sls)| >p—2,..., |R(Szp)| > 1.

For all S' € Cj, assume S7,S5,...,5] is in in as-
cending order of |R(S’)|. Kg achieves the maximum
value if we distribute the elements of S first in set S}
fully, then Sy, ..., until S; ;. Since distributing fully

on S’ means % =1, we have Kg < k + 1.

Evenly distribute the first & S’ into T buckets, and
assign minimum |R(S")| value for them, we have,

S| = [R(SDI+ [R(S5)| + - + [R(SE)]

k
T ko (k 2
Fx(F+1) _ k
> TXE i=Tx LT —~L 75
= 2 2T

We have Kg < k41 < /2T|S| + 1, thus
|Ci] < |C7| x (mazsec-(Ks))

< |C*| x (/2T x mazg|S|+1)

References

[1] F. Afrati, et al. Approximating a Collection of Frequent
Sets. KDD’04.

[2] R. Agrawal, et al. Mining association rules between sets
of items in large databases. SIGMOD’93.

[3] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. VLDB’94.

[4] R. Agrawal and R. Srikant. Mining sequential patterns.
ICDE’95.

[5] R. Bayardo. Efficiently mining long patterns from
databases. SIGMOD’98.

[6] S. Brin, et al. Beyond market basket: Generalizing as-
sociation rules to correlations. SIGMOD’97.

[7] T. Cormen, et al. Introduction to Algorithms, Second
Edition. MIT Press. 2001.

[8] G. Dong and J. Li. Efficient mining of emerging pat-
terns: Discovering trends and differences. KDD’99.

[9] Frequent Itemset Mining Dataset

http://fimi.cs.helsinki.fi/data/

[10] K. Gouda and M. Zaki. Efficiently Mining Maximal
Frequent Itemsets. ICDM’01.

[11] G. Grahne and J. Zhu. Efficiently Using Prefix-trees in
Mining Frequent Itemsets. IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI’03).

Repository.

[12] J. Han, et al. Efficient mining of partial periodic pat-
terns in time series database. ICDE’99.

[13] J. Han, et al. Mining Frequent Patterns without can-
didate generation. SIGMOD’00.

[14] B. Lent, et al. Clustering association rules. ICDE’97.
[15] H. Mannila, et al. Discovery of frequent episodes in

event sequences. Data Mining and Knowledge Discov-
ery, 1:259-289, 1997

[16] N. Pasquier, et al. Discovering Frequent Closed Item-
sets for Association Rules. ICDT’99.

[17] C. Silverstein, et al. Scalable techniques for mining
causal structures. VLDB’98.

[18] J. Wang, et al. Closet+: Searching for the Best Strate-
gies for Mining Frequent Closed Itemsets. KDD’03.

[19] M. Zaki and C. Hsiao. Charm: An Efficient Algorithm
for Closed Itemset Mining. SDM’02.

