
TopK Nearest Keyword Search on Large Graphs

Miao Qiao, Lu Qin, Hong Cheng, Jeffrey Xu Yu, Wentao Tian

The Chinese University of Hong Kong, Hong Kong, China
{mqiao,lqin,hcheng,yu,wttian}@se.cuhk.edu.hk

ABSTRACT

It is quite common for networks emerging nowadays to have labels
or textual contents on the nodes. On such networks, we study the
problem of top-k nearest keyword (k-NK) search. In a network G
modeled as an undirected graph, each node is attached with zero or
more keywords, and each edge is assigned with a weight measuring
its length. Given a query node q in G and a keyword λ, a k-NK

query seeks k nodes which contain λ and are nearest to q. k-NK is
not only useful as a stand-alone query but also as a building block
for tackling complex graph pattern matching problems.

The key to an accurate k-NK result is a precise shortest distance
estimation in a graph. Based on the latest distance oracle technique,
we build a shortest path tree for a distance oracle and use the tree
distance as a more accurate estimation. With such representation,
the original k-NK query on a graph can be reduced to answering
the query on a set of trees and then assembling the results obtained
from the trees. We propose two efficient algorithms to report the
exact k-NK result on a tree. One is query time optimized for a
scenario when a small number of result nodes are of interest to
users. The other handles k-NK queries for an arbitrarily large k
efficiently. In obtaining a k-NK result on a graph from that on trees,
a global storage technique is proposed to further reduce the index
size and the query time. Extensive experimental results conform
with our theoretical findings, and demonstrate the effectiveness and
efficiency of our k-NK algorithms on large real graphs.

1. INTRODUCTION
Many real-world networks emerging nowadays have labels or

textual contents on the nodes. For example in a road network, a
location may have labels such as “McDonald’s”, “hospital”, and
“kindergarten”. In a social network, a person may have informa-
tion including name, interests and skills, etc.. In a bibliographic
network, a paper may have keywords and abstract, and an author
may have name, affiliation and email address. In this study, we
consider the problem of top-k nearest keyword (k-NK) search on
large networks. In a network G modeled as an undirected graph,
each node is attached with zero or more keywords, and each edge
is assigned with a weight measuring its length. Given a query node
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q in G and a keyword λ, a k-NK query in the form of Q = (q, λ, k)
looks for k nodes which contain λ and are nearest to q. Different
from a large body of research on k-nearest neighbor (k-NN) search
on spatial networks [15, 5, 6, 18, 19, 7], we define G as a general
graph without coordinates. Thus our solution can apply to a wide
range of networks.

Motivation. k-NK is an important and useful query in graph search.
As a stand-alone query, it has a wide range of applications. Further-
more, it can serve as a building block for tackling complex graph
pattern matching problems which impose both structural and tex-
tual constraints. Here we list a few applications of k-NK queries.

Consider the social network Facebook as an example, in which
personalized search based on graph structure and textual contents
has become increasingly popular1. A person looks for 20 friends or
potential friends who like hiking to participate in a hiking activity.
Intuitively, if two persons share some common friends, i.e., they are
two hops away, they are more likely to become friends. In contrast,
if they are far away from each other in the network, they are less
likely to establish a link. Thus the problem is to find 20 persons
who like hiking and are nearest to the person who serves as the
organizer. It can be answered by a k-NK query. More generally,
we also consider a query containing multiple keywords connected
by AND or OR operators to express more complex semantics, e.g.,
a person looks for k friends or potential friends who like hiking

AND (OR) photography and are nearest to him.
Take a road network with locations associated with keywords as

another example. For parents looking for k kindergartens nearest
to their home for their children, their requirements can be expressed
by a k-NK query where the query node is the home location, and
the keyword is “kindergarten”.

In the third example, we show how k-NK queries serve as a
building block for solving the graph pattern matching problem.
Consider a couple who wants to buy a house. They have some con-
straints like having a kindergarten and a hospital within 3 km, and

a supermarket within 1 km of their home. These constraints can be
expressed as a star pattern, and the pattern matching problem can
be decomposed into three k-NK queries with keywords “kinder-
garten”, “hospital” and “supermarket” respectively and k = 1 for
each potential house location to be considered.

Recently, Bahmani and Goel [1] have designed a Partitioned

Multi-Indexing (PMI) scheme to answer k-NK queries approxi-
mately. PMI is an inverted index built based on distance oracle
[20] which is a distance estimation technique. Given a k-NK query
Q = (q, λ, k), it returns k nodes containing keyword λ in ascend-
ing order of their approximate distance from the query node q. PMI

inherits the 2 log2 |V | − 1 approximation factor for distance esti-
mation from distance oracle [20], where V is the set of nodes in the

1https://www.facebook.com/about/graphsearch



graph. The major drawback of PMI is that its distance estimation
error could be quite large in practice. This can greatly distort the
ranking of the candidate nodes carrying the query keywords, and
thus lead to a low result quality.

In this work, we study how to answer k-NK queries accurately
and efficiently using compact index. The key to an accurate k-NK

result is a precise shortest distance estimation in a graph. As we
use a general graph model, existing k-NN solutions on spatial net-
works [15, 5, 6, 18, 19, 7] cannot be applied, as they usually rely
on specialized structures that leverage properties of spatial data to
optimize their solutions. Instead we use distance oracle [20] as the
fundamental distance estimation framework. For each component
of a distance oracle, we will build a shortest path tree, based on
which we can estimate the shortest distance between two nodes by
their tree distance. The tree distance is more accurate than the dis-
tance estimated by distance oracle, which we call witness distance

to distinguish. As we transform a distance oracle on a graph into a
set of shortest path trees, the original k-NK query on the graph can
be reduced to answering the k-NK query on a set of trees. Thus we
first focus on processing k-NK queries to find exact top-k answers
on a tree. Then we study how to assemble the results obtained from
the trees to form the approximate top-k answers on the graph.

Contributions. Our main contributions in this work are summa-
rized as follows.

(1) Given a tree, we first consider a common scenario when users
are interested in a small number of answer nodes bounded by a
small constant k, i.e., k ≤ k. We propose the first algorithm
tree-boundk with query time O(k + log |Vλ|), where |Vλ| is the
number of nodes carrying the query keyword λ, and index size
O(k · |doc(V )|), where |doc(V )| is the total number of keywords
on all the nodes in the graph.

(2) Next we remove the k restriction and handle k-NK queries
for an arbitrary k on a tree. We propose the second algorithm
tree-pivot with query time O(k·log |V |) and index size O(|doc(V )|·
log |V |) which is independent of k, thus is more scalable.

(3) Based on our proposed tree algorithms, we present our algo-
rithm for approximate k-NK query on a graph. We propose a global
storage technique to further reduce the index size and the query
time. We also show how to extend our methods to handle a query
with multiple keywords.

(4) Our experimental evaluation demonstrates the effectiveness and
efficiency of our k-NK algorithms on large real-world networks.
We show the superiority of our methods in ranking top-k answer
nodes accurately, when compared with the state-of-the-art top-k
keyword search method PMI [1].

Roadmap. The rest of the paper is organized as follows. Sec-
tion 2 formally defines the problem. Section 3 discusses two ex-
isting related studies and their drawbacks. Section 4 presents our
framework. Sections 5 and 6 introduce two proposed algorithms to
answer k-NK queries on a tree for a small k and an arbitrary k re-
spectively using compact index structures. Section 7 elaborates on
the way to answer k-NK queries on a graph by approximating the
graph with a bounded number of trees. Section 8 presents exten-
sive experimental evaluation. Section 9 reviews the previous works
related to ours. Finally, Section 10 concludes the paper.

2. PROBLEM DEFINITION
We model a weighted undirected graph as G(V, E), where V (G)

represents the set of nodes and E(G) represents the set of edges in
G. We use V and E to denote V (G) and E(G) if the context is
obvious. Each edge (u, v) ∈ E has a positive weight, denoted
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Figure 1: A Graph G with Keywords

as weight(u, v). A path p = (v1, v2, · · · , vl) is a sequence of l
nodes in V such that for each vi(1 ≤ i < l), (vi, vi+1) ∈ E.
The weight of a path is the total weight of all edges on the path.
For any two nodes u ∈ V and v ∈ V , the distance of u and v
on G, dist(u, v), is the minimum weight of all paths from u to v
in G. Each node v ∈ V contains a set of zero or more keywords
which is denoted as doc(v). The union of keywords for all nodes
in G is denoted as doc(V ). Note that doc(V ) is a multiset and
|doc(V )| =

P

v∈V |doc(v)|. We use Vλ ⊆ V to denote the set of
nodes carrying keyword λ in V .

DEFINITION 1. Given a graph G(V, E), a top-k nearest key-

word (k-NK) query is a triple Q = (q, λ, k), where q ∈ V is a

query node in G, λ is a keyword, and k is a positive integer. Given

a query Q, a node v ∈ V is a keyword node w.r.t. Q if v contains

keyword λ, i.e., v ∈ Vλ. The result is a set of k keyword nodes,

denoted as R = {v1, v2, · · · , vk} ⊆ Vλ, and there does not exist

a node u ∈ Vλ \ R such that dist(q, u) < maxv∈R dist(q, v). To

further report the distance in the top-k result, we can use the form

R = {v1 : dist(q, v1), v2 : dist(q, v2), · · · , vk : dist(q, vk)}.

In this paper, we aim at answering a k-NK query Q = (q, λ, k)
on a graph G. For simplicity, we assume that there is only one
keyword λ in the query. We will discuss how to answer a query
containing multiple keywords with AND and OR semantics.

Example 1: Fig. 1 shows a graph G. Assume that the weight of
each edge is 1. For a k-NK query Q = (f, λ, 3), the keyword node
set is Vλ = {b, c, k, n, t}. The result of Q is R = {b : 2, n : 4, k :
5} since dist(f, b) = 2, dist(f, n) = 4, and dist(f, k) = 5. 2

3. EXISTING SOLUTIONS
A straightforward approach to answering a k-NK query Q =

(q, λ, k) on G is to use Dijkstra’s algorithm to search from the
query node q and output k nearest keyword nodes in nondecreasing
order of their distances to q. The time complexity is O(|E|+ |V | ·
log |V |). Obviously, Dijkstra’s algorithm is inefficient when the
size of the graph is large or the keyword nodes are far away from q.

In the literature, [1] and [22] design different indexing schemes
to process (top-k) nearest keyword queries on a graph or a tree. We
introduce the two methods in the following two subsections.

3.1 Approximate kNK on a Graph
Bahmani and Goel [1] find an approximate answer to a k-NK

query in a graph based on a distance oracle [20].

Distance Oracle: Distance oracle is a technique for estimating the
distance of two nodes in a graph [20]. Given a graph G, a distance
oracle is a Voronoi partition of V (G) determined by a set of ran-
domly selected center nodes. More specifically, given a number
nc, we randomly select nc nodes from V (G) as the center nodes
to construct a distance oracle O. Then the partition is constructed
by assigning each node v ∈ V (G) to its nearest center node, de-
noted as witO(v), which is called the witness node of v w.r.t.O. If
v is a center node, witO(v) = v. For each node v ∈ V (G), the
shortest distance from v to its witness node, i.e., dist(v, witO(v)),
is precomputed. After constructing O, given two nodes u and v
in G, if u and v are in the same partition in O, i.e., witO(u) =
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Figure 2: Two Distance Oracles O1 and O2

witO(v), we compute the estimated distance, called witness dis-

tance, as distO(u, v) = dist(u, witO(u)) + dist(v, witO(v)). If u
and v are not in the same partition in O, distO(u, v) = +∞.

One distance oracle is usually not enough for distance estimation
in a graph G. It cannot estimate the distance of two nodes in dif-
ferent partitions. Even for two nodes in the same partition, the esti-
mation may have a large error. Therefore, a set of r = p× log |V |
distance oracles {O1,O2, · · · ,Or} are constructed, where p can
be considered as a constant2. The algorithm is processed in log |V |
phases. In phase i (0 ≤ i < log |V |), p distance oracles are con-
structed where each distance oracle contains 2i randomly selected
center nodes. Given r distance oracles, the distance of two nodes
u and v in G can be estimated as an upper bound dist(u, v) =
min1≤i≤r distOi

(u, v).
The time complexity to compute the estimated distance dist(u, v)

for any two nodes u and v in a graph G is O(log |V |). The distance
oracles consume O(|V | · log |V |) space. Das Sarma et al. [20]

prove that when p = Θ(|V |1/ log |V |), the estimated distance can
be bounded by dist(u, v)≤ dist(u, v)≤ (2 log2 |V |−1)·dist(u, v)
with a high probability.

Example 2: Fig. 2 shows two distance oracles O1 and O2 for the
graph shown in Fig. 1. There is one center node r in O1, and four
center nodes r, n, o and t in O2. The distance of nodes j and
s is estimated as dist(j, s) = min{distO1

(j, s), distO2
(j, s)} =

min{dist(j, r) + dist(s, r), dist(j, n) + dist(s, n)} = 5. 2

Answering k-NK with Distance Oracle: [1] designs a Partitioned
Multi-Indexing (PMI) scheme which uses a set of distance oracles
to answer a k-NK query in a graph. For each partition in a distance
oracle Oi, an inverted list is constructed for each keyword in the
partition. Specifically, for a partition with a center node c and a
keyword λ, the inverted list contains all nodes in the partition that
contain keyword λ ranked in nondecreasing order of their distances
to c. Given a k-NK query Q = (q, λ, k) and a distance oracle Oi,
the algorithm first finds the partition that q belongs to in Oi. The
result w.r.t.Oi is the first k elements in the inverted list for λ in the
partition, denoted as ROi

= {u1 : dist(c, u1) + dist(c, q), u2 :
dist(c, u2) + dist(c, q), · · · , uk : dist(c, uk) + dist(c, q)}. The
final result R is computed by merging the nodes in each ROi

and
maintaining k nodes with the shortest distances to q. The query
time complexity is O(k · log |V |). We illustrate the algorithm using
the following example.

Example 3: Consider the graph in Fig. 1 and two distance oracles
in Fig. 2. For keyword λ, the inverted list for the partition centered
at node r in O1 has 5 elements {b : 1, n : 3, k : 4, c : 5, t : 6}.
The inverted list for the partition centered at node o in O2 has 1
element {k : 2}. Given a k-NK query Q = (m, λ, 2), fromO1, we
can get a result RO1

= {b : 1 + dist(r, m), n : 3 + dist(r, m)} =
{b : 5, n : 7}, and from O2, we can get a result RO2

= {k :
2 + dist(o, m)} = {k : 3}. By merging RO1

and RO2
, the final

answer is R = {k : 3, b : 5}. The exact answer is R = {c : 1, k :
1} according to Fig. 1. 2

Limitation: Although in theory, the witness distance used by [1]
can be bounded by a factor of 2 log2 |V | − 1 of the exact distance
with a high probability, in practice, however, we find the distance

2In [20], the set {O1,O2, · · · ,Or} is defined as a distance oracle.
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estimation error can be quite large. For example, for the graph G in
Fig. 1 and two distance oracles O1 and O2 in Fig. 2, for two nodes
s and v, the witness distance in O1 is distO1

(s, v) = dist(s, r) +
dist(v, r) = 10, and that in O2 is distO2

(s, v) = dist(s, n) +
dist(v, n) = 6. However, the exact distance is dist(s, v) = 2 in
G, which is much smaller than both distO1

(s, v) and distO2
(s, v).

The inaccurate distance estimation can greatly distort the ranking
of the nodes carrying the query keyword, and thus lead to a low
result quality, as illustrated in Example 3.

3.2 Exact 1NK on a Tree
Tao et al. [22] compute the exact answer to a 1-NK query on a

tree T (V, E). Given a query Q = (q, λ, 1), the result is the nearest
node in T that contains keyword λ, denoted as NN(q, λ). The ba-
sic idea is as follows. We label a node v with the sequence number
of v in the preorder traversal of T . For a certain keyword λ, all
nodes with the preorder label in the interval [1, |V |] can be parti-
tioned into several disjointed intervals, such that any node v in the
same interval shares an identical NN(v, λ). The partition is called
tree Voronoi partition of λ, denoted as TVP(λ). By precomputing
TVP(λ) for all keywords λ on the tree, a query Q = (q, λ, 1) can
be answered in O(log |Vλ|) time using a binary search in TVP(λ).

In order to compute TVP(λ) for all keywords λ in T efficiently,
two new data structures, namely, Compact Tree CT(λ) and Ex-
tended Compact Tree ECT(λ), are proposed in [22].

DEFINITION 2. (Compact Tree and Extended Compact Tree)

For a tree T and a keyword λ, a compact tree CT(λ) is a tree that

keeps only two types of nodes in T : a keyword node that contains

keyword λ, and a node that has at least two direct subtrees contain-

ing nodes carrying keyword λ. In the preorder traversal of T , for

two successive nodes u and v, if NN(u, λ) 6= NN(v, λ), v is called

a change node. An extended compact tree ECT(λ) is a tree con-

structed by adding all change nodes into the compact tree CT(λ).

Using ECT(λ), TVP(λ) can be constructed easily. In [22],
the authors prove that the total size of all compact trees and all
extended compact trees for all keywords in the tree T (V, E) is
bounded by O(|doc(V )|). The time to compute all compact trees
and all extended compact trees for all keywords in the tree T (V, E)
is bounded by O(|doc(V )| · log |V |).

Example 4: Fig. 3 shows a tree with the preorder label from 1 to 20
on its nodes. For keyword λ, there are 5 keyword nodes b, c, k, n, t.
For node s, NN(s, λ) = c. The compact tree of λ, CT(λ), is shown
on the left part of Fig. 4. Node r is in CT(λ) because r has three
direct subtrees with nodes carrying keyword λ. e is not in CT(λ)
because e is not a keyword node and e has only one direct subtree
rooted at m with nodes carrying keyword λ. The extended compact
tree of λ, ECT(λ), is shown in the middle part of Fig. 4 with the



preorder label marked beside each node. Node e is in ECT(λ),
because for its parent node h, NN(h, λ) = b 6= NN(e, λ) = c.
The tree Voronoi partition of λ, TVP(λ), is shown on the right part
of Fig. 4. For node s with preorder label 14, it is in the interval
[11, 16], thus NN(s, λ) = c as listed in TVP(λ). 2

4. SOLUTION OVERVIEW

Answering k-NK on a Graph using Tree Distance: To address
the drawback of witness distance, in this paper, we propose to use
tree distance in processing a k-NK query. We observe that for a
partition of a distance oracle, we can construct a shortest path tree
rooted at the center node of the partition. Since a tree contains more
structural information than a star, using tree distance will be more
accurate than using witness distance for estimating the distance of
two nodes. For a distance oracleOi, let the set of trees constructed
in Oi be Ti. Ti can be considered as a tree by adding a virtual
root and several virtual edges with weight +∞ that connect the
new virtual root to every root node in Ti respectively. Let the k-NK

result on tree T be RT . Suppose we have an algorithm to compute
RT on a tree T , we can solve the k-NK problem in a graph by
merging RTi

for each tree Ti, 1 ≤ i ≤ r. Obviously, such a result
will be more accurate than the result by [1]. The following example
illustrates the k-NK query processing based on tree distance.

Example 5: For the distance oracles O1 and O2 shown in Fig. 2,
the corresponding shortest path trees T1 and T2 are shown in Fig. 5.
For T1, there is only 1 tree rooted at r because there is only 1
partition in O1. For T2, there are 4 trees rooted at nodes n, o, r, t
respectively, because there are 4 partitions in O2. In each tree, the
path from any node to the root node is a shortest path in the original
graph. For two nodes s and v, their tree distance is 2 in both T1 and
T2, the same as the exact distance dist(s, v) in G. For a k-NK query
Q = (m, λ, 2), we have RT1

= {c : 1, t : 2}, and RT2
= {k : 1}.

By merging RT1
and RT2

, we get R = {c : 1, k : 1}. Such a result
is much better than the result in Example 3 computed using witness
distance for the same query. 2

With the tree distance formulation, the key operation in answer-
ing a k-NK query on a graph is to answer the k-NK query on a tree.
Therefore, we start with processing a k-NK query on a tree.

Answering k-NK on a Tree: We show that it is nontrivial to answer
a k-NK query on a tree efficiently even if k is bounded. Our first
attempt is to extend the existing 1-NK solution on a tree T (V, E)
in [22]. Recall that in [22], for a certain keyword λ, the range
[1, |V |] is partitioned into several disjoint intervals, and nodes with
the preorder label in an identical interval share the same 1-NK re-
sult. When k ≥ 2, each interval needs to be further partitioned to
ensure that all nodes with the preorder label in the same interval
share an identical k-NK result. The number of intervals increases
exponentially w.r.t. the number of keyword nodes on the tree until
it reaches |V | for a keyword λ. Clearly, using such an approach,
the index size is too large in practice even for a small k. Our second
attempt is that, for each node v on the tree T (V, E) and each key-
word λ, we precompute its k nearest nodes that contain λ. When
processing a query Q = (q, λ, k) with k ≤ k, we can simply re-
trieve the precomputed result on node q and output the first k nodes
directly. Such an approach is impractical because for each keyword
λ, we need O(k · |V |) space to store the precomputed results.

In the following, we first introduce two algorithms for answering
exact k-NK on a tree T (V, E). Our first algorithm tree-boundk can
only handle bounded k values with query processing time O(k +
log |Vλ|) and index size O(k · |doc(V )|) for all keywords where k
is an upper bound value of k. Our second algorithm tree-pivot can
handle an arbitrary k with query processing time O(k · log |V |)
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Figure 5: Shortest Path Trees T1 and T2

Algorithm 1: tree-boundk (Q,T )

Input: A k-NK query Q = (q, λ, k), and a tree T .
Output: Answer for Q on T .
R← ∅;1

(u, u′)← the entry edge of q on CT(λ);2

R← R⊗k (candλ(u)⊕ dist(q, u));3

R← R⊗k (candλ(u′)⊕ dist(q, u′));4

return R;5

and index size O(|doc(V )| · log |V |) for all keywords which is
independent of k. We then show our algorithm for approximate
k-NK on a graph by merging results on a bounded number of trees.
We propose a global storage technique to further reduce the index
size and the query time on a graph. Finally we show how to extend
our method to handle a query with multiple keywords.

5. KNK ON A TREE FOR A SMALL K
In this section, we study how to answer a k-NK query Q =

(q, λ, k) on a tree T (V, E). We first consider a common sce-
nario when users are interested in a small number of answer nodes
bounded by a small constant k, i.e., k ≤ k. Recall that for a key-
word λ, its compact tree CT(λ) keeps all the structural information
of λ on the tree T . Our idea is to precompute the top-k results for
every keyword λ and every node on CT(λ). Since the total size
of all compact trees is bounded by O(|doc(V )|), the total space to
store the top-k results of nodes on all compact trees is bounded by
O(k · |doc(V )|). Given a query Q = (q, λ, k), if q is on CT(λ),
we can simply report the precomputed answer on CT(λ). If q is
not on CT(λ), we need to find a way to construct the answer using
the precomputed results as well as the structure of CT(λ) and T . In
the following, we first introduce how to answer a k-NK query using
CT(λ), followed by discussions on the construction of the index.

5.1 Query Processing
For a keyword λ, and each node v in the compact tree CT(λ),

we use a candidate list candλ(v) to denote the precomputed k-NK

results for k = k on node v ranked in nondecreasing order of their
distances to v, in the form of candλ(v) = {v1 : dist(v, v1), v2 :
dist(v, v2), · · · , vk : dist(v, vk)}where dist(v, v1) ≤ dist(v, v2) ≤
· · · ≤ dist(v, vk). Given a query Q = (q, λ, k) on a tree T (V, E)

where k ≤ k, if q is in CT(λ), we can simply report the first k ele-
ments in candλ(q) as the answer. The difficult case is when q is not
in CT(λ). In order to answer such a query, we define an entry edge

to be the edge in CT(λ) that is nearest to q. Intuitively, the entry
edge plays a role of connecting the query node q to the compact
tree CT(λ). The formal definition of entry edge is as follows.

DEFINITION 3. (Entry Node and Entry Edge) Given a com-

pact tree CT(λ), for each edge (u, u′) on CT(λ) with u′ being a

child node of u, (u, u′) represents a unique path from u to u′ on

the original tree T . For any node v on T , we say v sticks to CT(λ),

denoted as v ∈s CT(λ), if and only if there exists an edge (u, u′)
on CT(λ) such that v is on the path from u to u′ on T , otherwise

v does not stick to CT(λ), denoted as v /∈s CT(λ). For a node q
on T , let v be the first node on the path from q to the root node of

T such that v ∈s CT(λ). v is called the Entry Node of q w.r.t. λ,



Algorithm 2: operator R⊕ δ

Input: Candidate list R = {u1 : du1
, u2 : du2

, · · · }, distance δ.
Output: A candidate list by adding δ to all distances in R.
R′ ← ∅;1

for i = 1 to |R| do2

R′ ← R′
S

{ui : dui
+ δ};3

return R′;4

denoted as ENλ(q). The corresponding edge (u, u′) on CT(λ) is

called the Entry Edge of q w.r.t. λ, denoted as EEλ(q).

Note that for a node q and a keyword λ, EEλ(q) is an edge on
the compact tree CT(λ), and ENλ(q) is a node on the original tree
T . We use an example to illustrate the entry node and entry edge.

Example 6: For the tree T shown in Fig. 3 and keyword λ, the
compact tree CT(λ) is shown on the left part of Fig. 4. For ease of
illustration, we also mark the nodes in CT(λ) dark on the tree T in
Fig. 3. For edge (r, c) in CT(λ), h ∈s CT(λ) because h is on the
path from r to c in T . p /∈s CT(λ) since p is not on the tree path
of any CT(λ) edge. For node v, its entry node is ENλ(v) = e, as e
is the first node on the path (v, p, e, h, d, r) such that e ∈s CT(λ).
The entry edge for v is EEλ(v) = (r, c) since the entry node e for
v is on the path from r to c in T . The entry nodes and entry edges
for some other nodes in T are listed in the following table. 2

Node g j d e p u
ENλ g j d e e b
EEλ (r, a) (a, k) (r, c) (r, c) (r, c) (r, b)

The Algorithm: Given a tree T (V, E), for keyword λ, all keyword
nodes are contained in CT(λ). For any node q ∈ V , the path from
q to any keyword node will go through the entry node ENλ(q).
Based on such property, the result of a query Q = (q, λ, k) is iden-
tical with the result of the query Q′ = (ENλ(q), λ, k). However,
ENλ(q) may not be on CT(λ), thus the result of Q′ is not neces-
sarily precomputed. Let (u, u′) = EEλ(q), since ENλ(q) is on the
path from u to u′ on the tree T , the path from ENλ(q) to any key-
word node in T will go through either u or u′. Thus, the answer for
Q′ can be constructed by merging the precomputed candidate lists
candλ(u) and candλ(u′) on CT(λ).

Our algorithm for processing a query Q = (q, λ, k) on a tree T is
shown in Algorithm 1. We assume that the compact tree CT(λ) for
each keyword λ and the list candλ(u) for every node u on CT(λ)
have been computed. After initializing the result R in line 1, we
find the entry edge (u, u′) for q on CT(λ) (line 2). We add a dis-
tance dist(q, u) to every node in candλ(u) using the⊕ operator, to
reflect the distance from q to a keyword node via u. We then merge
the new result into R using the ⊗k operator (line 3). Similarly we
apply the two operators to candλ(u′) with the distance dist(q, u′)
(line 4). We will describe the operators⊕ and⊗k later. We use the
following example to illustrate the algorithm.

Example 7: Given the tree T shown in Fig. 3 and CT(λ) on the left
part of Fig. 4, for a query Q = (o, λ, 2), the entry edge EEλ(o) =
(r, c). Suppose the lists candλ(r) = {b : 1, n : 3} and candλ(c) =
{c : 0, t : 1} are precomputed. By adding dist(o, r) = 5 to
candλ(r), and adding dist(o, c) = 2 to candλ(c), we get the new
lists {b : 6, n : 8} for r and {c : 2, t : 3} for c. We merge the two
lists and get the final result R = {c : 2, t : 3}. 2

The efficiency of Algorithm 1 depends on three operations. The
first operation is to find the entry edge for any node on T (line 2).
The second operation is to calculate the distance of any two nodes
on T , e.g., dist(q, u) and dist(q, u′) (line 3-4). The third operation
is to merge two sorted lists into a new one using operators ⊕ and
⊗k (line 3-4). Next, we discuss the three operations separately.

Algorithm 3: operator R1 ⊗k R2

Input: Two sorted candidate lists R1 = {u1 : du1
, u2 : du2

, · · · }
R2 = {v1 : dv1

, v2 : dv2
, · · · }, and result size k.

Output: The merged candidate list.
R← ∅; i← 1; j ← 1;1

while (i < |R1| or j < |R2|) and |R| ≤ k do2

if i < |R1| and (dui
≤ dvj

or j ≥ |R2|) then3

if ui /∈ R then R← R
S

{ui : dui
};4

i← i + 1;5

else if j < |R2| and (dvj
≤ dui

or i ≥ |R1|) then6

if vj /∈ R then R← R
S

{vj : dvj
};7

j ← j + 1;8

return R;9

Finding the Entry Edge: Given a keyword λ, for any node v on a
tree T (V, E), our idea of finding the entry edge EEλ(v) of v is sim-
ilar to the idea of finding the 1-NK answer using the tree Voronoi
partition TVP(λ) in [22]. For the range [1, |V |], we partition it
into several disjoint intervals, such that nodes with the preorder la-
bel in the same interval share an identical entry edge. We call such
partition an entry edge partition for λ, denoted as EEP(λ). Given
EEP(λ), EEλ(v) can be computed easily using a binary search in
EEP(λ) in O(log |Vλ|) time. In the next subsection, we show how
to build EEP(λ) for all keywords efficiently and prove that the total
size of EEP(λ) for all keywords in T is bounded by O(doc|V |).

Computing Tree Distance: Given a tree T (V, E) with root r, sup-
pose the distance from r to every node in T has been precomputed.
For any two nodes u and v on T , we denote LCA(u, v) as their low-
est common ancestor. The distance of u and v can be computed as
dist(u, v) = dist(r, u) + dist(r, v) − 2dist(r, LCA(u, v)). Using
the techniques in [2], LCA(u, v) can be found in O(1) time using
O(|V |) index space. Thus dist(u, v) for any two nodes u and v on
T can be computed in O(1) time using O(|V |) index space.

Merging Results: The results are merged using two operators ⊕
and ⊗k. Algorithm 2 shows the operator ⊕, which takes a candi-
date list R and a distance δ as input, and outputs a candidate list by
adding δ to all distances in R. The time complexity for the ⊕ op-
erator is O(|R|). Algorithm 3 shows the operator ⊗k, which takes
two candidate lists R1 and R2 sorted in nondecreasing order of the
distances, and a value k as input, and outputs the merged candidate
list R. R contains at most k elements sorted in nondecreasing order
of the distances. R can be constructed by visiting each element in
R1 and R2 at most once. The time complexity for the ⊗k operator
is O(min{|R1| + |R2|, k}). The ⊗k and ⊕ operators satisfy the
commutative, associative and distributive laws as follows.

(Commutative Law) R1 ⊗k R2 = R2 ⊗k R1.
(Associative Law) (R1 ⊗k R2)⊗k R3 = R1 ⊗k (R2 ⊗k R3).
(Distributive Law) (R1 ⊗k R2)⊕ d = (R1 ⊕ d)⊗k (R2 ⊕ d).

THEOREM 1. Algorithm 1 computes the exact k-NK answer for

a query Q = (q, λ, k) on a tree T (V, E) in O(k + log |Vλ|) time.

Algorithm 1 uses the novel idea of entry edge, and elegantly ex-
tends the 1-NK method [22] to handle k-NK (k > 1) with the same
query time complexity, except for an extra linear cost O(k) indis-
pensable for reporting the results.

Given the tree T , for every keyword λ, besides the compact tree
CT(λ), two more indexes are needed. The first index, the entry

edge partition EEP(λ), is to find the entry edge for any node on T .
The second index is the candidate list candλ(v) for every node on
CT(λ). Below we show how to construct the two indexes.

5.2 Construction of Entry Edge Partition
Given a tree T (V, E), for each keyword λ, sharing the similar

idea with the tree Voronoi partition TVP(λ), we construct an entry



Algorithm 4: EEP-construct (T ,CT(λ))

Input: A tree T (V, E) and a labelled compact tree CT(λ).
Output: Entry edge partition EEP(λ).
r ← the original root of CT(λ);1

EEP(λ)← ∅;2

partition(EEP(λ), [1, |V |], (φ, r), CT(λ));3

return EEP(λ);4

Procedure partition(EEP(λ), interval [s, t], edge (u, u′), CT(λ))5

foreach subnode u′′ of u′ on CT(λ) in increasing preorder do6

[s′, t′]← interval of (u′, u′′);7

if s < s′ then add ([s, s′ − 1], (u, u′)) to EEP(λ);8

partition(EEP(λ), [s′, t′], (u′, u′′), CT(λ));9

s← t′ + 1;10

if s ≤ t then add ([s, t], (u, u′)) to EEP(λ);11

edge partition EEP(λ), which divides [1, |V |] into several disjoint
intervals, such that nodes in V with preorder in the same inter-
val share an identical entry edge on CT(λ). In order to construct
the entry edge partition, for each edge (u, u′) on CT(λ), we label
(u, u′) with an interval according to the following definition.

DEFINITION 4. (Labeled Compact Tree) Given a tree T , a

node v on T has an interval [sv, tv] where sv is the preorder label

of v on T and tv is the maximum preorder label for all nodes in

the subtree rooted at v. Given a compact tree CT(λ), for any edge

(u, u′) on CT(λ), let the branching node of (u, u′) be the first node

along the path from u to u′ on T , and denote it as ub. We label edge

(u, u′) with the interval of ub.

The label of every edge on a compact tree CT(λ) can be com-
puted easily when constructing CT(λ). Given any node v on a tree
T and an edge (u, u′) on a compact tree CT(λ), denote the branch-
ing node of (u, u′) as ub, then v is in the subtree rooted at ub if and
only if the preorder label of v on T is in the interval of ub, which
is identical with the label of edge (u, u′). For ease of presentation,
for each labeled compact tree CT(λ), we add a virtual root φ and
an edge from φ to the original root of CT(λ). We use the following
example to illustrate the labeled compact tree.

Example 8: For the tree T shown in Fig. 3, we mark the preorder
and the interval of each node on the tree. For the node h, its interval
is [10, 18] because the preorder of h on T is 10 and the maximum
preorder for all nodes on the subtree rooted at h is 18. The labeled
compact tree CT(λ) for keyword λ is shown on the left part of
Fig. 6. For the edge (r, c) on CT(λ), its branching node is d be-
cause d is the first node along the path (r, d, h, e, m, c) on T . The
label of edge (r, c) is the interval of node d, which is [9, 18]. 2

For a compact tree CT(λ) of tree T and a keyword λ, suppose
(u, u′) on CT(λ) is an entry edge of a node v on tree T , i.e.,
EEλ(v) = (u, u′). The preorder of v is in the interval of (u, u′),
because the interval of (u, u′) contains all nodes under the subtree
rooted at the branching node of (u, u′). Based on such an observa-
tion, by excluding the intervals of all edges under the subtree rooted
at u′ in CT(λ) from the interval of (u, u′), nodes with preorder in
the remaining intervals will use (u, u′) as the entry edge. For ex-
ample, in the compact tree CT(λ) shown in Fig. 6, the edge (φ, r)
has an interval [1, 20]. r has three branches with intervals [2, 6],
[9, 18] and [19, 20] respectively. By excluding the three intervals
from [1, 20], two intervals [1, 1] and [7, 8] are left. Thus nodes with
preorder in either of the two intervals [1, 1] and [7, 8] share the same
entry edge (φ, r). For edge (r, c) with interval [9, 18], by exclud-
ing interval [17, 17] of the only branch of c, nodes with preorder in
either of the two intervals [9, 16] and [18, 18] share the same entry
edge (r, c).

Algorithm 4 shows the construction of the entry edge partition
EEP(λ) on CT(λ) for a keyword λ. After initializing EEP(λ)
(line 2), the main operation is a recursive procedure partition (line 3),

[1,20]
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Figure 6: Labeled Compact Tree and Entry Edge Partition

to partition the interval [1, |V |] to several disjoint intervals. Each
entry in EEP(λ) is in the form of ([s, t], (u, u′)) denoting that
nodes with the preorder label in the interval [s, t] share the same
entry edge (u, u′). For an edge (u, u′) with interval [s, t], the pro-
cedure processes every child node u′′ of u′ on CT(λ) in increasing
preorder of u′′ (line 6). For each edge (u′, u′′) with interval [s′, t′],
the interval [s, t] is partitioned into three parts: [s, s′ − 1], [s′, t′]
and [t′ + 1, t]. The first part is added to EEP(λ) with the entry
edge (u, u′) if it is not empty (line 8). The second part is processed
recursively for edge (u′, u′′) (line 9), and the third part is left to be
further partitioned by other child nodes of u′ by simply setting s to
be t′ + 1 (line 10). After processing all child nodes of u′, if [s, t] is
still not empty, we add [s, t] to EEP(λ) with the entry edge (u, u′)
(line 11).

The time complexity of Algorithm 4 is O(|V (CT(λ))|) since
every node on CT(λ) is visited once. For each edge (u, u′) on
CT(λ), at most two intervals are added into EEP(λ). One is added
before invoking partition for edge (u, u′) (line 8) and the other is
added at the end of partition for (u, u′) (line 11). Thus the total
number of intervals in EEP(λ) is no more than 2× |V (CT(λ))|.

Example 9: For the labeled compact tree CT(λ) shown in Fig. 6,
when invoking partition(EEP(λ), [1, 20], (φ, r), CT(λ)), we pro-
cess the three child nodes a, c, b of r in order. We first process edge
(r, a) with interval [2, 6], which divides the interval [1, 20] into
three parts: [1, 1], [2, 6], and [7, 20]. [1, 1] is added into EEP(λ)
with the entry edge (φ, r). [2, 6] is processed recursively by in-
voking partition(EEP(λ), [2, 6], (r, a), CT(λ)), and [7, 20] is pro-
cessed by the other two child nodes c and b similarly. EEP(λ) is
shown on the right part of Fig. 6. 2

THEOREM 2. For a tree T (V, E) with the compact trees for

all keywords constructed, the entry edge partition EEP(λ) for all

keywords can be constructed in O(|doc(V )|) time and stored in

O(|doc(V )|) space.

5.3 Construction of Candidate List
Given a compact tree CT(λ) for a tree T and a keyword λ, we

need to compute the candidate list candλ(v) for every node v on
CT(λ). Since CT(λ) keeps the structural information of all key-
word nodes in T , it is sufficient to search only on CT(λ) to calcu-
late candλ(v). A simple solution is to compute each candλ(v) sep-
arately on CT(λ). This approach may take O(|V (CT(λ))|) time
to calculate candλ(v) for a node v, thus O(|V (CT(λ))|2) time to
compute all candidate lists in CT(λ) for one keyword λ, which is
too slow.

In order to save the computational cost, we design a novel method
to update the candidate list of a node using those of its nearby nodes
on the tree CT(λ). Note that in CT(λ), the path between two nodes
u, v is unique: from node u to the lowest common ancestor of u and
v, LCA(u, v), and then from LCA(u, v) to v. Based on this obser-
vation, we can follow the path to propagate the candidate list on u
to v. Using this idea, we just need to traverse the tree CT(λ) twice
to build the candidate lists for all nodes on CT(λ). The first traver-
sal on CT(λ) is a bottom-up one, such that the candidate list on
each node is propagated to all its ancestors on CT(λ). The second
traversal on CT(λ) is a top-down one, such that the candidate list
on each node is further propagated to all its descendants.



Algorithm 5: cand-construct (T ,CT(λ), k)

Input: A tree T , a compact tree CT(λ), and the upper bound of k, k.
Output: candλ(v) for each v on CT(λ).
candλ(v)← ∅ for each node v on CT(λ);1

candλ(v)← {v : 0} for each node v on CT(λ) that contains λ;2

foreach v on CT(λ) in a bottom-up fashion do3

u← the parent node of v on CT(λ);4

candλ(u)← candλ(u)⊗
k

(candλ(v)⊕ dist(u, v));5

foreach v on CT(λ) in a top-down fashion do6

u← the parent node of v on CT(λ);7

candλ(v)← candλ(v)⊗
k

(candλ(u)⊕ dist(u, v));8
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Figure 7: Constructing Candidate Lists

Algorithm 5 shows the construction of the candidate lists on
CT(λ). We first initialize the candidate list for each keyword node
to be the node itself and initialize the candidate list for each non-
keyword node to be ∅ (line 1-2). We then traverse CT(λ) in a
bottom-up fashion, e.g., using postorder traversal. For each node v
traversed, we merge candλ(v) into that of its parent node u by
adding a distance dist(u, v) to the list candλ(v) (line 3-5). At
last, we traverse CT(λ) in a top-down fashion, e.g., using preorder
traversal. For each node v traversed, we merge the list of v’s parent
node u, candλ(u), into that of v by adding a distance dist(u, v)
to the list candλ(u) (line 6-8). Since the ⊗k operator takes O(k)

time, the time complexity of Algorithm 5 is O(k · |V (CT(λ))|)
using O(k · |V (CT(λ))|) space.

Example 10: Fig. 7 shows the candidate lists after the bottom-up
phase and the top-down phase for the compact tree CT(λ) shown
on the left part of Fig. 4. Initially, the candidate list for t is {t : 0}
and the candidate list for c is {c : 0}. Since c is a parent node of t,
in the bottom-up phase, the list of t is propagated and merged into
that of c by adding a distance dist(c, t) = 1, thus candλ(c) = {c :
0, t : 1} after the bottom-up phase. In the top-down phase, the list
of c is propagated and merged into that of t, thus candλ(t) = {t :
0, c : 1} after the top-down phase. 2

THEOREM 3. Given a tree T , an upper bound of k, k, and

CT(λ) for all keywords λ, the candidate lists candλ(v) for all key-

words λ and all nodes v on CT(λ) can be constructed in O(k ·
|doc(V )|) time and stored in O(k · |doc(V )|) space.

6. KNK ON A TREE FOR A LARGE K
Algorithm 1 can only process a k-NK query Q = (q, λ, k) with

a bounded k, i.e., k ≤ k, on a tree T . If k can be arbitrarily large,
the index size cannot be bounded. In this section, we will remove
the restriction on k and introduce an algorithm to handle a k-NK

query for an arbitrary k, with an index size independent of k.

6.1 A Basic Pivot Approach
Recall that for a node u that contains keyword λ and an arbitrary

node v in a tree T , the path from v to u is unique on T , and can be
divided into two segments: the first segment is from v to their low-
est common ancestor LCA(u, v), and the second segment is from
LCA(u, v) to u. Our basic idea is to compute the first segment
online and precompute the results regarding the second segment
offline. Thus, in the precomputing phase, instead of propagating a
keyword node u to all nodes in T to update their candidate lists, we
just need to propagate u to its ancestors in T . In the query process-
ing phase, we do not search the whole tree to get the answer for a
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Figure 8: Basic Pivot Approach

query, but instead, we just need to merge the precomputed candi-
dates along the path from the query node to the root node of the tree
T . Using this method, the size of the index to keep the candidate
nodes can be largely reduced at the expense of longer query time.

We use depth(T ) to denote the depth of tree T , and depth(u, T )
to denote the depth of node u on tree T . For any two nodes u and v
on T , u is a pivot of v if and only if u is an ancestor of v on T . For
each node v, we denote the set of pivots of v on T as PV(v, T ). We
have |PV(v, T )| = depth(v, T ). Given a keyword λ, for each node
u on tree T , we use the candidate list candλ(u) to denote the set
of nodes that contain keyword λ on the subtree rooted at u on tree
T , sorted in nondecreasing order of their distances to u. The can-
didate list is in the form of candλ(u) = {u1 : distT (u, u1), u2 :
distT (u, u2), · · · } where distT (u, u1) ≤ distT (u, u2) ≤ · · · . In
order to handle an arbitrary k, the size of candλ(u) is not bounded
by any predefined k. Clearly, a node v ∈ candλ(u) if and only if
v contains keyword λ and u ∈ PV(v, T ). In other words, a key-
word node v only appears in the candidate lists of its pivots. As a
result, for any keyword λ, the total size of all candidate lists for λ is
P

v∈Vλ
|PV(v, T )| =

P

v∈Vλ
depth(v, T ). We use the following

example to illustrate the pivot based approach.

Example 11: Fig. 8 shows a tree T with depth(T ) = 6. For
keyword λ, the nodes that contain λ are marked with bold circles.
For every node v, we create a candidate list candλ(v) that contains
all keyword nodes in its subtree, sorted in nondecreasing distances
to v. For example, candλ(g) = {n : 2, k : 3} means there are two
keyword nodes n and k in the subtree rooted at g with distances 2
and 3 to g respectively. For node p, PV(p, T ) = {r, d, h, e}. For
a k-NK query Q = (d, λ, 3), the path from d to the root r contains
two nodes d and r. We merge the lists candλ(d) and candλ(r) by
adding a distance dist(r, d) = 1 to all elements in candλ(r). The
final answer for Q is {b : 2, c : 4, n : 4}. 2

6.2 Pivot Approach with Tree Balancing
The problem is not perfectly solved using the basic pivot ap-

proach above. The reasons are twofold. First, in the precomputing
phase, the index size for each keyword λ is

P

v∈Vλ
depth(v, T ),

which can be large if depth(v, T ) is large. Second, when process-
ing a query Q = (q, λ, k), we need to traverse all nodes from the
query node q to the root of T . This is also costly if depth(q, T ) is
large. Thus the key to optimizing both index space and query time
is to reduce the average depth of nodes on the tree. A simple solu-
tion is to rotate the tree T to find a proper root such that the average
depth of nodes is minimized. However, such an approach cannot
essentially solve the problem, as illustrated by the following exam-
ple. Let T (V, E) be a chain of 2n+1 nodes where every node con-
tains keyword λ. The best way is to select the middle node on the
chain as the root to minimize the average depth of nodes. The to-
tal index size is

P

v∈Vλ
depth(v, T ) =

P

v∈V (T ) depth(v, T ) =

n(n − 1), which is O(n2). Furthermore, we need to traverse n
nodes to answer a query when the query node q is at one end of the
chain, leading to O(n) query time. This example shows that both
the index space and query processing can still be very costly, even
though we rotate the tree.



Original Tree T DT(T ) v PV(v, DT(T ))� �� � �� �� �	 
� �� � ��� ��� � a {b : 8, f : 2}
d {b : 3, f : 3}
e {b : 8, f : 2}
c {b : 2, g : 4}
h {b : 10, g : 4}
f {b : 6}
g {b : 6}

Figure 9: Distance Preserving Balanced Tree

In order to reduce the average depth of nodes to optimize both
index space and query processing time, we introduce a new struc-
ture called distance preserving balanced tree for T (V, E), denoted
as DT(T ). Generally speaking, DT(T ) preserves all distance in-
formation for any node pair on T and the height of DT(T ) is at
most log2 |V |. The formal definition of DT(T ) is as follows.

DEFINITION 5. (Distance Preserving Balanced Tree) Given a

tree T (V, E) with a positive weight on each edge, a Distance Pre-

serving Balanced Tree of T , denoted as DT(T ), is an unweighted

tree with the following three properties.

P1: V (DT(T )) = V (T ).

P2: depth(DT(T )) ≤ log2 |V |.
P3: For any two nodes u and v, let the lowest common ancestor

of u and v on DT(T ) be o = LCADT(T )(u, v). The following

equation always holds: distT (u, v) = distT (u, o) + distT (v, o).

Note that DT(T ) is unweighted and the distances distT (u, v),
distT (u, o) and distT (v, o) in P3 are calculated on the original tree
T , but not DT(T ). The lowest common ancestor LCADT(T )(u, v)
is not necessarily the ancestor of u or v on the original tree T .
Based on P3, we can also divide our algorithm into two phases us-
ing DT(T ). In the preprocessing phase, for each keyword λ, and
each node v that contains keyword λ, we propagate v into the can-
didate lists of its pivots on DT(T ). In the query processing phase,
we traverse from the query node q to the root node on DT(T ).
Using the balanced tree DT(T ), the total size of the candidate
lists for a keyword λ is bounded by

P

v∈Vλ
depth(v, DT(T )) ≤

P

v∈Vλ
log2 |V |, and the total size for all keywords is bounded by

O(|doc(V )| · log |V |). For processing a query, we need to traverse
at most log2 |V | + 1 nodes on the path from the query node to the
root of DT(T ).

Example 12: A tree T with depth(T ) = 3 and a distance pre-
serving balanced tree of T , DT(T ) with depth(DT(T )) = 2 are
shown in Fig. 9. The weight of each edge is marked on T . Edge
(b, d) is on T but not on DT(T ), and edge (b, f) is on DT(T )
but not on T . For two nodes a and d, LCADT(T )(a, d) = f , thus
distT (a, d) = distT (a, f) + distT (d, f) = 2 + 3 = 5. Note that
f is not an ancestor of d on the original tree T . PV(v, DT(T )) for
each node v in DT(T ) is listed on the right part of Fig. 9. 2

Here we introduce our algorithm of processing a k-NK query on
a tree T using DT(T ), and in the next subsection, we will show that
DT(T ) always exists for any tree T . We will also describe how to
construct DT(T ) for a tree T and how to compute all candidate lists
candλ(v) for all keywords λ and all nodes v on the tree DT(T ).

Query Processing: Given a tree T and DT(T ), Algorithm 6 shows
how to process a query Q = (q, λ, k). We traverse all nodes on the
path from q to the root of DT(T ), which is PV(q, DT(T ))

S

{q}
(line 2). For each traversed node v, we add distT (q, v) to all ele-
ments in candλ(v) and then merge the list into the current result R,
since we need to first go from node q to node v (the first segment),
and then go from v to the keyword nodes in candλ(v) (the second
segment). Note that the time complexity of the⊕ operator in line 3
is O(|candλ(v)|). However, by combining⊕ with⊗k, it is easy to
reduce the time complexity of line 3 to O(k).
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Figure 10: Pivot Approach with Tree Balancing

Algorithm 6: tree-pivot (Q,T )

Input: A k-NK query Q = (q, λ, k), and a tree T .
Output: Answer for Q on T .
R← ∅;1

foreach v ∈ PV(q, DT(T ))
S

{q} do2

R← R⊗k (candλ(v)⊕ distT (q, v));3

return R;4

Example 13: Fig. 10 shows a distance preserving balanced tree
DT(T ) for the tree T shown in Fig. 8, with depth 4. For keyword
λ, the nodes that contain λ are marked with bold circles in Fig. 10.
For a query Q = (e, λ, 3), we just need to merge 2 candidate lists
candλ(e) and candλ(r) by adding a distance distT (e, r) = 3 to all
elements in candλ(r). However, if we use the basic pivot approach
on the original tree T without tree balancing, we need to merge 4
candidate lists for nodes e, h, d and r respectively. The answer for
Q is {c : 2, t : 3, b : 4}. 2

THEOREM 4. The time complexity for answering a k-NK query

on a tree T (V, E) using Algorithm 6 is O(k · log |V |).

6.3 Index Construction
Given a tree T , in order to answer a query Q = (q, λ, k) us-

ing Algorithm 6, we need to build two indexes. The first index is
the distance preserving balanced tree DT(T ) for T and the second
index is the candidate list candλ(v) for each keyword λ and each
node v on DT(T ). We introduce them separately in the following.

Constructing DT(T ): Before introducing how to construct a tree
DT(T ) to satisfy the three properties in Definition 5, we first present
an approach to constructing a tree T ′ from T , which satisfies prop-
erties P1 and P3. In other words, T ′ is distance preserving but not
necessarily balanced. Let the initial T ′ be T . We change T ′ by
performing the following steps.

(1) Randomly select a node r on T ′ as the new root and rotate
T ′ accordingly.

(2) For each direct subtree T ′
c of r on T ′, perform steps (1) and

(2) on T ′
c recursively.

Clearly, after steps (1) and (2), T ′ may not be isomorphic to T .
We have the following two observations on T ′. O1: After perform-
ing step (1) on T ′, two nodes u and v are in different direct subtrees
of r if and only if LCAT ′(u, v) = r. Such a property also holds
after performing step (2) on T ′ because step (2) only changes the
structure within a subtree of r. O2: Since the structure of T ′ is
not changed after step (1), we have distT (u, v) = distT (u, r) +
distT (v, r) on the original tree T . From O1 and O2, we have
distT (u, v) = distT (u, LCAT ′(u, v))+distT (v, LCAT ′(u, v)) af-
ter step (2) on T ′. Such a property also holds for any subtree of T ′

because it is processed using steps (1) and (2) recursively. As a
result, T ′ satisfies property P3.

Our DT(T ) is constructed in a similar way as T ′. In order to
construct a balanced tree, in step (1), the root node r should be se-
lected more carefully, instead of random selection. In our method,
we select a median node to be the root node in step (1), which is
defined as follows.

DEFINITION 6. (Median Node) Given a tree T , the Median

Node of T is a node r on T such that when using r as the root of

T , for each direct subtree Tc of r on T , |V (Tc)| ≤
|V (T )|

2
holds.



Algorithm 7: DT-construct (T )

Input: A tree T .
Output: A distance preserving balanced tree DT(T ).
r ← the median node of T ;1

rotate T with r as the root;2

DT(T )← a tree with a single node r;3

foreach direct subtree Ti of r in T do4

DT(Ti)← DT-construct(Ti);5

add DT(Ti) as a subtree of r in DT(T );6

return DT(T );7

The median node r is used to balance the size of each direct
subtree of T when using r as the root of T , as a direct subtree
of r in T contains at most half of the nodes in T . Clearly, if a
median node always exists for any tree, we can select a median
node of tree T as the root and recursively do this for each direct
subtree of the root. In this way we can construct a tree T ′ with
depth(T ′) ≤ log2 |V (T )|. The following lemma shows that the
median node always exists on any tree T , and also gives a method
to find the median node of T .

LEMMA 1. Given a tree T , the median node of T is the node r,

such that the subtree rooted at r contains more than
|V (T )|

2
nodes

and depth(r, T ) is the maximum.

According to Lemma 1, the median node r is unique on T . Oth-
erwise if there are two such nodes with the same maximum depth,
the size of the tree will be larger than |V (T )|. Given a tree T ,
we can easily find the median node of T using time O(|V (T )|) by
traversing each node in T only once.

Algorithm 7 shows how to construct DT(T ) for a tree T . Specif-
ically, given a tree T , we first find the median node r of T as the
new root and then rotate T accordingly (line 1-2). The median node
r is also the root of DT(T ) (line 3). For each direct subtree Ti of
r in T , we create DT(Ti) recursively and add DT(Ti) as a subtree
of DT(T ) (line 4-6).

Example 14: For the tree T shown in Fig. 8, DT(T ) is shown in
Fig. 10. DT(T ) is constructed as follows. Since r is the median
node of T , the root of DT(T ) is r. For the first subtree under r in
T , its median node is a, thus the first subtree under r in DT(T ) is
rooted at a. All other nodes in DT(T ) are constructed similarly.
We have depth(DT(T )) = 4 ≤ log2 |V (T )| = log2 20. 2

THEOREM 5. Given a tree T (V, E), Algorithm 7 constructs

a distance preserving balanced tree DT(T ) for T using O(|V | ·
log |V |) time and O(|V |) space.

Constructing candλ(v): For a tree T (V, E), given DT(T ), the al-
gorithm for constructing the candidate list candλ(v) for each node
v and each keyword λ is quite simple. For each node v, we propa-
gate its keyword information to all its pivots in DT(T ). Our algo-
rithm is shown in Algorithm 8. We first initialize every candidate
list to be ∅ (line 1). Then we traverse each node v in DT(T ) and
each keyword λ that is contained in node v (line 2-3). For each
pivot p of v as well as v itself, we calculate distT (p, v) on the orig-
inal tree T , and add the element v : distT (p, v) to the candidate list
candλ(p) (line 4-5). After all candidate lists are created, we sort the
elements in every candidate list in nondecreasing order of the dis-
tances. The time complexity for line 2-5 is O(|doc(V )| · log |V |)
since each keyword is propagated into at most log |V | candidate
lists in DT(T ). For line 6-7, we need O(|doc(V )| · log2 |V |) time
to sort all candidate lists in DT(T ).

THEOREM 6. For a tree T , Algorithm 8 computes the candi-

date lists candλ(v) for all nodes v and all keywords λ on DT(T )
using O(|doc(V )|·log2 |V |) time and O(|doc(V )|·log |V |) space.

Algorithm 8: cand-construct (T ,DT(T ))

Input: A tree T , a distance preserving balanced tree DT(T ).
Output: candλ(v) for each v on DT(T ) and each keyword λ.
candλ(v)← ∅ for each node v on DT(T ) and each keyword λ;1

foreach v ∈ V (DT(T )) do2

foreach λ ∈ doc(v) do3

foreach p ∈ PV(v, DT(T ))
S

{v} do4

candλ(p)← candλ(p)
S

{v : distT (p, v)};5

foreach v ∈ V (DT(T )) and keyword λ do6

sort elements in candλ(v) in nondecreasing order of distances;7

Algorithm 9: graph-knk (G,Q)

Input: A graph G(V, E) and a k-NK query Q = (q, λ, k).
Output: The answer for Q on G.
R← ∅;1

foreach Distance OracleOi do2

Ti ← shortest path tree forOi;3

R← R⊗k tree-knk(Ti, Q);4

return R;5

7. APPROXIMATE KNK ON A GRAPH
In this section, we discuss how to answer a k-NK query Q =

(q, λ, k) on a graph G. We introduce two algorithms graph-boundk

and graph-pivot for a bounded k and an arbitrary k respectively.
We then propose a global storage technique to reduce the index size
and query processing time. We also show how our approach can be
extended to handle multiple keywords. Finally, we summarize the
complexities of all algorithms introduced in this paper.

Query Processing: Our general idea for query processing on a
graph is introduced in Section 4. Suppose we have computed r =
O(log |V |) distance oracles O1,O2, · · · ,Or using the algorithm
in [20]. Let the shortest path trees for the oracles be T1, T2, · · · , Tr

respectively. Algorithm 9 shows our framework for answering Q
on G. The algorithm simply enumerates all shortest path trees
and answers the k-NK query using a tree based approach, denoted
as tree-knk, on each shortest path tree Ti, and merges all the re-
sults using the ⊗k operator (line 4). Since we have two tree based
solutions, namely, tree-boundk and tree-pivot, we have two cor-
responding algorithms on graphs, denoted as graph-boundk and
graph-pivot, by instantiating tree-knk (line 4) to tree-boundk and
tree-pivot respectively.

Global Storage: As discussed above, we have r shortest path trees
T1, T2, · · · , Tr . For a keyword λ and a node v, let candi

v,λ be the
candidate list of v on tree Ti, 1 ≤ i ≤ r. To answer a k-NK query
Q = (q, λ, k) on a graph, consider a case when the candidate lists
of node v on two different trees Ti and Tj are both merged into the
result, in the form of

R← R⊗k (cand
i
v,λ⊕ distTi

(q, v))⊗k (cand
j
v,λ⊕ distTj

(q, v)).

This expression can be generalized to the case of merging the
candidate lists of node v on more than two trees. Instead of keep-
ing a candidate list candi

v,λ for each tree Ti (1 ≤ i ≤ r) separately,
we propose a technique called global storage which keeps a global
candidate list of node v and keyword λ for all trees T1, T2, · · · , Tr .
Denote the global candidate list of node v and keyword λ as candv,λ.
It is computed by

candv,λ = cand
1
v,λ ⊗ cand

2
v,λ ⊗ · · · ⊗ cand

r
v,λ.

For a node v, a node v′ ∈ candv,λ may appear in the candi-
date list candi

v,λ of multiple trees Ti, but will be stored at most
once in the global candidate list candv,λ. Therefore, the global
storage technique can effectively reduce the index size, but it adds
difficulty to query processing due to two reasons: (1) we need to
add distTi

(q, v) to candi
v,λ using the ⊕ operator, i.e., candi

v,λ ⊕
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Figure 11: Global Storage Example for graph-pivot

distTi
(q, v), but distTi

(q, v) is query dependent, thus cannot be
precomputed; (2) the global candidate list may provide a differ-
ent result list from the one computed by Algorithm 9 without using
global storage. In the following, we will show that the global candi-
date list can be used to answer k-NK queries without sacrificing the
result quality. We first define the domination relationship between
two candidate lists.

DEFINITION 7. For two candidate lists R1 = {u1 : du1
, u2 :

du2
, · · · } and R2 = {v1 : dv1

, v2 : dv2
, · · · } sorted in nonde-

creasing order of distances, R1 is dominated by R2, denoted as

R1 ≥ R2, if and only if |R1| ≤ |R2| and dui
≥ dvi

for all

1 ≤ i ≤ |R1|. Clearly, the domination relationship is transitive,

i.e., if R1 ≥ R2 and R2 ≥ R3, then R1 ≥ R3.

To solve the first problem, we need to find a merge method that
is independent of distTi

(q, v) and at the same time, can generate an
answer that is no worse than the answer computed without global
storage. The solution is expressed in Equ. 1. For any two candi-
date lists candi

v,λ ⊕ distTi
(q, v) and cand

j
v,λ ⊕ distTj

(q, v), us-

ing Equ. 1, we can generate a better result by merging candi
v,λ

and cand
j
v,λ using ⊗k first, then taking distances distTi

(q, v) and

distTj
(q, v) out and applying the minimum value of them. Clearly,

(candi
v,λ ⊗k cand

j
v,λ)⊕min{distTi

(q, v), distTj
(q, v)} is a valid

candidate list for query Q, because candi
v,λ ⊗k cand

j
v,λ is a candi-

date list for node v and min{distTi
(q, v), distTj

(q, v)} suggests a
path from q to v in G.

(candi
v,λ ⊕ distTi

(q, v)) ⊗k (cand
j
v,λ ⊕ distTj

(q, v)) ≥

(candi
v,λ ⊗k cand

j
v,λ) ⊕ min{distTi

(q, v), distTj
(q, v)}

(1)

The second problem can be solved if we prove that by merging
more candidate lists using the ⊗ operator, the answer will not get
worse. Consider a node v′ ∈ candv,λ, the merging operation finds
the minimum distance between v′ and v over multiple trees, which
is a refined estimation of their distance on graph. We formulate
such a situation using Equ. 2.

candi
v,λ ≥ candi

v,λ ⊗ cand
j
v,λ (2)

Equ. 1 and Equ. 2 also hold for multiple candidate lists. There-
fore, we show that using global storage will not sacrifice the result
quality. More importantly, global storage can effectively reduce
the index size and query processing time. It applies to both graph
algorithms graph-boundk and graph-pivot. We use the following
example to illustrate global storage.

Example 15: We take the graph-pivot algorithm as an example.
Fig. 11 shows two trees DT(T1) and DT(T2) for the shortest path
tree T1 and T2 shown in Fig. 5, with candidate list marked be-
side each node for keyword λ. Using global storage, for the same
node on different trees, we merge all its candidate lists using ⊗
and only keep one global candidate list. The global candidate lists
for nodes r, e and m are marked on the top of Fig. 11. For query
Q1 = (p, λ, 2), without global storage, we need to merge three
candidate lists, cand1

e,λ ⊕ distT1
(p, e), cand1

r,λ ⊕ distT1
(p, r) and

cand2
e,λ ⊕ distT2

(p, e). Using global storage, only two candi-
date lists cande,λ ⊕ min{distT1

(p, e), distT2
(p, e)}, candr,λ ⊕

Table 1: Algorithm Complexities on Trees (T ) and Graphs (G)
boundk pivot

Query Time (T ) O(log |Vλ|+ k) O(k · log |V |)

Index Time (T ) O(k · |doc(V )|) O(|doc(V )| · log2 |V |)

Index Size (T ) O(k · |doc(V )|) O(|doc(V )| · log |V |)
Query Time (G) O((log |Vλ|+ k) · log |V |) O(k · log2 |V |)

Index Time (G) O(k · |doc(V )| · log |V |) O(|doc(V )| · log3 |V |)

Index Size (G) O(k · |doc(V )| · log |V |) O(|doc(V )| · log2 |V |)

Table 2: Dataset Statistics
|V | |E| |doc(V )| keywords

DBLP 1, 695, 469 4, 726, 801 12, 842, 501 331, 301
FLARN 1, 070, 376 1, 356, 399 6, 966, 665 2, 730

distT1
(p, r) need to be merged. For query Q2 = (h, λ, 2), without

global storage, we get the result R = {c : 3, b : 3}. Using global
storage, we can get a result R′ = {n : 2, c : 3} with R ≥ R′. 2

Handling Multiple Keywords: We discuss how to extend our ap-
proach to handle a k-NK query of multiple keywords with AND

(denoted as ∧) and OR (denoted as ∨) semantics. Without loss of
generality, we assume the format of a keyword expression is (λ1,1

∧ λ1,2 · · · ) ∨ (λ2,1∧λ2,2 · · · )∨ · · · . It is easy to handle ∨, by
answering each λi,1∧λi,2 · · · separately and merging the results
using the ⊗ operator. For handling λi,1∧λi,2 · · · , we select a key-
word λi,j from {λi,1, λi,2, · · · } with the least frequency |Vλi,j

|
as the primary keyword and consider other keywords as filter key-
words. We answer the query for the single keyword λi,j . Before
merging each candidate list using the ⊗ operator, we remove the
candidate nodes that do not contain one or more of the filter key-
words from the candidate list. In this way, each element in the final
answer satisfies the predicate specified in the keyword expression.

Comparison: Table 1 summarizes and compares the query time,
index time and index size for boundk and pivot on trees and graphs.
Here, the listed complexities of index time and index size are for
all keywords in the tree/graph. boundk is faster than pivot in query
processing on both trees and graphs. When k is small, the index
time and index space for boundk are smaller than pivot on both
trees and graphs. However, when k is large, the index time and
index space for boundk are large, while the index time and index
space of pivot are independent of k on both trees and graphs.

8. EXPERIMENTS
In this section, we report the performance of our methods boundk,

pivot, and their global storage implementations boundk-gs and
pivot-gs, with two baseline solutions BFS and PMI. BFS is a
brute-force search that uses Dijkstra’s algorithm to identify the near-
est k keyword nodes, and PMI (Partitioned Multi-Indexing) [1] is
the state-of-the-art approximate algorithm based on distance ora-
cle [20]. For all the distance oracles involved we set the parameter
r = log2 |V |. We implemented all methods in GNU C++, and con-
ducted all experiments on a Windows machine with an Intel Xeon
2.7GHz CPU and 128GB memory. All methods run in main mem-
ory. A 32GB memory limit is set for index size.

Datasets and Queries. We use two real graphs, DBLP3, and Florida
road network FLARN4, with statistics listed in Table 2.

DBLP includes 1, 060, 763 articles, 631, 589 authors and 3, 117
conferences/journals, all of which are treated as nodes. There is an
edge between nodes u and v, if u is an author of article v, or u is
an article published in conference/journal v. The keywords of an
author node include first name and last name, the keywords of an
article node include title words, editor, year, publisher, isbn, etc.,
and the keywords of a conference/journal node include association
and name. A weight (log2 deg(u) + log2 deg(v)) is assigned to

3http://www.informatik.uni-trier.de/∼ley/db
4http://www.dis.uniroma1.it/challenge9/download.shtml
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Figure 12: Hit rate, Spearman’s rho and Error by Varying k

edge (u, v), where deg(u) denotes the degree of node u. Compared
with the unit edge weight setting, the numerical edge weights can
effectively differentiate the weights of all edges in a graph. Thus
for any k-NK query, this helps produce a ranking of top-k answer
nodes with less ties in their distances as the ground truth, which is
important for fair and unambiguous ranking quality evaluation.

In FLARN, a node represents an intersection or endpoint, an
edge denotes a road segment, and the edge weight is the distance
of the road segment. We obtained the keywords of nodes from
the OpenStreetMap project5 with a bounding box. However, only
7, 172 nodes out of 1, 070, 376 have keywords. To address the key-
word sparseness issue and better discriminate different methods,
we assign a random number (between 0 and 4) of keywords to the
nodes with no keyword. After this step, there are still 213, 081
nodes without any keyword in FLARN.

We remove stop words in DBLP and FLARN. For each dataset,
we generate 500 k-NK queries in the form of Q = (q, λ, k), where
q ∈ V is a randomly selected query node, and λ is a keyword
randomly selected by following the keyword frequency distribution
in the document collection. We test k = 1, 2, . . . , 128.

Evaluation Metrics. We use six metrics for evaluation: hit rate,
Spearman’s rho [21], error, query time, index time, and index size.
Spearman’s rho measures the rank correlation between an approxi-
mate rank result and the ground truth. Hit rate and error, defined as
follows, measure the quality of an approximate result. For a query
Q = (q, λ, k), denote the exact result as R = {u1 : d1, . . . , uk :
dk} in nondecreasing order of their distances, and d = dk as the
upper bound distance of the result R. Denote an approximate result
set as R′ = {u′

1 : d′
1, . . . , u

′
k : d′

k} in nondecreasing order of their
distances. The hit rate is defined as:

hit(R′) = |{i ∈ [1, k]|dist(u′
i, q) ≤ d}|/k

and the error is the average relative error of the estimated distances
w.r.t. the ground truth:

err(R′) =
X

1≤i≤k

|d′
i/di − 1|/k

Hit rate, Spearman’s rho and Error. Figures 12(a)–(c) show the
hit rate, Spearman’s rho, and error on DBLP respectively when we
vary k. Our method pivot improves the hit rate of PMI by 96%, and
improves Spearman’s rho by 111% on average. The error of pivot

is within 0.066 for all k values, demonstrating that the distance
estimated by pivot is very close to the exact distance. Notably,
pivot reduces the error of PMI by an order of magnitude, i.e., from
0.630 to 0.063 on average. Furthermore, the error of pivot does
not increase with k, while that of PMI increases by 40% with the
increase of k. Note when k = 1, Spearman’s rho is constantly 1.

Figures 12(d)–(f) show the hit rate, Spearman’s rho, and error on
FLARN respectively. pivot improves both the average hit rate and

5http://wiki.openstreetmap.org/wiki/Main Page
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Figure 13: Query Time in Microseconds by Varying k
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Figure 14: Query Time of boundk Varying Keyword Frequency

Spearman’s rho of PMI by 14%. The error of pivot is below 0.168
for all k values and is 4 times smaller than that of PMI on average.

Note that the performance of BFS is omitted in Figure 12, as it
returns the exact result. Furthermore, the result quality between us-
ing and not using global storage does not differ substantially, for the
sake of clarity, the global storage methods boundk-gs and pivot-gs

are also omitted in Figure 12. But we do observe that global storage
technique improves the hit rate of boundk/pivot by 1.3% on DBLP

and 0.7% on FLARN, and reduces the error by 6.7% on DBLP and
16.9% on FLARN on average. Given the memory limit of 32GB
for index size, boundk can only support k ≤ 4 on DBLP and k ≤ 8
on FLARN in Figure 12 as its index size increases linearly with k.

Query Time. Figure 13 shows the query time of different methods
in log scale when we vary k. The query time of BFS is 105–106

microseconds, which is two to three orders of magnitude slower
than the other methods.

Figure 13(a) shows the query time on DBLP. The query time of
all methods increases with the increase of k. PMI is the most effi-
cient. The query time of boundk, boundk-gs, pivot and pivot-gs

is less than 2 times that of PMI, which is quite close. Global stor-
age reduces the query time of boundk by 22% and that of pivot by
25%. Remarkably, each of our proposed approaches can report a
result within 1 millisecond for all k values.

Figure 13(b) shows the query time on FLARN. We can observe
that PMI is the fastest, closely followed by boundk and boundk-gs,
whose query time is less than two times that of PMI and one third
that of pivot for all k values. pivot and pivot-gs take a little longer
as their query time depends on the tree depth which is large on
FLARN. But their query time is within 3 milliseconds for k = 128,
which is still quite efficient. Global storage helps reduce the query
time of boundk by 20% and that of pivot by 15%.

Figure 14 further plots the query time of boundk and boundk-gs

on the 500 k-NK queries in ascending order of the query keyword
frequency in the graph. We set k = 4 in this experiment. For il-
lustration, we also label a few query keyword frequencies on the
x axis. The query time shows a sharper increasing trend on DBLP

than FLARN, as the frequency difference between DBLP keywords
is larger. These empirical results are consistent with the theoreti-
cal result, i.e., the query time complexity of boundk depends on
log |Vλ|, where |Vλ| is the frequency of keyword λ.

Index Time and Index Size. Figure 15 shows the total index
time (IT) and index size (IS) for indexing all keywords by differ-
ent methods. We observe that the index time of pivot is 2.6 times
that of PMI on DBLP, and 8.2 times on FLARN. The index con-
struction time of pivot is longer on FLARN than on DBLP. This is
because the complexity of pivot grows linearly with the tree depth,
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and the larger diameter of FLARN leads to a larger tree depth. All
methods can finish the index construction for all keywords in a
graph within 1.15 hours.

Given the memory limit of 32GB for index size, boundk can
only support k ≤ 4 on DBLP and k ≤ 8 on FLARN, as its index
size increases linearly with k. In contrast, pivot/pivot-gs have no
such limitation. The index size of pivot is 2.5 times that of PMI

on DBLP and 7.9 times on FLARN, due to the larger diameter of
FLARN. By keeping a global candidate list and removing dupli-
cate index items, global storage reduces the index size of pivot by
61% on DBLP and 55% on FLARN. It also reduces the index
size of boundk by 44% on DBLP and 54% on FLARN. Remark-
ably, the index size of pivot-gs is 6.7GB on DBLP, which is even
smaller than that of PMI (6.8GB). This result proves the superior-
ity of global storage.

9. RELATED WORK
The most related work to our study include nearest keyword

search on XML documents [22] and top-k nearest keyword search
on graphs [1], both of which have been introduced in details in Sec-
tion 3. In the sequel, we review the existing work on other topics
related to our study.

Keyword search in a graph finds a substructure of the graph con-
taining the query keywords. The answer substructure can be a tree
[12, 3, 13, 8, 10, 9], a subgraph [16, 17] or a r-clique [14]. A
survey on keyword search in databases and graphs can be found
in [25]. Keyword search has substantial differences from the k-NK

query studied in this paper. In terms of problem definition, keyword
search looks for a network structure, the nodes in which jointly
contain all the query keywords, whereas a k-NK query looks for
k nearest answer nodes, each one of which contains all the query
keywords. In terms of solution, keyword search performs BFS or
Dijkstra’s algorithm to find the answer networks, whereas our pro-
posed solutions build an index structure based on distance oracles
and compact trees for keywords. Therefore, our query time effi-
ciency is much higher than BFS and Dijkstra’s algorithm, which
has also been confirmed in our experiments. [24] and [4] study
keyword routing on a road network. Given a keyword set, a source
and a target locations, the goal is to find the shortest path that passes
through at least one matching object for each keyword.

Distance oracle is an approximate distance estimation technique.
[23] is a seminal work on distance oracle that estimates distance

with 2k − 1 stretch using an O(|V |1+
1

k ) sized index. Hermelin et
al. [11] adapt the distance oracle [23] to answer 1-NK queries with

4k−5 stretch in O(k) time using an O(k|V |1+
1

k ) sized index. Our
methods build on the distance oracle by Das Sarma et al. [20].

K nearest neighbor (k-NN) search has been extensively stud-
ied in spatial networks [15, 5, 6, 18, 19, 7]. [15] uses network
Voronoi polygons to divide a graph into disjointed subsets for k-
NN search. [5, 6] use R-tree to embed textual information on nodes,
and augment a tree node with inverted index for spatial document
within the MBR. [18] answers k-NN queries with a shortest path
quadtree. [19] answers k-NN queries based on ε-approximated dis-
tance estimated by an index termed path-distance oracle. [7] per-
forms Dijkstra-like expansion from the query node. However the

above approaches designed for spatial networks cannot apply to
graphs without coordinates.

10. CONCLUSIONS
In this paper, we study top-k nearest keyword (k-NK) search on

large graphs. We propose two exact k-NK algorithms on trees to
handle a bounded k and an arbitrary k respectively. We extend tree
based algorithms to graphs and propose a global storage technique
to further reduce the index size and query time. We conducted
extensive performance studies on real large graphs to demonstrate
the effectiveness and efficiency of our algorithms.
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