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Abstract Shortest distance queries are essential not only in
graph analysis and graph mining tasks but also in database
applications, when a large graph needs to be dealt with. Such
shortest distance queries are frequently issued by end-users
or requested as a subroutine in real applications. For intensive
queries on large graphs, it is impractical to compute shortest
distances on-line from scratch, and impractical to materialize
all-pairs shortest distances. In the literature, 2-hop distance
labeling is proposed to index the all-pairs shortest distances.
It assigns distance labels to vertices in a large graph in a pre-
computing step off-line and then answers shortest distance
queries on-line by making use of such distance labels, which
avoids exhaustively traversing the large graph when answer-
ing queries. However, the existing algorithms to generate
2-hop distance labels are not scalable to large graphs. Finding
an optimal 2-hop distance labeling is NP-hard, and heuris-
tic algorithms may generate large size distance labels while
still needing to pre-compute all-pairs shortest paths. In this
paper, we propose a multi-hop distance labeling approach,
which generates a subset of the 2-hop distance labels as index
off-line. We can compute the multi-hop distance labels effi-
ciently by avoiding pre-computing all-pairs shortest paths. In
addition, our multi-hop distance labeling is small in size to be
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stored. To answer a shortest distance query between two ver-
tices, we first generate the query-specific small set of 2-hop
distance labels for the two vertices based on our multi-
hop distance labels stored and compute the shortest dis-
tance between the two vertices based on the 2-hop distance
labels generated on-line. We conducted extensive perfor-
mance studies on large real graphs and confirmed the effi-
ciency of our multi-hop distance labeling scheme.

Keywords Large graph · Shortest distance queries ·
Graph labeling

1 Introduction

With the rapid growth of Internet, more and more large
datasets are collected and archived. Among them, graph data
are of great importance. As turning data into profit is essen-
tial in the fiber age, efficiently querying and analyzing graph
data have drawn a lot of attention in the database community.

Shortest path query is one of the fundamental operations
on graph data. In a social network, users are considered as ver-
tices and edges represent friend relationship between them,
and a common question to ask is how close the friendship is.
Erdős distance is a well-known tongue-in-cheek measure-
ment of mathematical prominence of researchers in scien-
tific circles, which is the distance between a person and the
mathematician Paul Erdős in a collaboration network. In bio-
logical networks, shortest paths and distance information are
employed to identify optimal pathways and valid connec-
tivity in metabolic networks [20]. A travel agency needs to
find the cheapest route from one place to another destination.
Other applications, such as keyword search [32], twig-pattern
matching [13], and graph pattern matching [10], also involve
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a lot of shortest distance computations, or even the all-pairs
shortest distances.

Shortest distance queries have been extensively studied.
The most well-known main memory algorithms are BFS for
unweighted graphs and Dijkstra’s algorithm for weighted
graphs [8], which compute shortest distances by travers-
ing the original graph from scratch. The time complex-
ity of BFS and Dijkstra’s algorithm are O(|V | + |E |) and
O(|E | + |V | log |V |), where |V | is the number of vertices
and |E | is the number of edges, respectively. Therefore, it
is impractical to compute shortest distances from scratch for
intensive queries on large graphs. On the other extreme, a
naive solution is to pre-compute and materialize the all-pairs
shortest distances. This will need O(|V |2) space, which is
prohibitive for large graphs.

Cohen et al. [7] propose a family of labelings over graphs
to support reachability and shortest distance queries. In the
distance-aware 2-hop distance labeling, it assigns distance
labels to vertices in the graph, then shortest distances can
be computed using the distance labels directly while avoid-
ing exhaustively traversing the large graph. It is conjectured
in [7] that the size of the optimal 2-hop distance labels is
O(|V | · |E |1/2). Though it is appealing for the theoretical
bound on the space complexity, unfortunately, computing
optimal 2-hop distance labels is challenging. First, it needs to
pre-compute the all-pairs shortest paths, which is prohibitive
for large graphs. Second, for the all-pairs shortest paths, it
needs to find the optimal 2-hop cover, which is NP-hard [7].
Several reported studies show that the cost of computing
2-hop cover over directed graphs is high [6,24,25].

In this paper, we focus on answering the exact distance
over an undirected graph based on the labeling approach. The
problem becomes harder because all vertices in an undirected
graph are possibly connected pairwise, and the existing
approaches [6,24,25] developed over directed graphs cannot
be directly applied. We propose a new multi-hop distance
labeling approach, which encodes the shortest paths com-
pactly and can answer the exact shortest distance between
two vertices in an undirected graph efficiently. In the multi-
hop distance labeling, we relax the condition that all shortest
paths should be covered in 2-hops, and we generate multi-hop
distance labeling efficiently by avoiding both pre-computing
all-pairs shortest paths and finding a 2-hop cover for all such
pairs computed. To answer a shortest distance query for u
and v, we first generate on-line the necessary but small set
of 2-hop distance labels for u and v based on our multi-hop
distance labels and then compute the exact shortest distance
between u and v based on the 2-hop distance labels generated
on-line.

The main contributions of this work are summarized
below. First, we propose a new multi-hop distance labeling.
The unique features of our multi-hop distance labeling are:
it can be generated efficiently and is small in size, and it can

be efficiently used to compute the exact shortest distances
for any pair of vertices for a large undirected graph. Second,
we give efficient algorithms to generate multi-hop distance
labels based on vertex separators. Third, we propose efficient
algorithms to compute shortest distances based on the 2-hop
distance labels generated on-line using our multi-hop dis-
tance labels. Finally, we conducted extensive performance
studies using large real and synthetic graphs and confirmed
the efficiency of our multi-hop distance labeling scheme.

The remainder of the paper is organized as follows.
We discuss distance labeling and our problem definition in
Sect. 2. In Sect. 3, we define multi-hop distance labeling
and show general steps to compute shortest distances based
on our distance labels. The algorithm to generate multi-hop
distance labels is introduced in Sect. 4. We give efficient
algorithms to compute shortest distances based on distance
labels in Sect. 5. The related works are discussed in Sect. 7.
We conducted experimental studies and discuss our findings
in Sect. 8. Section 9 concludes the paper.

2 Problem statement

We consider an unweighted and undirected graph, G =
(V, E), with a vertex set V = {v1, . . . , vn} and an edge
set E = {e1, . . . , em}, where an edge ei = (u, v) is a pair of
unordered vertices. A path connecting u and v is an ordered
list of vertices, denoted as P(u, v) = (w0, . . . , wl), where
w0 = u, wl = v, and every pair of vertices (wi−1, wi ) is an
edge in E , for 1 ≤ i ≤ l. The length of a path P(u, v) is the
number of edges in P(u, v). The shortest distance between
u and v is the smallest length among all the paths connecting
u and v, denoted as δ(u, v). Without loss of generality, we
assume that G is a simple graph, that is, there are no self
loops nor multiple edges. The numbers of vertices and edges
of G are denoted as n = |V | and m = |E |, respectively.

Definition 1 Distance Labeling ([7,11]): A distance label-
ing of a graph G = (V, E) is a pair (L , F). Here, L is a
distance labeling function that assigns a label to every vertex
v ∈ V , and F is a distance decoding function that computes
shortest distance for a pair of vertices (u, v) using the labels
in a way such as F(L(u), L(v)) = δ(u, v).

In this paper, we focus on a 2-hop distance labeling [7],
which assigns a vertex u a label in the form of L(u) =
{(w1, δ(u, w1)), . . . , (wl , δ(u, wl))}. Here, every pair of
(wi , δ(u, wi )) implies that the shortest distance between ver-
tex u itself and another vertex wi is δ(u, wi ) in G. In the 2-hop
distance labeling, for every u and v, the distance decoding
function is defined to be as follows.

F(L(u), L(v)) = min
w∈L(u)∩L(v)

δ(u, w)+ δ(v,w) (1)
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Table 1 2-hop distance labels

Vertex 2-hop distance label

v1 {(v2, 1), (v3, 1)}
v2 {(v1, 1), (v3, 1), (v4, 1), (v5, 1)}
v3 {(v1, 1), (v2, 1), (v4, 1)}
v4 {(v2, 1), (v5, 1)}
v5 {(v2, 1)}
v6 {(v1, 1), (v2, 2)}
v7 {(v2, 1)}
v8 {(v5, 1), (v2, 2)}

Fig. 1 An example graph G

The 2-hop distance labeling ensures that F(L(u), L(v)) =
δ(u, v). In other words, the distance labeling function ensures
that the shortest distance between u and v equals to the short-
est distance between u and wi plus the shortest distance
between wi and v, if there is a vertex wi which appears in
both L(u) and L(v) (L(u) ∩ L(v)). Otherwise, u and v are
not reachable.

Example 1 Table 1 shows the 2-hop distance labels for the
graph G in Fig. 1. The shortest distance between v6 and v8

is F(L(v6), L(v8)) = δ(v6, v2)+ δ(v8, v2) = 4.

The framework of 2-hop distance labeling approach con-
sists of two phases: an off-line preprocessing phase that gen-
erates 2-hop distance labels for all vertices in G, and an
on-line querying phase that computes shortest distances for
(u, v) queries. The off-line preprocessing phase is only done
once. The distance labels are used to answer any (u, v) que-
ries.

Problem statement Our problem is to efficiently compute
distance labels for all vertices with small space where pos-
sible, for a given graph G(V, E) in a preprocessing step, in
order to compute F(·) for answering shortest distance queries
for any two vertices u and v in G online.

Below we discuss our techniques for an unweighted and
undirected graph. Our techniques can be easily applied to
weighted undirected graphs and weighted directed graphs
(see Sect. 6).

3 Multi-hop distance labeling

Different from the 2-hop distance labeling, which directly
generates 2-hop distance labels for all vertices to answer any
possible (u, v) queries based on Eq. (1), in this paper, we
propose a multi-hop distance labeling. In other words, we do
not generate all 2-hop distance labels for all vertices like [7]
in the preprocessing step, which is time-consuming even for
moderately sized graphs. Instead, we generate a small sub-
set of 2-hop distance labels, which are our multi-hop dis-
tance labels, in the preprocessing step. When answering, we
generate sufficient 2-hop distance labels needed on-line for
answering a specific (u, v) query efficiently using our multi-
hop distance labels and then compute the shortest distance
for the (u, v) query. This is motivated by the fact that for a
(u, v) query only a small subset of 2-hop distance labels is
needed. For example, in order to compute the shortest dis-
tance between v3 and v6 in Table 1, only the distance labels to
v1 are needed. Therefore, we can generate the sufficient 2-hop
distance labels efficiently. Our multi-hop distance labeling is
defined as follows.

Definition 2 Multi-hop distance labeling: A multi-hop dis-
tance labeling of a graph G is a triple (L, p,F). Here, L is
a distance labeling function that assigns a vertex u a label in
the form of L(u) = {(w1, δ(u, w1)), . . . , (wl , δ(u, wl))}. p
is a parent function that assigns a parent vertex to every ver-
tex. F is a distance decoding function that computes shortest
distance for a pair of vertices (u, v) using the labels in a way
such as F(L(u), p(u),L(v), p(v)) = δ(u, v).

The main difference between 2-hop and multi-hop is that
multi-hop relaxes the condition on L(u) and L(v) and does
not request δ(u, v) = minw∈L(u)∩L(v) δ(u, w)+δ(v,w) like
Eq. (1). The main advantage is that we can generate the multi-
hop distance labels efficiently while avoiding precomputing
all-pairs shortest paths, because there is no need that all short-
est paths are covered by L(·). However, it implies two things.
(1) There may not exist common vertices for u and v (L(u)∩
L(v) = ∅). (2) There are common vertices for u andv (L(u)∩
L(v) �= ∅), but δ(u, v) = minw∈L(u)∩L(v) δ(u, w)+ δ(v,w)

does no longer hold. In order to turn our multi-hop into a
distance labeling, the parent functions play a very important
role. The parent functions on-line determine a small subset
of vertices in G for the two vertices u and v, denoted as Suv ,
such that δ(u, v) = minw∈Suv δ(u, w)+ δ(v,w).

We explain the main idea behind our multi-hop distance
labeling using an example. Consider the example graph in
Fig. 1. Table 2 shows our multi-hop distance labels. We call
a vertex v ancestor of another vertex u, if and only if there is
a sequence of parent relationships (w1, w2, . . . , wl) from u
to v such that u = w1 and v = wl , and p(wi ) = wi+1

for 1 ≤ i < l. Here, u is a descendant of v if v is an
ancestor of u. There exists one and only one vertex (the
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Table 2 Multi-hop distance labels

Vertex Distance label Parent

v1 {(v2, 1), (v3, 1)} v2

v2 {(v3, 1), (v4, 1)} v3

v3 {(v4, 1)} v4

v4 ∅ ∅
v5 {(v2, 1), (v4, 1)} v2

v6 {(v1, 1)} v1

v7 {(v2, 1)} v2

v8 {(v5, 1)} v5

root) having p(v) = ∅ in our multi-hop distance label-
ing. First, consider answering a (v6, v3) query. Here, v3 is
an ancestor of v6 because of the existence of the sequence
of (v6, v1, v2, v3). The distance labels of v6 contain only
L(v6) = {(v1, 1)}. The distance labels of the parent of v6 are
L(v1) = {(v2, 1), (v3, 1)}. The shortest distance between
v6 and v3 is δ(v6, v3) = δ(v6, v1) + δ(v1, v3) = 2, where
δ(v6, v1) is encoded in L(v6) and δ(v1, v3) is encoded in
L(v1). Next, consider answering a (v6, v7) query. Here, there
does not exist an ancestor/descendant relationship between
v6 and v7. Instead, v6 and v7 have a least common ancestor
v2 because the ancestors of v6 are (v1, v2, . . .) and the ances-
tors of v7 are (v2, . . .). Via the least common ancestor v2, the
shortest distance betweenv6 andv7 is δ(v6, v7) = δ(v6, v2)+
δ(v7, v2) = 3, because δ(v6, v2) = δ(v6, v1)+δ(v1, v2) = 2
and δ(v7, v2) = 1. All the distance labels needed are encoded
in v6, v7, v1, and v2, and they are identified by the parent
function.

3.1 Vertex separator, tree decomposition, and 2-hop
distance labeling

Cohen et al. [7] prove that the problem of computing an
optimal 2-hop distance labeling is NP-hard, and propose
an approximate algorithm. The approximate algorithm com-
putes all-pairs shortest paths, and then reduces the problem
to a set cover problem. However, both steps are time-con-
suming even for moderately sized graphs. In this paper, we
propose a new approach to generate 2-hop distance labels.
We discuss several issues that are related to our 2-hop dis-
tance labeling computing, namely vertex separator and tree
decomposition, which then result in our multi-hop distance
labeling.

Vertex separator For a graph G(V, E), a subset of vertices
S ⊂ V is a vertex separator if its deletion splits G into mul-
tiple connected components. A vertex separator S ⊂ V is
said to be a vertex separator of u, v ∈ V , if u and v are
in different connected components by the deletion of the
separator S.

Fig. 2 Example vertex separators

A 2-hop distance labeling can be generated using vertex
separators. Given a graph G(V, E), without loss of gener-
ality, assume that the deletion of a vertex separator S splits
G into two connected components with vertex sets A and
B, respectively, that is, A ∩ B = ∅, A ∪ B ∪ S = V ,
there is no path between any vertex in A and any vertex
in B without passing through any vertices in S. We can add
labels to vertices as follows. For each vertex v ∈ A ∪ B,
add {(w, δ(v,w)) | w ∈ S} to L(v), and for each vertex
v ∈ S, add {(w, δ(v,w)) | w ∈ S\v} to L(v). Then, we
can add labels to vertices recursively by applying the above
procedure to the two subgraphs induced by A and B, respec-
tively. It is easy to verify that the resulting labeling is a 2-hop
distance labeling.

Example 2 Consider G in Fig. 1. A rooted tree in Fig. 2
shows the vertex separators. Each node in the tree indicates
a vertex subset of G. This tree is constructed by a process
of finding a vertex separator and dividing the graph recur-
sively. Initially, the vertex separator {v2} is selected to divide
G into two connected components and then {v3} is selected to
further divide the left components into two connected com-
ponents {v1, v6} and {v4, v5, v8}, for example. Note that a
subtree in Fig. 2 represents a connected component of G in
Fig. 1. For example, the subtree rooted at v3 denotes the con-
nected subgraph induced by vertex set {v1, v3, v4, v5, v6, v8}
in G. Based on this tree, the labels of a vertex u are assigned
in a way to include (w, δ(u, w)) for every vertex w in
the nodes in the rooted tree that either contain u or are
ancestors of the node containing u. For example, L(v6) =
{(v1, 1), (v3, 2), (v2, 2)}, L(v8) = {(v5, 1), (v3, 2), (v2, 3)}.
The shortest distance between v6 and v8 can be computed as
min{δ(v6, v3)+ δ(v8, v3), δ(v6, v2)+ δ(v8, v2)}, by Eq. (1).

It is important to note that we illustrate a method to com-
pute 2-hop distance labels using vertex separators which is
hard to compute in general. Next, we show tree decomposi-
tion that assists us to compute vertex separators.

Tree decomposition [22] A tree decomposition of a graph
G(V, E) is a pair ({Xi | i ∈ I }, T ), where T = (I, F) is a
tree (I are the set of nodes and F are the set of tree edges)
and {Xi | i ∈ I } is a collection of subsets of V such that:
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Fig. 3 Example tree decomposition

(1)
⋃

i∈I Xi = V . (2) For every (u, v) ∈ E , there is an
i ∈ I , s.t., u ∈ Xi and v ∈ Xi . (3) For every v ∈ V , the set
Iv = {i | v ∈ Xi } forms a connected subtree of T . Here, a
tree node i ∈ I (or equivalently Xi ) represents a subset of
vertices in V , that is, Xi ⊂ V , and F represents the set of
edges of the tree decomposition. The 1st condition requires
that every vertex in V must occur in at least one tree node,
and it possibly appears in multiple tree nodes. The 2nd con-
dition requires that for every edge in E , both vertices of its
end points must occur together in at least one tree node. The
3rd condition requires that, for every vertex v ∈ V , all the
tree nodes that contain v must be connected. This is known
to be the continuity condition and can be replaced by the fol-
lowing equivalent condition: for all i0, i1, i2 ∈ I , if i1 is on
the undirected path from i0 to i2 in T , then Xi0 ∩ Xi2 ⊆ Xi1 .

The width of a tree decomposition ({Xi | i ∈ I }, T =
(I, F)) is maxi∈I |Xi | − 1. The treewidth of a graph G,
denoted as tw(G), is the minimum width among all tree
decompositions of G.

Example 3 Figure 3 shows a tree decomposition for the
graph G shown in Fig. 1, where Xi indicates tree nodes, the
vertices enclosed in a rectangle indicate the content of a tree
node, for example, X1 = {v1, v2, v3}. For the 1st condition,
⋃

0≤i≤5 Xi = V . For the 2nd condition, for example, for edge
(v3, v4) ∈ E , both vertices are in X0; for edge (v2, v3) ∈ E ,
both vertices are in X0 and X1. For the 3rd condition, for
example, v2 appears in {X0, X1, X3, X4}which forms a con-
nected subtree in T . Or equivalently, X3 ∩ X4 = {v2} and
{v2} are subset of all tree nodes on the path from X3 to X4,
that is, {v2} ⊂ X0. The width of this decomposition is 2. The
treewidth of G shown in Fig. 1 is 2, that is, tw(G) = 2.

From now on, we refer to a vertex in graph G as vertex
and refer to a node in tree decomposition as node. We refer
to both i and Xi as tree node. For simplicity, we also call the
resulting tree T in a tree decomposition as tree decomposi-
tion, when {Xi | i ∈ I } can be inferred from the context. The
tree T in a tree decomposition is undirected. We can choose
an arbitrary node to make T directed.

A tree decomposition T (I, F) is minimal if, for all i, j ∈
I, Xi � X j and X j � Xi . We can transform a non-minimal
tree decomposition into a minimal one by deleting nodes.
The idea is that, if a T (I, F) is not minimal, there must exist

at least one pair (i, j) with i, j ∈ I and (i, j) ∈ F such that
Xi ⊂ X j , then we can delete i from I and connect all the
neighbors of i (except j) to be reconnected to j . The dele-
tion step continues until the resulting tree decomposition is
minimal.

Below, we give a lemma to show the relationships between
Xi in the tree decomposition and the vertex separator.

Lemma 1 Given a graph G and a minimal tree decomposi-
tion ({Xi | i ∈ I }, T (I, F)) of G, an arbitrary non-leaf tree
node Xi is a vertex separator of G, and the resulting subtrees
by excluding vertices from Xi are also tree decompositions
of connected components.

Proof sketch Without loss of generality, we assume that the
deletion of a non-leaf node Xi splits T into two connected
subtrees T1 and T2.

We first prove that Xi is a vertex separator. Let A be the
set of vertices contained in nodes of T1 excluding vertices
in Xi , and B be the set of vertices contained in nodes of
T2 excluding vertices in Xi , that is, A = ⋃

j∈T1
X j\Xi and

B = ⋃
j∈T2

X j\Xi . Then A ∩ B = ∅ based on the third
condition of tree decomposition, and A ∪ B ∪ Xi = V . For
any vertex u ∈ A and any vertex v ∈ B, (u, v) /∈ E based on
the second condition of tree decomposition. Therefore, Xi is
a vertex separator of G.

Now, we prove that T1 and T2 by excluding vertices from
Xi are tree decompositions of the corresponding connected
components. Let T ′1 and T ′2 be the results of deleting verti-
ces of Xi from nodes in T1 and T2, respectively, and let X ′j
be the corresponding resulting vertices in nodes. Then, we
have X ′j �= ∅ for any j ∈ T1 ∪ T2, because T is a mini-
mal tree decomposition. In the previous paragraph, we have
shown that Xi separates G into disjoint sets A and B. Now,
we only need to show that T ′1 and T ′2 are tree decomposi-
tion of the subgraphs induced by A and B, respectively. Note
that, the subgraph induced by A or B may be disconnected.
First, A = ⋃

j∈T1
X j\Xi = ⋃

j∈T1
X ′j . Second, for any

u, v ∈ A with (u, v) ∈ E , there must exist a j ∈ T1 such that
u, v ∈ X j , because u, v /∈ Xi , we have u, v ∈ X ′j . Third, for
any v ∈ A, let T ′v be the set of nodes that contain v, we have
T ′v = Tv , therefore T ′v forms a connected subtree of T ′1. So,
T ′1 is a tree decomposition of the subgraph induced by vertex
set A. Similarly, T ′2 is a tree decomposition of the subgraph
induced by vertex set B. ��

As an example, the tree node X0 = {v3, v2, v4} in Fig. 3 is
a vertex separator of the graph G in Fig. 1. Next we show that
2-hop distance labels can be generated from a tree decompo-
sition of the given graph.

Lemma 2 2-hop distance labels for G can be generated
using a tree decomposition of G.

Proof sketch This proof sketch is also a construction algo-
rithm to generate 2-hop distance labels based on a tree
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decomposition. It works recursively. Initially, the labels of
all vertices are empty, that is, L(v) = ∅, for all v ∈ V .

We consider a graph G(V, E) and its tree decomposition
({Xi | i ∈ I }, T (I, F)). First, if the tree decomposition is
not minimal, we transform it into a minimal one. If the tree
decomposition contains no more than two nodes, then for
each v ∈ V , add labels {(w, δ(v,w)) | w ∈ V \v} into L(v).
Otherwise, each non-leaf node is a vertex separator based
on Lemma 1, we can choose an arbitrary one. Assume Xi is
chosen as the vertex separator, then, for each v ∈ V \Xi , add
labels {(w, δ(v,w)) | w ∈ Xi } into L(v), for each v ∈ Xi ,
add labels {(w, δ(v,w)) | w ∈ Xi\w} into L(v). Based
on Lemma 1, the deletion of node Xi splits T into several
subtrees, each of which is a tree decomposition of the cor-
responding connected component of G by deleting Xi . This
process continues for each subgraph and its corresponding
tree decomposition. ��

Lemma 2 shows how to generate 2-hop distance labels
using minimal tree decomposition. Related to our multi-hop
distance labeling, we show a specific 2-hop distance label-
ing for G(V, E). Our specific 2-hop distance labeling can be
constructed using any tree decomposition, which does not
need to be a minimal tree decomposition. We will discuss it
below. We consider the tree decomposition T as a rooted tree
rooting at an arbitrary tree node. For example, X0 is selected
as the root for the tree decomposition in Fig. 3. For each ver-
tex v ∈ V , we define rv as the root node index of the subtree
in T induced by Iv (= {i | v ∈ Xi }), and define Xrv as the
actual node, that is, Xrv is the node closest to the root of T
among all the nodes containing v. For example, in Fig. 3,
rv1 = 1, rv2 = 0, and rv8 = 5. Let Ans(i) denote the set of
indexes of ancestor nodes of Xi including Xi itself. For exam-
ple, Ans(1) = {0, 1} and Ans(5) = {0, 4, 5}. We assign a
label to every vertex v ∈ V as L(v) = {(w, δ(v,w)) | w ∈⋃

i∈Ans(rv) Xi\v}. In other words, we maintain the distance
from v to all vertices in tree node Xrv and ancestors of Xrv as
labels of v. For example, L(v1) = {(v2, 1), (v3, 1), (v4, 2)},
and L(v8) = {(v2, 2), (v3, 3), (v4, 2), (v5, 1)}.
Theorem 1 For a tree decomposition ({Xi | i ∈ I }, T =
(I, F)) of a graph G = (V, E), if L(v) is generated as
{(w, δ(v,w)) | w ∈⋃

i∈Ans(rv) Xi\v} for every v ∈ V , then
it is a 2-hop distance labeling of G.

Proof sketch This labeling can be derived by the procedure
in the proof of Lemma 2, where the root node of tree decom-
position is chosen as a vertex separator in every recursive
step. ��

3.2 Multi-hop distance labels

Theorem 1 proposes one method to compute 2-hop distance
labeling based on tree decomposition, but does not guarantee

the approximate ratio of the 2-hop distance labels generated
to the optimal. The size of labels computed based on Theo-
rem 1 can be very large. We propose a new multi-hop distance
labeling approach, which stores only a subset of the 2-hop
distance labels. We compute multi-hop distance labels based
on the 2-hop distance labeling computed by Theorem 1, but
do not directly compute 2-hop distance labels.

In multi-hop distance labeling, we define L(v) = {(w, δ

(v,w)) | w ∈ Xrv\v}. Recall that Xrv is the specific node in
T that contains vertex v and is closest to the root of T among
all the nodes containing v. We define the parent of v, p(v),
as the parent node of Xrv in T . More precisely, let rvi = i ,
a tree decomposition can be rewritten as ({Xi | i ∈ I }, T =
(I, F)), where I = {1, . . . , n}, Xi = {vi }∪{w | w ∈ L(vi )},
and F = {(i, j) | vi ∈ V, p(vi ) = v j }.

Given multi-hop distance labeling (Definition 2) with L(·)
and p(·), we explain how the multi-hop distance labeling
is used for answering distance queries and how the multi-
hop distance labeling can be small in size. All the issues are
closely related to the parent function p(·).

In brief, let u and v be two vertices in G, and Xru and
Xrv be two nodes in T . The parent function u = p(v) is
designed to indicate the parent relationship between u and v

as well as the fact that Xru is the parent node of Xrv in T .
The idea behind is to use such p(v) to trace distance labels
online instead of maintaining all the required distance labels.
To ensure such correspondence, we restructure T in a way
that ru �= rv for any u �= v, or in other words, rv is unique
for a specific vertex v in V . T can be restructured as follows.
For a tree decomposition, if there are two vertices u and v

with ru = rv , we create a new node X in T to be the child
of the parent of Xru and to be the parent of Xru . By letting
X = Xv\v, we assign the new X to u and the old Xv to v.
We can repeat this process until all vertices in G correspond
to a unique node in T . In this way, a vertex u is an ancestor
of a vertex v in G if and only if Xru is an ancestor of Xrv in
T . It is important to note that the restructuring of T does not
change the properties of T .

When querying (u, v), we use both L(·) and p(·) to gener-
ate the query-specific small set of necessary 2-hop distance
labels for computing the shortest distance between vertex
u and v on-line. We explain query answering using Fig. 4.
Here, Xi and X j in the tree decomposition T are for two
vertices, vi and v j , in G, respectively. Xl is for a vertex
vl in G which is the least common ancestor of Xi and X j

in T . (Case-1)In order to compute a distance query (vi , vl)

on G, we only need a linear scan of the multi-hop distance
labels of L(vi ), . . . ,L(vl) as defined by p(.) along the path
of Xi , . . . , Xl in T . There are only 4 nodes in T from Xi

to Xl . Therefore, we only need to use 4 multi-hop distance
labels at most. (Case-2) In order to compute another distance
query (vi , v j ) on G, let S be the vertices of G in Xl , δ(vi , v j )

is equal to minw∈S δ(vi , w)+ δ(v j , w). We can compute the
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Fig. 4 Query answering

shortest distance between vi and w, and between v j and w,
which are the necessary 2-hop distance labels to compute the
shortest distance between vi and v j .

We give two lemmas below. Lemmas 3 and 4 explain the
correctness of Case-1 and Case-2, respectively, based on ver-
tex separators.

Lemma 3 In the rooted tree decomposition T , for any two
nodes Xi and Xl where Xl is an ancestor of Xi , consider
the path P(Xi , Xl) connecting Xi and Xl in T . For each
Xk ∈ P(Xi , Xl), if vl /∈ Xk, then Xk\vk is a vertex separa-
tor of vi and vl .

Proof sketch We have vi /∈ Xk for Xk ∈ P(Xi , Xl) and
k �= i , due to the fact that Xl is an ancestor of Xi . Therefore,
for Xk ∈ P(Xi , Xl) and k �= i , if vl /∈ Xk , then Xk is a
vertex separator of vi and vl based on Lemma 1. Due to the
second condition of tree decomposition, vk is not adjacent
to any vertex contained in nodes in the path from Xk to Xl

except those vertices contained in Xk\vk . Therefore, Xk\vk

is a vertex separator of vi and vl . Similarly, Xi\vi is a vertex
separator of vi and vl if vl /∈ Xi . ��
Lemma 4 In the rooted tree decomposition T , for any two
nodes Xi and X j , where Xi and X j do not have ancestor–
descendant relationships, Let P(Xi , X j ) be the path con-
necting Xi and X j , and let Xl be the least common ancestor
of Xi and X j . For each Xk ∈ P(Xi , X j ) with k �= l, Xk\vk is
a vertex separator of vi and v j . Xl is also a vertex separator
of vi and v j .

Proof sketch Due to our construction algorithm of T , for
each Xk ∈ P(Xi , X j ) with k �= i and k �= j , we have
vi , v j /∈ Xk . Therefore Xk with k �= i and k �= j is a ver-
tex separator of vi and v j . Because Xi and X j do not have
ancestor–descendant relationships, we have i �= l and j �= l.
Similar as the proof of Lemma 3, each Xk\vk with k �= l is
a vertex separator of vi and v j because we have vi /∈ X j and
v j /∈ Xi . ��
Theorem 2 For a tree decomposition ({Xi | i ∈ I }, T =
(I, F)) of a graph G = (V, E), if we define L(v) =

{(w, δ(v,w)) | w ∈ Xrv\v} for each v ∈ V , and p(v) as the
parent node of Xrv in T , then the multi-hop distance labeling,
(L, p,F), of G, correctly computes the shortest distance for
every two vertices in G.

Proof sketch Given two vertices u and v in G. Suppose Xru

and Xrv are two nodes in the corresponding tree decomposi-
tion T that u and v correspond to. There are only two cases,
namely Case-1 and Case-2 as discussed above. They can be
proved using Lemmas 3 and 4. ��
Lemma 5 The distance labels in our multi-hop distance
labeling are strictly smaller than that in the 2-hop distance
labeling given by Theorem 1.

Proof sketch In multi-hop distance labeling, for each vertex
v ∈ G, we only maintain the shortest distances from v to
vertices in Xrv , that is, L(v) = {(w, δ(v,w) | w ∈ Xrv\v}.
While in 2-hop distance labeling, it needs to maintain the
shortest distances from v to vertices not only in Xrv but also in
the ancestor tree nodes of Xrv , that is, L(v) = {(w, δ(v,w)) |
w ∈ ⋃

i∈Ans(rv) Xi\v}. Therefore, the size of multi-hop dis-
tance labeling is strictly smaller than 2-hop distance labeling
generated by Theorem 1. ��

4 Computing distance labels

Our multi-hop distance labeling is based on a tree decompo-
sition of a graph G [1], with a goal of finding a tree decompo-
sition whose total size is as small as possible. Several upper
bound heuristics for determining the treewidth of a graph and
finding tree decompositions are surveyed in [4]. A family of
heuristic algorithms is based on the concept of fill-in graph.
Let π denote an elimination order of vertex set V , which
defines a total ordering of V , that is, π(u) < π(v) if and
only if u is lower ordered than v with respect to π . Given a
graph G(V, E) and an elimination order π , the fill-in graph
H(VH , EH ) of G with respect to π is a super graph of G, such
that any higher-ordered neighbors of a vertex are connected
to each other, that is, VH = V and EH ⊇ E , and for any two
edges (u, v) ∈ EH and (u, w) ∈ EH with π(v) > π(u) and
π(w) > π(u), there must have (v,w) ∈ EH . Given an elim-
ination order π , it is easy to construct a tree decomposition
with treewidth one less than the size of the maximum clique
in the fill-in graph of G with respect to π [4]. Our Labeling
algorithm is based on the following well-known alternative
characterizations of the notion of treewidth.

Theorem 3 [4] Let G(V, E) be a graph, and let k ≤ n be
a non-negative integer. The following three are equivalent.
First, G has a reewidth at most k. Second, there is an elimi-
nation order π , such that the maximum size of a clique of the
fill-in graph of G with respect to π is at most k + 1. Third,
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Algorithm 1 Min- Degree (G(V, E))
Input: A graph G = (V, E).
Output: An elimination order π based on min-degree heuristic.

1: H ← G;
2: for i ← 1 to n do
3: Let v be the vertex in H that has minimum degree;
4: Add v to be the i th vertex in ordering π ;
5: Add edges to H to make all neighbors of v to be connected to each

other, and then remove v and its associated edges;
6: return π ;

Algorithm 2 Labeling (G, π )
Input: A graph G = (V, E), and an elimination order π .
Output: Distance labels and parents assigned to each vertex.

1: Let H(VH , EH ) be the fill-in graph of G with respect to π ;
2: for i ← n down to 1 do
3: Let v← π−1(i) be the i th vertex in ordering π ;
4: Let C be the set of higher-ordered neighbors of v in H , i.e., C =
{u | (u, v) ∈ EH , π(u) > π(v)};

5: Assign vertices in C and their corresponding shortest distances
from v computed in G to L(v), i.e., L(v) = {(w, δ(v,w)) | w ∈
C};

6: Set the parent of v to be the lowest ordered vertex in C , i.e., p(v) =
arg minu∈C π(u);

7: return L(v), p(v) for each vertex in V ;

there is an elimination order π , such that no vertex v ∈ V
has more than k higher-ordered neighbors in the fill-in graph
of G with respect to π .

An approximate tree decomposition can be found by
choosing a specific elimination order heuristically. Min-
degree is such a heuristics that finds an approximate tree
decomposition efficiently [4]. It works iteratively. In every
iteration, it locates the vertex v with the minimum degree and
adds v to be the next vertex in ordering π and then makes the
neighborhood of v to be a clique and removes v. The pseudo-
code of finding an elimination order for a graph G based on
the min-degree heuristic is shown in Algorithm 1, denoted
as Min- Degree.

The pseudocode of generating multi-hop distance labels
is shown in Algorithm 2. Given a graph G and an elimina-
tion order π, Labeling assigns distance labels and parents to
each vertex in V . It first builds the fill-in graph H(VH , EH ) of
G with respect to π (Line 1). Then, for each vertex v ∈ V , it
locates the set of higher-ordered neighbors of v in H (Line 4),
that is, C = {u | (u, v) ∈ EH , π(u) > π(v)}. Note that
the induced subgraph of C in H is a clique, as ensured by
the definition of fill-in graph. For each vertex w ∈ C , it
assigns w and its distance from v to L(v) (Line 5), that is,
L(v) = {(w, δ(v,w)) | w ∈ C}. Note that, the distance
δ(v,w) is computed in graph G, not in the fill-in graph H .
The parent of v is assigned as the lowest ordered vertex in C
(Line 6), that is, p(v) = arg minu∈C π(u), and p(v) is set to

Fig. 5 Example tree decomposition

∅ if C is a empty set. Note that, if the graph G is a connected
graph, there will be exactly one vertex v ∈ V with p(v) = ∅.
Example 4 Consider the graph G shown in Fig. 1, one pos-
sible elimination order obtained by min-degree heuristic can
be π = {v6, v7, v8, v1, v5, v2, v3, v4}. The fill-in graph is G
itself, that is, no edge needs to be added. Figure 5 shows a
tree decomposition of G. For vertex v1, the set of higher-
ordered neighbors is Cv1 = {v2, v3}, therefore, L(v1) =
{(v2, 1), (v3, 1)} and p(v1) = v2. Table 2 shows the multi-
hop distance labels corresponding to this tree decomposition.

Reconsider the graph G in Fig. 1. Suppose we delete the
two edges (v2, v3) and (v2, v4) from G and have a differ-
ent graph denoted as G ′. Here, the elimination order and the
fill-in graph of G ′ will be the same as G. However, distance
labels for G ′ can be different from those for G, because they
are computed on different graphs.

The tree decomposition of graph G can be constructed
by the algorithm Labeling (Algorithm 2). Here, each v and
the corresponding C forms a node of the tree decomposition
(Lines 3–4). Note that Labeling directly generates a tree
decomposition that may not be minimal, as our approach
does not require to have a minimal tree decomposition.1

Theorem 4 Algorithm Labeling correctly assigns distance
labels and parents to vertices in V . The time complexity of
Labeling is linear to the size of the fill-in graph H, that
is, O(|VH | + |EH |), and the labeling size is also O(|VH | +
|EH |).
Proof sketch Let Cv = {u | (u, v) ∈ EH , π(u) > π(v)} be
the set of higher-ordered neighbors of v in H . We show that
({Xi | i ∈ I }, T (I, F)) is a tree decomposition of G, where
I = {1, . . . , n}, Xi = {vi } ∪ Cvi , and F = {(i, j) | vi ∈
V, p(vi ) = v j }. Consider the first condition of tree decom-
position,

⋃
i∈I Xi = V , because I = {1, . . . , n} andvi ∈ Xi .

For the second condition, for every (vi , v j ) ∈ E , it is also

1 If needed, we can transform the tree decomposition generated by
Labeling into a minimal one.
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Algorithm 3 SDistance ((u, v))
1: if v ∈ L(u) or u ∈ L(v) then
2: return δ(u, v);
3: if u is ancestor of v or v is ancestor of u then
4: return SDistanceAD(u, v);
5: else
6: return SDistanceNAD(u, v);

in EH , without loss of generality, assume π(vi ) < π(v j ),
then v j ∈ Cvi , therefore vi , v j ∈ Xi . For the third con-
dition, we show that the set Iv = {i | v ∈ Xi } forms a
connected subtree of T for every v ∈ V . Consider an arbi-
trary i ∈ Iv, v ∈ Xi , if v �= vi , then v ∈ Cvi , let p(vi ) be
v j where v j ∈ Cvi , then either v = v j or v ∈ Cv j because
Cvi induces a clique in H , therefore j ∈ Iv , also we have
π(v j ) > π(vi ). There is exactly one i ∈ Iv with vi = v,
therefore, Iv forms a connected subtree of T . Let such i ∈ I ,
where p(vi ) = ∅, be the root of T , then rvi = i for all vi ∈ V .
Because Xi = {vi } ∪ Cvi , we have L(v) = {(w, δ(v,w)) |
w ∈ Cv} = {(w, δ(v,w)) | w ∈ Xrv\v}, and p(v) just
record that the parent of Xrv is Xrp(v)

in the rooted tree.
Now, we show the time complexity of Labeling. Let d(v)

denote the degree of a vertex v ∈ V . Line 3 takes O(1)

time, and Line 4 takes O(d(v)) time, because we just need
to loop through all the neighbors of v in H and record the
higher-ordered neighbors in C , and Line 5 and Line 6 take
O(|C |) time that is less than O(d(v)). Note that, at Line
5, we do not include the time to compute shortest distances
δ(v,w). We need to execute Lines 3–6 for all n vertices, so the
total time complexity is

∑
v∈V O(d(v)) = O(|VH |+ |EH |).

Because we add labels and parents at Line 5 and Line 6,
respectively, the total label size is

∑
v∈V O(|Cv| + 1) ≤

∑
v∈V O(d(v)+ 1) = O(|VH | + |EH |). ��
It is worth noting that Theorem 4 states that the time com-

plexity of Labeling is linear to the size of the fill-in graph
H . Here, the time to find such a fill-in graph and the time to
compute shortest paths between vertex pairs are not taken into
consideration. If all these computations are taken into consid-
eration, the worst case time complexity is O(|V |(|V |+|E |)).

5 Shortest distance query

Algorithm 3 shows the main algorithm to compute the short-
est distance between u and v. First, if v (or u) is in the distance
labels of u (or v) (line 1), then δ(u, v) is maintained in the cor-
responding distance labels. If u and v have ancestor–descen-
dant relationships, then we call the procedure SDistanceAD
(Algorithm 4) to compute shortest distances, otherwise, we
call the procedure SDistanceNAD (Algorithm 5).

Ancestor–descendant queries Consider a distance query
(u, v), assuming that there exists an ancestor–descendant

Algorithm 4 SDistanceAD (u, v)
Input: Two vertices u and v, where v is an ancestor of u.
Output: Shortest distance between u and v, δ(u, v).

1: Initialize dis(w) = δ(u, w), for all w ∈ L(u);
2: Let c← p(u);
3: while c �= v do
4: for all w ∈ L(c) do
5: if dis(w) is not computed or dis(c)+δ(c, w) < dis(w) then
6: dis(w)← dis(c)+ δ(c, w);
7: c← p(c);
8: for all w ∈ L(v) do
9: if dis(w) is computed and dis(w)+ δ(v,w) < dis(v) then
10: dis(v)← dis(w)+ δ(v,w);
11: return dis(v);

relationship between u and v. Also assume that v is an
ancestor of u. We compute shortest distance from u to v.
SDistanceAD (Algorithm 4) is based on Lemma 3 (in
Sect. 3.2). It first initializes dis(w) to be δ(u, w) for all
w ∈ L(u) (Line 1). Then, it computes distances for vertices
along the path from Xru to Xrv (Lines 3–7). Let Xrc be the cur-
rent node in considering. For every vertex w ∈ L(c), dis(w)

is updated to be dis(c) + δ(c, w), if dis(w) is not com-
puted previously or dis(c)+ δ(c, w) < dis(w) (Lines 4–6).
Finally, we check whether there exists any shorter path from
u to v that goes through vertices in L(v) (Lines 8–10).

Let tw denote the treewidth of the tree decomposition.

Theorem 5 SDistanceAD correctly computes shortest dis-
tance δ(u, v), when v is an ancestor of u in the multi-hop
distance labeling. The time complexity of SDistanceAD is
O(tw · |P(Xru , Xrv )|).
Proof sketch We first prove that, for every dis(w) computed
by SDistanceAD, there is a corresponding path from u to w

that has distance dis(w). There are three statements (Lines
1, 6, 10) that change the values of dis(w). We prove it for
each case. For the first case (Line 1), dis(w) is initialized as
stored in the distance labels, therefore, the claim is satisfied
as stated in Theorem 4. For the second case (Line 6), we have
that vertex p(c) is included in the distance labels of c for any
c, as ensured by Line 6 of Algorithm 2. Therefore, during the
while loop (Line 3), dis(c) is initialized with a correct value.
For dis(w) which is assigned as dis(c)+ δ(c, w), it satisfies
the claim since both dis(c) and δ(c, w) correspond to paths.
For the third case (Line 10), the proof is similar to that for
the second case. Therefore, the claim is correct, and dis(w)

is an upper bound of the shortest distance from u to w.
Now, we show that the shortest path between u and v has

been considered by the algorithm when it terminates. Assume
the shortest path between u and v is w1, . . . , wl with w1 = u
and wl = v. Because Xru\u is a vertex separator of u and
v (based on Lemma 3), the path must go through a vertex
in Xru\u. Assume wi is such a vertex in Xru\u that has the
largest shortest distance from u among all the vertices on the
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Fig. 6 Illustration of shortest path

Algorithm 5 SDistanceNAD (u, v)
Input: Two vertices u and v, where u and v do not have

ancestor–descendant relationships.
Output: Shortest distance between u and v, δ(u, v).

1: Find the vertex separator S of u and v;
2: disu(S)← SDistanceAD- List(u, S);
3: disv(S)← SDistanceAD- List(v, S);
4: δ(u, v)← minw∈S disu(w)+ disv(w);
5: return δ(u, v);

shortest path, then the path w1, . . . , wi is considered in the
distance labels L(u). If Xrwi

is not on the path P(Xru , Xrv ),
then wi is contained in the distance labels of every node on
P(Xru , Xrv ) due to the third condition of tree decomposition,
therefore the path wi , . . . , wl is checked in the labels L(v)

(Lines 8–10), as illustrated in Fig. 6(2). Otherwise, Xrwi
is

on the path P(Xru , Xrv ) (Fig. 6(1)), then the path wi , . . . , wl

is checked inductively as proved above. And, the path will
be found since it becomes shorter by every induction.

For the time complexity, it is easy to see that, if we
use an array dis of size n to store distances and initial-
ize dis(w) ← ∞ for all w ∈ V , then SDistanceAD
takes O(tw · |P(Xru , Xrv )|) time excluding the initialization
time. Here, we show an implementation of SDistanceAD
that uses only O(tw) working memory space and runs
in time O(tw · |P(Xru , Xrv )|). We notice that, assume
P(Xru , Xrv ) = Y1, . . . , Yl , then during the execution of
algorithm, only the distances for vertices contained in two
consecutive nodes are needed for computation and storage.
Therefore, we record vertex-distance pairs in dis for vertices
in consideration, and the entries in dis are ordered by vertex
id. Similarly, we also assume distance labels L(v) are sorted
by vertex id. Therefore, Lines 4–6 and Lines 8–10 can be
implemented in a merge-sort fashion in linear time. ��

Non-ancestor–descendant queries Consider a distance
query (u, v) and assume u and v do not have ancestor–
descendant relationships. Let lca(u, v) denote the least com-
mon ancestor of u and v in the distance labeling. We
have lca(u, v) �= u and lca(u, v) �= v. SDistanceNAD
(Algorithm 5) is based on Lemma 4 (in Sect. 3.2). It first
finds the vertex separator S of u and v which is chosen
between the two children of lca(u, v). Then, it computes

Algorithm 6 SDistanceAD- List (u, S)
Input: A vertex u and a set of ancestor vertices S.
Output: Shortest distances between u and every vertex in S.

1: Initialize dis(w) = δ(u, w), for all w ∈ L(u);
2: Let c← p(u);
3: while c is not ancestor of all vertices in S do
4: for all w ∈ L(c) do
5: if dis(w) is not computed or dis(c)+δ(c, w) < dis(w) then
6: dis(w)← dis(c)+ δ(c, w);
7: if c ∈ S then
8: for all w ∈ L(v) do
9: if dis(w)+ δ(c, w) < dis(c) then
10: dis(c)← dis(w)+ δ(c, w);
11: c← p(c);
12: return dis(v),∀v ∈ S;

shortest distance from u and v to all the vertices in S by call-
ing a procedure SDistanceAD- List (Lines 2–3), where all
the vertices in S are ancestors of u and v. Finally, δ(u, v) is
equal to minw∈S disu(w)+ disv(w) (Line 4).

SDistanceAD- List computes shortest distances between
a vertex and a set of ancestor vertices. A naive implementa-
tion is calling the procedure SDistanceAD for each w ∈ S.
However, it will increase the time complexity by a factor
of tw. SDistanceAD can be extended to compute shortest
distance between u and a set of ancestor vertices S with the
same time complexity as SDistanceAD. The modifications
are as follows. The while loop (Line 3 of Algorithm 4) will
not terminate until it reaches the ancestor of all vertices in S,
that is, the vertex with the maximum path length in T from
Xru , maxw∈S |P(Xru , Xrw)|. And Lines 8–10 of Algorithm
4 are executed every time when c is equal to some vertex
in S, and the corresponding distance is recorded as disu(c).
The pseudocode of SDistanceAD- List is shown in Algo-
rithm 6.

Algorithms 6 and 4 share similarities. The difference lies
in the while loop (Line 3) of Algorithm 6, compared with the
while loop (Line 3) of Algorithm 4. In Algorithm 6 it deals
with a set of vertices S, and in Algorithm 4 it deals with a
single vertex.

Theorem 6 SDistanceAD- List correctly computes short-
est distances between u and a set of vertices S, where every
vertex in S is an ancestor of u in the distance labeling.
The time complexity of the algorithm SDistanceAD- List
is O(tw ·maxw∈S |P(Xru , Xrw)|).
Proof sketch The correctness directly follows from the above
discussions. The time complexity follows from the above dis-
cussions and the proof of Theorem 5. ��
Theorem 7 SDistanceNAD correctly computes shortest
distance between u and v, when u and v do not have
an ancestor–descendant relationship. The time complex-
ity of SDistanceNAD is O(tw · maxw∈S(|P(Xru , Xrw)| +
|P(Xrv , Xrw)|)).
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Table 3 Execution example

Steps prev c

Line 1 – (v1, 1)

(1st) lines 4–6 (v1, 1) (v2, 2), (v3, 2)

(2nd) lines 4–6 (v2, 2), (v3, 2) (v3, 2), (v4, 3)

Lines 8–10 (v3, 2), (v4, 3) (v3, 2)

Proof sketch The correctness follows from Theorem 6 and
the fact that, S is a vertex separator of u and v, and every
path from u to v must go through at least one vertex in S.
Therefore δ(u, v) = minw∈S δ(u, w)+ δ(v,w).

As stated in Theorem 6, Line 2 has time complexity
O(tw · maxw∈S |P(Xru , Xrw)|) and Line 3 has time com-
plexity O(tw ·maxw∈S |P(Xrv , Xrw)|). In Line 1, the vertex
separator S can be found in O(tw) time. Therefore, the time
complexity of SDistanceNAD follows. ��
Example 5 Consider the multi-hop distance labels in Table 2.
The execution steps of SDistanceAD for computing short-
est distance between v6 and v3 are shown in Table 3, where
v3 is an ancestor of v6 in the distance labeling. c denote the
current vertex in consideration, while prev denote the vertex
considered in the previous loop. Initially, it copies L(v6). At
the second step, c = v1, it is the first time of executing Lines
4-6, (v2, dis(v2)) and (v3, dis(v3)) can be computed based
on L(c) and the distances stored in the previous step. At the
third step, c = v2, it is the second time of executing Lines
4-6. At the forth step, c = v3, it is also the last step, the
shortest distance to v3 can be computed based on L(v3) and
the distances stored at the third step. Finally, we correctly get
δ(v6, v3) = dis(v3) = 2.

Now, we show how to compute shortest distance between
v6 and v7. As lca(6, 7) = 2, therefore X2 is a vertex separa-
tor of v6 and v7, also X1\v1 and X7\v7 are vertex separators
of v6 and v7. Because we need to compute shortest distances
from u and v to the vertex separator, we choose the vertex sep-
arator that will result in less running time. Here, we choose
X7\v7 = {v2}. Therefore, we need to compute disv6(v2) = 2
and disv7(v2) = 1, and the shortest distance between v6 and
v7 is the sum of the two values, that is, δ(v6, v7) = 3.

Theorem 8 SDistance correctly computes shortest dis-
tance between vertex pairs based on the multi-hop distance
labeling. The time complexity of SDistance is O(tw · h),
where tw and h are the width and height of the tree decom-
position, respectively.

Proof sketch The correctness of SDistance directly follows
from Theorems 5 and 7. As h is the height of the tree decom-
position, then for any u and v where v is an ancestor of u,
we have |P(Xru , Xrv )| ≤ h. Therefore, the time complexity
of SDistance is O(tw · h). ��

6 Extensions

In [29], Wei proposes TEDI to compute distance queries,
using a tree decomposition index structure. Our approach is
different from TEDI. We store multi-hop distance labels and
use different new query answering algorithms. The efficiency
of our multi-hop approach is based on Lemmas 3 and 4.

More specifically, in the label construction, for each clique
C as defined at Line 4 of Algorithm 2, our approach only
needs to store the shortest distance from other vertices in C to
v, whereas TEDI has to store the pairwise shortest distances
for all vertices in C . In query processing, the time complexity
of multi-hop is O(tw ·h), whereas TEDI takes O(tw · tw ·h)

time. This is because, for each tree node C on the undirected
path from u to v on the tree decomposition T , multi-hop only
needs a linear number of shortest distances with respect to
|C | which takes time O(tw), whereas TEDI has to consider
a quadratic number of shortest distances which takes time
O(tw · tw).

Reducing tree height As shown by Theorems 5 and 7, the
time complexity of computing shortest distance depends on
both the width tw and the height h of the tree decomposition.
For large sparse graphs, the width of a tree decomposition
can be small, however, the height may be large, thus the
query processing time increases. Here, we show a technique
to trade the label size for query processing time, by increas-
ing the label size a little while lowering down the height of
tree decomposition.

Lemma 6 Given a rooted tree decomposition T (I, F), if we
collapse any connected subtree containing the root node into
a single new root node, then it is still a tree decomposition,
and the height is lower.

Proof sketch After merging a connected subtree of T into a
single new node, the three conditions of tree decomposition
still hold if T is a tree decomposition. The height of tree T
gets lower directly following the process. ��
Example 6 Figure 7 shows a collapsed tree decomposition
of the tree decomposition shown in Fig. 5. It collapses the
subtree induced by nodes {X1, X2, X3, X4, X5} into a single
new root node Xr . The height of tree decomposition in Fig. 5
is 5, while the height of the collapsed tree decomposition is 2.

Given a collapsed tree decomposition Tc, we cannot gen-
erate multi-hop distance labels and answer queries directly
using the previous algorithms, because the width of the col-
lapsed tree decomposition is much larger. Instead, we gener-
ate a transitive closure for vertices in the root node of Tc and
generate distance labels and parents for vertices in non-root
nodes as Theorem 4. For each vertex v ∈ V , if Xrv is the root
node or the parent of Xrv is the root node, then p(v) = ∅. In
order to retrieve the shortest distances between two vertices
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Fig. 7 Collapsed tree decomposition

Algorithm 7 Modification of SDistanceAD
1: Lines 1–2 of Algorithm 4;
2: while c �= v and c �= ∅ do
3: Lines 4–7 or Algorithm 4;
4: if c = v then
5: Lines 8–10 of Algorithm 4;
6: else
7: Let a be the node that is the child of the root on the path from Xru

to the root;
8: dis(v)← min{dis(v), minw∈Xra \a dis(w)+ δ(w, v)};

in the root node in constant time, we also build an inverted
index for the vertices in the root node.

For query processing, only algorithms SDistanceAD
and SDistanceAD- List need to be modified. We dis-
cuss the modifications of SDistanceAD below, while
SDistanceAD- List can be modified similarly. For a dis-
tance query (u, v) on Tc where v is an ancestor of u, we
modify SDistanceAD as follows. The while loop at Line
3 iterates until c = v or c = ∅. If c = v, then we find
the shortest distance to v by Lines 8-10. If c = ∅, let a be the
node that is the child of the root on the path from Xru to the
root and compute dis(v) = minw∈Xra \a dis(w) + δ(w, v),
where δ(w, v) is stored in the transitive closure of vertices
in the root node. The pseudocode is given in Algorithm 7.

Example 7 Consider the collapsed tree decomposition in
Fig. 7, we show how to compute shortest distance between
v6 and v7. Assume the vertex separator is chosen as {v1},
then disv6(v1) = 1 is stored as labels in L(v6). In order
to compute disv7(v1), first, we get disv7(v2) = 1, then
disv7(v1) = disv7(v2) + δ(v2, v1) = 2, where δ(v2, v1)

is stored as transitive closure of vertices in the root node.
Therefore, δ(v6, v7) = disv6(v1)+ disv7(v1) = 3.

Theorem 9 Given our multi-hop distance labeling based
on a collapsed tree decomposition, our algorithm computes
shortest distances in time O(tw′ · tw′ + tw′ · h′), where tw′
is the width of tree decomposition excluding the root node,
that is, maxi∈I\r |Xi | − 1. Note that tw′ ≤ tw and h′ ≤ h.

Proof sketch Given two query vertices u and v, if v is
an ancestor of u, then the time complexity is O(tw′ · h′)
as shown in the above discussions. If u and v do not
have ancestor–descendant relationships, then we need to
compute shortest distance from u and v to a vertex sepa-
rator S for u and v, where all vertices in S are ancestors of
u and v. If all vertices in S are contained in root node, then

we need to compute dis(w) = minx∈Xra \a dis(x)+ δ(x, w)

for all vertices w ∈ S. Therefore, the total time complexity
is O(tw′ · tw′ + tw′ · h′). ��

Budget B Based on Theorem 9, we can reduce the query
processing time by generating larger distance labels which
also reduces the height of tree decomposition. When the size
of root gets larger, the size of distance labels also becomes
larger, because we need to store all-pairs shortest distance
for vertices in the root node. Given a budget B of the size of
labels, we generate a collapsed tree decomposition so that the
root node is as large as possible, while the total size of label
is below B. We explain it below. Consider Algorithm 2 that
generates distance labels, for a specific value i of the “for”
loop (Line 2). We know the size of distance labels already
generated, and we also know the size of root node if we put
all remaining vertices in a single root node. Therefore, given
a budget B, we can terminate the “for” loop as long as the cal-
culated total size of distance labels does not exceed B. It can
be proved that, when B becomes larger, tw′ and h′ become
smaller, therefore the query processing time gets smaller. It
is worth noting that, given a graph, there is a minimal budget
required, which is the index size when constructing a com-
plete tree decomposition. If the budget given is smaller than
the minimal as required, we ignore the budget parameter and
build a complete tree decomposition.

Weighted and directed graph For weighted graphs, the
only difference is to compute shortest distances using
Dijkstra’s algorithm when generating distance labels. For a
weighted graph, shortest paths need to be computed using
Dijkstra’s algorithm instead. Therefore, it needs more time
to compute distance labels for weighted graphs. However, the
query time remains the same as long as the graph topologies
are the same.

For directed graphs, we treat the edges as undirected and
compute the fill-in graph and tree decomposition. In other
words, for distance labels, we store shortest distances on both
directions, that is, in L(u), we store both the shortest distance
from u to v and the shortest distance from v to u. When
answering shortest distance queries, we choose the correct
directional shortest distances in L(u) in computation. For
example, in Algorithm 4, we consider only the shortest dis-
tance from c to w at Lines 5–6 and consider only the shortest
distance from w to v at Lines 9–10.

7 Related work

There are works in the literature using tree decomposition to
fast shortest distance queries. Chaudhuri and Zaroliagis [5]
study the problem of computing shortest paths in digraphs
with bounded treewidth, by preprocessing the graph using
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tree decomposition. They analyze the problem in theoretical
aspect, no implementation issues are considered. Wei [29]
proposes TEDI, which uses a tree decomposition index struc-
ture, while computing shortest distance in O(tw2 · h) time.
Although the concept of using tree decomposition index
to fast compute shortest distance is not new, these existing
works cannot be applied to generate distance labels that are
discussed in this paper. Furthermore, the existing works have
higher query time complexity compared to our algorithm,
which is also confirmed in the experiments (Sect. 8).

There are other works proposing index structures for exact
shortest distance queries. Xiao et al. [30] propose the con-
cept of compact BFS-trees to index all-pairs shortest paths.
First, a BFS-tree is constructed starting from every vertex.
Then, the set of BFS-trees are compressed by exploiting the
symmetry property of the graph. It is shown in [29] that
TEDI outperforms this approach in both index size and query
time. Another category of works is based on the concept of
2-hop distance labeling [7], which assigns distance labels
to vertices such that, for each pair of vertices u and v, the
shortest path is covered by the concatenation of a path in
L(u) and another path in L(v). However, in order to gen-
erate 2-hop distance labels, it needs to pre-compute all-
pairs shortest paths, which is prohibitive in large graphs.
Furthermore, give the set of all-pairs shortest paths, gen-
erating an optimal 2-hop distance labels is NP-hard [7].
Cheng and Yu [6] propose a heuristic algorithm to generate
2-hop distance labels for directed graphs. It first con-
structs a DAG subgraph by removing a small set of ver-
tices, then 2-hop distance labels are generated for these
two parts, respectively. However, their techniques cannot be
applied to undirected graphs. Upper and lower bounds of the
2-hop distance labeling size for several families of graphs
are studied theoretically in [11,16,19]. The above-mentioned
works are dealing with general graphs. There are other
methods designed specifically for road networks [12,23],
which make use of the near planarity of road networks
or/and the existence of coordinates of nodes in road net-
works.

Another set of works consider generating sketches for ver-
tices to answer approximate shortest distance queries, termed
distance oracle [27]. Thorup and Zwick [27] give a method
to construct an approximate distance oracle using space
O(c · n1+1/c), that can answer queries in time O(c) with
a distance estimation that is at most 2c− 1 times larger than
the actual shortest distance, for any integer c. Baswana and
Sen [3] improve the preprocessing time to O(n2) time for
unweighted graphs. Sommer et al. [26] show a new lower
bound for the approximate distance oracles in the cell-probe
model for sparse graphs. Sarma et al. [9] simplify the algo-
rithms proposed by Thorup and Zwick while providing the
same theoretical guarantee, and experiments are conducted
to evaluate their algorithms.

There are some initial works studying shortest path que-
ries with additional constraints recently, which is orthogo-
nal to our problem of general shortest path query. Rice and
Tsotras [21] study shortest path queries of road networks
with label restrictions, where the label restrictions specify a
subset of the graph edges that the shortest path computation
can be applied on. They extend the techniques of Contraction
Hierarchies [12] to handle labels restrictions when building
index. Optimization techniques are also studied in [21]. Liu
and Wong [18] study shortest path queries in terrain datasets
with slop constraint, where each data point is a three-dimen-
sional point that adds elevation to the traditional two-dimen-
sional data. They propose a new framework called surface
simplification, under which the surface is “simplified” such
that the complexity of finding shortest paths on this simpli-
fied surface is lower. Such techniques cannot be applied to
the optimization of shortest path queries on general graphs.

Reachability queries have been extensively studied on
large graph data. The theoretical foundation of indexing
reachable vertex pairs using 2-hop index is studied by Cohen
et al. [7]. Path-tree and 3-hop techniques are proposed by
Jin et al. [14,15] to build index for reachability queries more
practically. The techniques of path-tree and 3-hop combine
the techniques of tree cover, chain cover, and 2-hop cover
together. Due to the complex structures of existing tech-
niques, they can only handle moderately sized data. Two
recent works study the reachability queries for very large
data. Yildirim et al. [31] use the idea of computing sev-
eral random tree covers and generating a modified inter-
val code for each generated tree cover over a condensed
DAG (Directed Acyclic Graph). With these modified interval
codes, they can prune non-reachable queries very efficiently.
Due to the low complexity of index structure, it can handle
directed graphs with hundreds of millions of nodes. However,
such a condensed DAG cannot be used for computing short-
est paths. Schaik and Moor [28] study a memory efficient
data structure to index the reachability information between
all pairs of vertices using bit vector compression. The size
of bit vector index used is typically small for practical data,
even though it can be very large in worst case. The bit vector
compression can be also used to compute all the reachability
information very efficiently. Although they can handle very
large directed graphs, these techniques cannot be applied to
shortest path queries in undirected graph. First, in undirected
graph, all the vertex pairs are reachable. Second, these tech-
niques do not consider the distance information associated
with edges.

8 Experiments

We conduct extensive performance studies to test the effi-
ciency of our multi-hop approach as well as 2-hop approach.
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We implement our multi-hop algorithm, denoted as m-hop
in this section. For comparison, we also implement the tree-
decomposition-based approach TEDI in [29]. All tests are
conducted on a PC with an Intel(R) Pentium(R) 2.8 GHz CPU
and 2GB memory PC running CentOS 5.4. All algorithms are
implemented in C++ and compiled with -O3 optimization.

m-hop consists of two phases: multi-hop distance labels
generation and query answering. TEDI also consists of two
phases: label construction and query answering. We com-
pare m-hop and TEDI in two aspects, label construction time
and query answering time. We also list the query answering
time of a naive BFS algorithm, which computes shortest dis-
tances on the original graph directly. The query answering
time is measured in milliseconds (ms). For each dataset, we
randomly generate 10,000 pairs of vertices to issue queries.

8.1 M-hop vs 2-hop

We compare m-hop with 2-hop in the aspects of label con-
struction time, label size, and query time. We implement the
2-hop distance labels construction algorithm given in [7].
The label construction of 2-hop is done on a linux server
with 48G memory since it runs out of memory if running on
the PC.

We generate a set of small synthetic graphs according to
the BA model [2], which is a widely adopted model to simu-
late real graphs. In the generated graphs, the degrees follow a
scale-free power-law distribution. We generate 6 graphs with
average degree 2.2, where the number of vertices ranges from
1,000 to 6,000 by a step of 1,000, and denote the graph as
xk if it contains x · 1,000 vertices.

The construction time of 2-hop and m-hop are shown in
Fig. 8. For a graph with 6,000 vertices, m-hop takes 0.1 s,
whereas 2-hop takes 4.27 h. The 2-hop label construction
time increases much faster than that of m-hop, for exam-
ple, when the graph size increases from 1,000 to 6,000, the
m-hop construction time increases 15 times, whereas 2-hop
increases 300 times. This is because that, for undirected
graphs, 2-hop first computes all-pairs shortest paths and then
solves an instance of set cover, where the size of the ground
set is quadratic to the number of vertices. The query time and
label size of 2-hop and m-hop are shown in Table 4, which
shows that our multi-hop distance labels are smaller than
2-hop distance labels. The query processing time of m-hop
is fast, but is larger than that of 2-hop.

8.2 Small real datasets

In this subsection, we test m-hop and TEDI over the real
datasets used in [29]. The real graphs include biological net-
works (PPI and Homo), social networks (Pfei, Geom, Erdos,
Dutch, and Eva), information networks (Cal and Epa), and
technological networks (Inter). All these graphs are provided
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Fig. 8 Label construction time of 2-hop and m-hop

Table 4 Query time and label size of 2-hop and m-hop

Graph Query time (ms) Label size ( KB)

2-hop m-hop 2-hop m-hop

1k 0.00013 0.00073 45.1 34.9

2k 0.00014 0.00084 107 78

3k 0.00015 0.00094 176 130

4k 0.00020 0.00105 263 195

5k 0.00025 0.00120 356 240

6k 0.00031 0.00149 452 245

Table 5 Information of real datasets

Graph n Average Maximum Median
degree distance distance

Pfei 1,738 2.16 29 10

PPI 1,458 2.67 19 7

Dutch 3,621 2.38 22 8

Epa 4,253 4.18 10 4

Erdos 6,927 3.42 4 4

Eva 4,475 2.08 18 7

Geom 3,621 5.23 14 5

Cal 5,925 5.32 13 5

Homo 7,020 5.64 14 5

Inter 22,442 4.06 10 4

by the authors of [30]. Sizes and other information of these
datasets are shown in Table 5, where maximum distance and
median distance are the maximum and median value of all
the distances between vertex pairs, respectively.

In TEDI, a parameter d is used to tune the tree decompo-
sition. TEDI generates a tree decomposition, with the size of
all nodes except the root node at most d. In order to gener-
ate such a tree decomposition, in Min- Degree, the for loop
(Line 2) stops immediately when the next minimum degree
(Line 3) is larger than d. In this set of tests, we use the same
d values as specified in [29]. Our approach uses budget B
instead of d. Our budget B is more general than d. Given a d
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Table 6 Query time for real datasets

Graph d BFS (ms) TEDI m-hop

Pfei 6 0.0336 0.0030 0.0010

PPI 7 0.0310 0.0024 0.0010

Dutch 5 0.0634 0.0027 0.0011

Epa 8 0.0724 0.0012 0.0009

Erdos 7 0.0916 0.0013 0.0011

Eva 2 0.0544 0.0021 0.0008

Geom 6 0.0967 0.0023 0.0011

Cal 10 0.1674 0.0021 0.0015

Homo 18 0.2421 0.0033 0.0022

Inter 14 0.6951 0.0032 0.0025

value, we can compute a budget B. However, a budget B we
use can be smaller than the corresponding budget computed
from d.

The query time (ms) of BFS, TEDI, and m-hop, are shown
in Table 6. From Table 6, we can see that the query pro-
cessing time of BFS increases dramatically when the graph
size increases, because the time complexity of BFS is lin-
ear to the graph size. For m-hop, the query processing time
changes very slowly when the graph size increases, for exam-
ple, the query time on Pfei is 0.001 ms, and it only increases
to 0.0025 ms on Inter, whose size is 13 times larger than that
of Pfei. The speedups of m-hop and TEDI with respect to
BFS are shown in Fig. 9. m-hop consistently outperforms
TEDI in all these real graphs. This is confirmed by the time
complexity of these two algorithms. The time complexity of
our algorithm is O(tw · (tw+h)), while the time complexity
of TEDI is O(tw · tw · h).

The label construction time and index size of TEDI and
m-hop are shown in Table 7, where the label construction
time includes the time to build a tree decomposition, and the
time to compute shortest paths for vertices in nodes. Our algo-
rithm takes less time to generate distance labels. Because, for
all vertices in a node in the tree decomposition, it needs to
compute all-pairs shortest paths in TEDI, while, in m-hop,
we only compute shortest paths from one vertex to all other
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Fig. 9 Speedup of query time on small real datasets

Table 7 Label construction time and index size for real datasets

Graph Construction time Index size ( KB)

m-hop TEDI m-hop TEDI

Pfei 17 19 86 110

PPI 18 22 149 174

Dutch 76 84 718 767

Epa 200 227 3,264 3,343

Erdos 173 227 1,184 1,314

Eva 52 55 94 149

Geom 274 301 3,478 3,551

Cal 692 765 7,974 8,113

Homo 1,320 1,526 15,542 15,752

Inter 3,725 5,238 5,865 6,520

vertices. For all the datasets, our index size is smaller than
that of TEDI. The difference between the two algorithms is
small, because data stored for the root node are the domi-
nating factor of the index size when d is relatively small.
Therefore, we do not report the index size for the following
experiments.

8.3 Small synthetic datasets

We generate a set of small synthetic graphs according to the
BA model [2] the same as that in Sect. 8.1. Here, we generate
10 graphs, where the number of vertices range from 1,000
to 10,000 by the step of 1,000, and denote the graph as xk if
it contains x · 1,000 vertices.

The query time of BFS, TEDI, and m-hop on these small
synthetic graphs are shown in Table 8. Similar to the real
graphs, the query time of BFS increases dramatically when
the graph size increases. Actually, the query time of BFS on
synthetic graphs is almost as the same as that on real graphs of
the same size, as shown in Tables 6 and 8. The query time of
m-hop increases very slowly as compared to BFS. For exam-
ple, when the graph size increases from 1,000 to 10,000, the
query time of BFS increases by a factor of 13, while the query
time of m-hop increases 3 times. The speedups of m-hop and
TEDI with respect to BFS are shown in Fig. 10. Consistently,
the speedup of m-hop is 2 times larger than that of TEDI. For
both algorithms, the speedups increase when the graph size
increases, as explained for the real datasets.

The label construction time of TEDI and m-hop on these
synthetic graphs are shown in Table 9. For both m-hop and
TEDI, the label construction time increases when graph size
increases. When graph size increases, it takes more time to
build tree decomposition. Also the time to compute shortest
paths increases when graph size increases, as shown by the
query time of BFS in Table 8. For all the synthetic graphs,
the label construction time of m-hop is only about 70–80 %
of that of TEDI.

123



884 L. Chang et al.

Table 8 Query time for small synthetic datasets

Graph n d BFS (ms) TEDI m-hop

1k 1,000 3 0.0196 0.0016 0.0007

2k 2,000 5 0.0354 0.0018 0.0008

3k 3,000 6 0.0519 0.0021 0.0009

4k 4,000 7 0.0688 0.0023 0.0010

5k 5,000 8 0.0880 0.0027 0.0012

6k 6,000 9 0.1081 0.0034 0.0015

7k 7,000 9 0.1275 0.0034 0.0016

8k 8,000 9 0.1639 0.0028 0.0015

9k 9,000 9 0.2087 0.0031 0.0017

10k 10,000 9 0.2426 0.0033 0.0018
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Fig. 10 Speedup of query time on small synthetic datasets

Table 9 Label construction time for small synthetic datasets

Graph m-hop TEDI Graph m-hop TEDI

1k 7.7 9.2 6k 119 168

2k 21 26 7k 163 228

3k 39 49 8k 252 302

4k 63 78 9k 302 391

5k 92 116 10k 394 506

8.4 Large datasets

We test the performance of m-hop and TEDI under a given
budget of the label size for large datasets. Specifically, given
a budget B, we generate a tree decomposition, where the
resulting label size is no larger than B, while the size of the
root node is as large as possible (refer to the discussions on
reducing tree height in Sect. 6).

Real datasets For the real datasets, we test m-hop and TEDI
over two large road networks, California Road Network [17]
and North America Road Networks, and a computer sci-
ence bibliography graph, DBL P2. The number of verti-
ces contained in these two road networks are 21, 048 and
175, 813, respectively. After processing as [29], the DBL P
dataset consists of 581K vertices. The average degree and the

2 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/benchmarks.

Table 10 Information of large datasets

Graph n Average Maximum Median
degree distance distance

California 21k 2.06 721 256

North America 175k 2.04 4,657 946

DBLP 581k 2.45 35 15

Table 11 Query and construction time for California Road Network

Budget Query time (ms) Const time (ms)
size

BFS TEDI m-hop TEDI m-hop

10M 0.7035 0.0175 0.0027 5,781 5,133

40M 0.7035 0.0133 0.0021 11,979 11,655

70M 0.7035 0.0111 0.0017 17,052 16,518

100M 0.7035 0.0091 0.0015 21,021 20,519

maximum/median distance of these three graphs are shown
in Table 10.

The query time of m-hop and TEDI on the California road
network are shown in Table 11, where the budget B of label
size varies from 10M to 100M by a step of 30M. The query
time of BFS is 0.7035 ms, which does not change for differ-
ent budget sizes, because BFS directly works on the original
graph. When the budget size B increases, the query time
for both m-hop and TEDI decreases. This is because that
the root node of the tree decomposition contains more ver-
tices when budget B increases, therefore, the treewidth tw
and height h decrease. The speedups of m-hop and TEDI
with respect to BFS are shown in Fig. 11. For both m-hop
and TEDI, the speedups increase when the budget size B
increases. This is based on the fact that the query time of
BFS remains unchanged, while the query time of m-hop and
TEDI decreases, when B increases. The speedup of m-hop
is 5–6 times larger than that of TEDI. The label construc-
tion time of m-hop and TEDI on the California road network
is shown in Table 11. For a given budget size, m-hop takes
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Fig. 11 Speedup of query time on California Road Network (vary-
ing B)
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Table 12 Query time for California Road Network with different query
distance (B = 40M)

Query distance BFS TEDI m-hop

[1,10] 0.0414 0.0033 0.0015

[11,50] 0.0564 0.0083 0.0023

[51,150] 0.1936 0.0121 0.0022

[151,800] 0.9902 0.0129 0.0020

less time to construct labels than that of TEDI because TEDI
needs to compute more pairs of shortest paths and m-hop
answers queries faster than TEDI.

Table 12 shows the query time of BFS, TEDI, and m-hop
for California Road Network with different query distance
settings, that is, we divide the queries into four ranges based
on the distance of the query vertex pairs. As expected, the
query time of BFS and TEDI increases when the distance of
query vertex pairs becomes larger. The query time of m-hop
does not change much, since the number of hops involved is
not much related to the distance of a vertex pair.

The query time and label construction time of m-hop
and TEDI on the North America road network are shown
in Table 13, where the budget size ranges from 10M to 100M.
The query time of BFS remains 26 ms, while the query time
of m-hop and TEDI decreases, when budget size B increases.
The construction time of m-hop increases when B increases,
because the number of shortest path pairs computed in the
construction of m-hop is linearly proportion to the label size.
The construction time of TEDI first decreases then increases
when B increases. This is because, when B is small, the tree-
width tw is very large so it needs to compute a lot of shortest
paths; when B becomes larger, the treewidth tw becomes
almost stable while the size of root node becomes larger.
The speedups of m-hop and TEDI with respect to BFS are

Table 13 Query and construction time for North America Road Net-
work

Budget Query time (ms) Const time (s)
size

BFS TEDI m-hop TEDI m-hop

10M 25.842 0.418 0.127 958.9 516.9

12M 25.842 0.376 0.098 979.9 543.7

14M 25.842 0.313 0.058 913.2 555.1

16M 25.842 0.190 0.050 856.5 562.1

18M 25.842 0.148 0.042 830.0 570.2

20M 25.842 0.138 0.042 853.4 584.1

30M 25.842 0.135 0.041 886.1 624.6

40M 25.842 0.134 0.043 911.4 648.2

70M 25.842 0.133 0.042 981.4 730.3

100M 25.842 0.132 0.042 1,049 789.5

shown in Fig. 12. When the budget size B increases from
10M to 20M, the speedup of TEDI increases from 62 to 189,
while the speedup of m-hop increases from 203 to 626. The
speedup of m-hop and TEDI becomes stable when the bud-
get size increases from 20M. This is because that, although
the tree decomposition becomes smaller, when B increases,
the treewidth tw and height h do not change much when B
is larger than 20M.

For the DBL P dataset, with a budget size B of 200M, our
m-hop constructs labels in 7,482 s, while TEDI constructs
index in 17,997 s. In query processing, the average process-
ing time of m-hop is 0.393 ms, and the average processing
time of TEDI is 1.008 ms, while it takes 96.6 ms for a BFS
approach. The speedups of m-hop and TEDI overBFS are
245.2 and 95.7, respectively.

Synthetic datasets In the previous sets of experiments, we
have tested our algorithm and TEDI on small synthetic
graphs, that is, the graph sizes are less than 10,000. We test
the algorithms on large synthetic graphs in the following.
Specifically, we test the algorithms on graphs, whose sizes
range from 20,000 to 100,000 by a step of 20,000, and denote
the graph as xk if the size is x · 1,000. The budget B of label
size varies from 10M to 100M by a step of 30M.

We test the algorithms m-hop and TEDI when varying
budge size B, while the graph size is chosen as 60k. The
query time and construction time is shown in Table 14.
When budget size B increases, the query time of m-hop and
TEDI decreases, while the construction time of m-hop and
TEDI increases. The speedups of m-hop and TEDI are shown
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Fig. 12 Speedup of query time on North America Road Network
(vary B)

Table 14 Query and construction time for synthetic graph (n =
60,000)

Budget size Query time (ms) Const time (s)

BFS TEDI m-hop TEDI m-hop

10M 6.2244 0.0040 0.0028 62 60

40M 6.2244 0.0028 0.0022 119 116

70M 6.2244 0.0025 0.0020 158 156

100M 6.2244 0.0023 0.0019 190 189
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in Fig. 13, which increases when budget size B increases. The
speedups of m-hop over TEDI are not as much as the previ-
ous testings, because the treewidth tw and height h are both
very small for these synthetic graphs when the budget B is
relative large.

Here, given a budget B of label size, we test the perfor-
mance of m-hop and TEDI on graphs of different sizes. The
query time and construction time of m-hop and TEDI are
shown in Table 15, where B is equal to 40M. As expected,
with the same label size, when graph size increases, the
query time and construction time of all three algorithms
increase. As shown in Fig. 14, the speedups of both m-hop
and TEDI increase when the graph size increases. This is
because that, although the query time of all three algorithms
increases when the graph size increases, the query time of
BFS increases much faster than that of m-hop and TEDI.

8.5 Density testing

We test the performance of m-hop and TEDI by varying the
average degree of graphs. The synthetic graphs are generated
with n = 40,000, and the average degrees (d̄) vary from 2.2
to 4, denote the four graphs as d̄ = 2.2, d̄ = 2.8, d̄ = 3.4,
and d̄ = 4. In all these testings, the budgets B for m-hop and
TEDI are set as 70M.

Table 16 shows the query time and index construction
time of the two algorithms on the four graphs. In general,
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Fig. 13 Speedup of query time on large synthetic graph (varying B,

n = 60,000)

Table 15 Query and construction time for synthetic graph (B = 40M)

Graph Query time (ms) Const time (s)
size

BFS TEDI m-hop TEDI m-hop

20k 0.9867 0.0012 0.0010 18 19

40k 3.6326 0.0022 0.0018 63 62

60k 6.2244 0.0028 0.0022 119 116

80k 10.4778 0.0033 0.0026 209 203

100k 14.0068 0.0038 0.0029 294 279
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Fig. 14 Speedup of query time on large synthetic graph (varying
n, B = 40M)

Table 16 Query and construction time for density testing (n =
40,000, B = 70 M)

Average Query time (ms) Const time (s)
degree

BFS TEDI m-hop TEDI m-hop

2.2 3.6693 0.0019 0.0015 84 86

2.8 3.6156 0.0025 0.0021 92 94

3.4 3.5594 0.0041 0.0032 107 102

4.0 3.2254 0.0094 0.0069 143 104
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Fig. 15 Index size and time for different densities

when the average degree increases, the query time of BFS
decreases while the query time of m-hop and TEDI increases.
The BFS time decreases because the distances between query
pairs become smaller, therefore BFS can find the shortest
path with few hops of exploration. The query time and index
construction time of m-hop and TEDI increase because the
graph becomes larger. Consistently, our m-hop algorithm can
answer shortest distance queries much faster than TEDI.

Indexing time and size Here, we test the growing trends of
index size and index time of m-hop, when density increases.
The synthetic graphs are generated with n = 40,000, and the
average degrees (d̄) vary from 2.2 to 8, namely, 2.2, 4, 6, and
8, as indicated in Fig. 15. In this testing, we do not specify
a budget of index size, and the tree decomposition is built
such that the index size is minimal for our algorithm. The
index size and index time for different densities are shown in
Fig. 15a, b, respectively. From Fig. 15, we can see that both
the index size and index time increase very fast when the
graph becomes denser. Our current implementation will run
out of memory when building tree decomposition for dense
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Table 17 Query and construction time for weighted California Road
Network

Budget Query time (ms) Const time (ms)
size

Dijkstra TEDI m-hop TEDI m-hop

10M 1.9830 0.0163 0.0026 11,956 11,371

40M 1.9830 0.0131 0.0021 25,072 24,650

70M 1.9830 0.0105 0.0017 35,605 34,345

100M 1.9830 0.0089 0.0014 43,365 43,166

graphs, we are planning to work on dealing with dense graphs
as our future work.

8.6 Weighted graph

Here, we test the performance of index and query algorithms
of our approach and TEDI. The dataset is California Road
Network, and edge weights are obtained from the original
dataset.3

The query time and index construction time of m-hop and
TEDI on this weighted dataset are shown in Table 17. Com-
paring the approaches on weighted and unweighted graphs,
the only difference lies in shortest path computation when
computing distance labels. Therefore, it will need more time
to compute distance labels on weighted graph, and the query
time remains almost the same. This is confirmed by compar-
ing Table 17 with Table 11.

9 Conclusion

In this paper, we studied a small distance labeling scheme
to fast query shortest distances. In our multi-hop distance
labeling, instead of directly generating 2-hop distance labels
as index, we generate a small set of query-specific 2-hop
distance labels on-line efficiently based on our stored multi-
hop distance labels. The multi-hop distance labels stored in
our approach is only a subset of that generated by a 2-hop
distance labeling, so it is small in size. Furthermore, our
multi-hop distance labels generating algorithm avoids pre-
computing all-pairs shortest paths. We give efficient algo-
rithms to generate the query-specific 2-hop distance labels
based on our stored multi-hop distance labels. We conducted
extensive performance studies to compare our approaches
with the up-to-date existing approaches, using a large num-
ber of small/large real/synthetic graphs, and confirmed the
efficiency of our approach. Although we confirmed the effi-
ciency of our approach on large sparse graphs, one limitation
of our current version of multi-hop distance labeling is that
it may run out of memory when building tree decomposition

3 http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm.

for dense graphs. We are planning to work on dealing with
dense graphs in a memory constrained environment as our
future work.
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