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Abstract— Customized semantic query answering, personal-
ized search, focused crawlers and localized search engines fre-
quently focus on ranking the pages contained within a subgraph
of the global Web graph. The challenge for these applications
is to compute PageRank-style scores efficiently on the subgraph,
i.e., the ranking must reflect the global link structure of the
Web graph but it must do so without paying the high overhead
associated with a global computation. We propose a framework
of an exact solution and an approximate solution for computing
ranking on a subgraph. The IdealRank algorithm is an exact
solution with the assumption that the scores of external pages
are known. We prove that the IdealRank scores for pages in the
subgraph converge. Since the PageRank-style scores of external
pages may not typically be available, we propose the ApproxRank
algorithm to estimate scores for the subgraph. Both IdealRank
and ApproxRank represent the set of external pages with an
external node Λ and extend the subgraph with links to Λ. They
also modify the PageRank-style transition matrix with respect
to Λ. We analyze the L1 distance between IdealRank scores
and ApproxRank scores of the subgraph and show that it is
within a constant factor of the L1 distance of the external pages
(e.g., the true PageRank scores and uniform scores assumed
by ApproxRank). We compare ApproxRank and a stochastic
complementation approach (SC) [1], a current best solution for
this problem, on different types of subgraphs. ApproxRank has
similar or superior performance to SC and typically improves
on the runtime performance of SC by an order of magnitude
or better. We demonstrate that ApproxRank provides a good
approximation to PageRank for a variety of subgraphs.

I. INTRODUCTION

The explosion of information available on the Web has
made the ranking of web pages an expensive but unavoidable
component of query answering. Since hyperlinks from one
page to another usually implies an “endorsement” or “recom-
mendation”, link analysis plays a critical role in determining
the importance of web pages. PageRank[2] and HITS[3] are
two seminal approaches in the area. PageRank iteratively
computes the score of a page based on the scores of its parent
pages. HITS separates the role of each web page into a hub
or authority. The hub score estimates the value of its links to
other pages and the authority score estimates the importance
of the page. These algorithms are expensive because of the
number of web pages/objects involved in the computation.

In January 2005, the indexable Web for search engines was
estimated to be more than 11.5 billion pages [4]. According
to [5], the Web is growing at a rate of 25% per year. To make
ranking manageable, and to reflect the diversity of clients’
information needs, web applications such as semantic search,

focused crawlers, localized search engines, and personalized
search have emerged. They all have a common objective to
rank a subgraph.

The first intriguing application is a focused crawler [6], [7],
also called a thematic crawler. A focused crawler is interested
in collecting a subset of the Web pages that are related
to a specific topic. Compared to a standard crawler which
can easily get lost and waste resources, a focused crawler
acquires relevant pages using a Best First Search; it selects
links based on their scores [7]. In contrast to focused crawlers
which are topic specific, a localized search engine indexes a
subset of web pages that are within a specific domain. The
web fragment retrieved by the focused crawler (or localized
search engine) is a subgraph of the global web graph. Only
PageRank scores for local pages in the subgraph are of interest
to users. Figure 1 shows the typical infrastructure of a focused
crawler (or a localized search engine). Users submit queries to
the subgraph collected by a focused crawler and local query
answers are returned to the user. The ranking on this local
graph, however, should reflect the link structure of all web
pages.

Fig. 1. The infrastructure of a focused crawler or a localized search engine.

Another interesting scenario is semantic ranking. Objec-
tRank [8] creates a schema graph to model the semantic
connections between entity sets, e.g., authors or conferences.
The semantic connections are associated with an authority
transfer assignment which can be arbitrarily set by a domain
expert based on her interpretation of the domain. Figure 2 [8]
shows an authority transfer schema graph for DBLP.

While ObjectRank is flexible and allows the tuning of Ob-
jectRank scores by a domain expert, it leads to computational
challenges if a search engine has to consider all possible
combinations of keywords and authority transfer assignments.
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Fig. 2. The DBLP authority transfer schema graph in ObjectRank ([8]).

Recent research on reformulating ObjectRank scores based on
individual user feedback [9] and a graph exploration frame-
work for the biological Web [10] highlights the optimization
challenges of query answering and ranking for the semantic
Web.

If we can model a subgraph to contain the subset of pages
associated with the entity sets of interest to some domain
expert, we can then define the ObjectRank problem as a
problem of ranking a subgraph. This problem, too, is to exploit
existing PageRank scores for other regions of the graph that are
not of interest to the domain expert, and whose scores may also
remain largely unchanged. Figure 3 shows an example where
a subgraph is associated with an authority transfer assignment
and the external pages are beyond the focus of the domain
expert.

Fig. 3. An example of subgraph semantic ranking.

Another application that involves ranking a subgraph
is peer-to-peer networks. The advent of peer-to-peer(P2P)
technology has further boosted web information retrieval
by leveraging distributed computing power, storage, and
connectivity[11], [12], [13]. A distributed or decentralized
system has multiple peers or servers, each of which stores
its own subgraph of the Web. A user may ask queries on one
peer and ranked query answers that are available locally are
presented to the user. The ranking depends on the context of
the query.

A final scenario is a reflection of the constant change of the
Web. The ranking of pages needs to be updated frequently,
especially for the subgraph of the Web that experiences the
most change. This subgraph can be either a set of dangling
pages that crawlers have not as yet crawled, referred to as
the web ”frontier” [14], or the set of pages that are most
affected by updates [15]. It is desirable that any strategy to

update the ranking of this subgraph exploits existing PageRank
scores for other regions of the graph which may remain largely
unchanged.

In response to these many motivating applications, we
address the problem of computing ranking scores for a sub-
graph. For ease of presentation, and to compare with existing
approaches, we use the PageRank metric for explanation and
experiments. However, our general approaches can be applied
to estimate ObjectRank scores as well.

We note that current ranking techniques (to be discussed
in the next section) either pay the cost of a global compu-
tation to get an accurate ranking [16], or they have to solve
another potentially difficult problem: to determine a relevant
supergraph of web pages that impact the rank of the subgraph
[1], [17]. Our challenge is to obtain an accurate ranking that
reflects the global link structure of the Web graph and to do
so without paying the high overhead associated with a global
PageRank computation or having to solve the difficult problem
of identifying a relevant supergraph. We would also like to
exploit pre-computed PageRank scores for external pages if
and when they are available and appropriate for use.

We propose a framework based on an exact and an ap-
proximate solution to compute PageRank on a subgraph. The
IdealRank algorithm is an exact solution. It assumes that
the PageRank scores of external pages are known. We prove
that the IdealRank scores for pages in the subgraph converge
to the true PageRank scores. Since the PageRank scores of
external pages may not typically be available, we propose
the ApproxRank algorithm to estimate PageRank scores for
the subgraph. Both IdealRank and ApproxRank represent the
set of external pages with an external node Λ and extend the
subgraph with links to Λ. They also modify the PageRank
transition matrix with respect to (the links to) Λ.

The IdealRank and ApproxRank framework formalizes the
problem of ranking a subgraph. It allows us to model multiple
scenarios where ranking a subgraph is important. IdealRank
can be used to model scenarios where PageRank scores of
the global graph are known a priori and can potentially be
re-used. This includes the case where the subgraph represents
the pages that have been updated, or the subgraph represents
the pages that contain all the semantic types of interest to a
domain expert for a personalized or semantic ranking such as
ObjectRank [8]. ApproxRank can be applied in general to all
these problems, when we do not know the PageRank scores
of external pages.

We compare our approach with the stochastic complemen-
tation (SC) approach [1]. SC builds a supergraph by carefully
examining candidate external pages and adding them into the
supergraph if adding this page has a significant influence on
the PageRank scores of the subgraph. Our approach in contrast
models the external pages using a node Λ, and it can be used
in situations when a supergraph cannot be obtained easily. Our
approach also avoids the cost of a global computation [16].
The ApproxRank computation is also much cheaper than SC
[1] since SC pays the high cost of constructing the supergraph.

We experimentally study the effect of size and type of the
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subgraphs on the accuracy of ApproxRank. We study several
types of subgraphs including domain specific subgraphs, topic
specific subgraphs, and subgraphs gathered by a Breadth First
Search crawler. We compare our results with SC and two
baseline ranking algorithms; one was discussed in [18], and the
other is local PageRank on the subgraph (ignoring the external
pages). We show that ApproxRank has similar or superior
ranking accuracy to SC and typically its runtime performance
is an order of magnitude better than SC. ApproxRank also
outperforms the two baseline algorithms on ranking accuracy.

Our contributions are as follows:
1) We define an efficient algorithm, IdealRank, to compute

PageRank scores for a subgraph when PageRank scores
of the external pages are known. The random walk
defined by IdealRank utilizes these scores.

2) We prove that the IdealRank scores converge to the true
PageRank scores for all local pages in the subgraph, and
the IdealRank score for the external node Λ converges to
the sum of true PageRank scores for all external pages.

3) When PageRank scores of external pages are not known,
we define an efficient algorithm ApproxRank. We pro-
vide important properties of ApproxRank scores.

4) We show through empirical results that the ApproxRank
ranking accuracy is similar (sometimes superior) to the
best competitor SC, and it overwhelmingly outperforms
the runtime efficiency of SC.

The rest of the paper is organized as follows. Section II
briefly reviews the PageRank algorithm and discusses related
work. Section III defines the IdealRank algorithm. Section IV
presents the ApproxRank algorithm. Experimental results are
described in V and VI concludes.

II. RELATED WORK

We briefly describe the PageRank algorithm and summarize
research on PageRank. We refer to surveys [19], [20] and book
[21] for a more complete description of related work.

A. PageRank Review
PageRank was introduced in [2] to compute the stationary

distribution of a Markov chain from the link structure of a web
graph. The underlying assumption is that links between pages
confer authority. A link from page i to page j is evidence that i
is suggesting that j is important. The importance contributed
to page j from i is inversely proportional to the outdegree
of i. Let Di be the outdegree of page i. The corresponding
random walk on the directed web graph can be expressed by
a transition matrix A as follows:

A[i, j] =

{

1

n
]n×1

Let A
T

be the transpose of A. The PageRank vector R is
recursively defined as follows:

R = εA
T
· R + (1 − ε)P

According to the Ergodic Theorem [22], [23] for Markov
chains, if the graph is aperiodic and irreducible, i.e., the
Web graph is strongly connected, then a unique steady state
distribution exists. Since the Web graph is generally aperiodic
and irreducible by adding damping factor, R converges to the
stationary distribution for the Web graph.

B. Efficiently Computing PageRank
The efficient computation of the PageRank algorithm has

been studied in [22], [24], [25], [26], [27]. An adaptive
method is exploited in [26] where pages whose scores have
converged are not recomputed in a new iteration. An extrap-
olation method is proposed in [22] so the higher terms in
ranking vector expansion are suppressed. [27] presents a 3-
stage algorithm to speed up the PageRank computation. The
first step is to compute local PageRank scores for each host.
Then a block graph is constructed in the second step, where
every node represents a block and every edge represents a set
of hyperlinks from a block to another block (or itself). The
importance of hosts is computed on this block graph. Finally
the standard PageRank is run on the global graph using as its
starting vector the weighted aggregation of the local PageRank
score. In [24], [25], other graph aggregation approaches are
presented to approximate the PageRank computation.

C. Computing PageRank in a distributed system
Recent research efforts in distributed systems have ad-

dressed the case where the Web graph is partitioned into
disjoint web sites or domains [18], [28]. In [18], the Web is
modeled as numerous disjoint web servers. The hyperlinks in
the Web are divided into two categories, intra-sever links and
inter-server links. Intra-server links are links between pages
within a server and these links are used to compute a local
PageRank vector on each server. Inter-server links are links be-
tween pages in different servers, and they are used to compute
ServerRank. ServerRank measures the relative importance of
the different web servers. Finally results from multiple web
servers are merged to generate a ranked hyperlink list on the
submitting server. In [28], a ranking algebra is proposed to
deal with rankings at different granularity levels, which can
also be applied to aggregate local ranking and site ranking to
get global ranking.

There has been a work [16] on PageRank approximation in
a fully decentralized system, where each peer is autonomous
and peers may overlap with each other. In the proposed JXP
algorithm, each peer computes the local PageRank scores,
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then randomly meets other peers and gradually increases
its knowledge about the global web graph by exchanging
information, and then recomputes the PageRank scores on
local peer. This meeting and recompute process is repeated
until the peer gathers enough information. The JXP scores
converge to the true global PageRank scores if peers eventually
meet sufficient number of times to exchange information. The
assumption is that the outdegree of each page in the global
graph is known.

However, these work focus on providing an approximation
for the global graph, in centralized systems or distributed
systems.

D. Computing PageRank for a subgraph

The problem of estimating PageRank values for a small
portion of the Web graph has received recent attention in
the literature [1], [17], [29]. The goal of [17] is to estimate
the PageRank value for one target node. [1] addresses the
problem of estimating the score for a subgraph. [29] aims
to do link based ranking on a small graph exploiting users’
access patterns.

The common approach in all of these papers is to expand
the subgraph to a supergraph and then run PageRank on this
augmented graph. They differ in the procedure to augment
the subgraph. The expansion in [17] proceeds backwards by
following reverse hyperlinks. PageRank scores for boundary
nodes in the augmented graph that have incoming edges
from outside of the subgraph are estimated. Then standard
PageRank is computed on this graph. [1] starts with following
the outgoing links in a given local graph of size n. A set of
k nodes are selected via stochastic complementation and the
PageRank of this expanded graph is computed. This process is
repeated for a number of iterations (e.g. 25 iterations). In [29],
besides the existing hyperlinks that indicate recommendation,
implicit recommendation links that can be determined by
mining user access patterns are also added into the supergraph.

We compare our approach with SC in [1] which is also a
solution to rank a subgraph. They introduce a new challenge to
construct a good supergraph and that has some disadvantages.
By following outgoing links it is possible that their approach
could sometimes miss important pages that link into the
subgraph. To decide if each candidate page should be included
in the supergraph, SC has to estimate PageRank scores on the
subgraph when added the candidate page. When the size of
the constructed supergraph is large, SC paid the overhead of
computing PageRank scores for pages that are not relevant to
the user. They are also not able to utilize the PageRank scores
of pages when they are known a priori and are not expected
to change significantly. This corresponds to the scenario of
customizing or personalizing the rank of a subgraph using
a metric such as ObjectRank, or the scenario where the
updates to the Web graph are confined to the subgraph. We
take a different approach through state aggregation to reduce
computation in each iteration. We will compare our approaches
in Section V.

E. State Aggregation Approaches
Iterative Aggregation/Disaggregation (IAD) method [30] is

applied to PageRank in [15] to update PageRank scores when
the transition probabilities or states are changed. As discussed
in Section II-B, [24] presents a graph aggregation method
to approximate PageRank for the entire graph. In contrast to
these aggregation approaches, the IdealRank and ApproxRank
framework is more general since it addresses aggregation for
a subgraph both when the PageRank scores are known and
when they are not known a priori.

III. IDEALRANK APPROACH

We formally define the IdealRank algorithm to compute
PageRank scores for a local graph. Our approach is inspired
by research on collapsing matrices with the same eigenvector
[31]. IdealRank performs a random walk on a modified local
graph called the extended local graph, where an external node
Λ is added to the local graph. Λ represents the set of pages that
are not local. The transition matrix probabilities of IdealRank
are derived from the transition matrix of PageRank for the
global graph. IdealRank assumes that the PageRank scores of
all external pages in Λ are known. This assumption will be
relaxed in the next section where we present an approximate
solution.

Consider two graphs; a global graph of size N , and a local
graph of size n. The local graph is a subgraph of the global
graph. The pages in the local graph are called local pages
while pages in the global graph and that are not in the local
graph are called external pages. The goal is to provide the
true PageRank for the local graph without running PageRank
on the global graph.

Table I lists the symbols used to define our algorithms.

Symbol Meaning
Λ External node, the artificial node representing

all external pages.
Gl A subgraph of the Web with n pages
Gg The global Web graph with N pages.
Ge The extended local graph with n + 1 pages.

TABLE I
SYMBOLS USED BY ALGORITHMS

A. The IdealRank algorithm
Recall that in [16], [18], an artificial node represents the

external world. There are edges between the artificial node
and local nodes based on the global Web graph. However,
this solution cannot distinguish between the case of one link
or multiple links between a local page and the external pages
as seen in the following example:

Let Figure 4 be a global graph. Node A,B,C, and D are
local pages, and node X , Y and Z in the cloud are external
pages. Figure 5 provides an example of adding an artificial
external node to represent the external pages. Edges are added
from local pages to the external node without a strategy to
modify the original PageRank transition matrix to reflect that
each such edge may represent multiple edges in the global
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graph. When computing the standard Pagerank algorithm on
this graph, the probability flow from a page is proportional to
the inverse of its outdegree. Page C which has 3 incoming
edges from the external pages is treated similarly to page
D which has only 1 incoming edge from the external pages.
Intuitively, however, we should expect a higher probability of
following links from the external pages to page C. Similarly,
the probability of following links from page A to Λ is 1/3.
This too is lower than the transition probability based on the
global graph.

IdealRank addresses this shortcoming with the following
solution: The first step is to add an external node Λ to the
subgraph to represent all external pages. The second step is to
construct the extended local graph Ge, the Λ enriched graph
of size n + 1. There is an edge from Λ to a local page in Ge

if there is an edge from an external page to that local page.
The same hold for edges out of local pages. Similarly, there
is an edge from Λ to Λ if there is an edge between external
pages. The next step is to define a transition matrix Aideal and
a personalization vector Pideal. The details will be discussed
in Section III-B. Finally, a random walk is performed on Ge.
The IdealRank vector Rideal is defined as follows:

Rideal = εAT
ideal · Rideal + (1 − ε)Pideal (1)

Algorithm IdealRank(Gl, Gg)
1. Add external node Λ to Gl.
2. Create edges associated with Λ and get Ge.
3. Assign values to Pideal and Aideal.
4. Perform a random walk on the extended local graph

according to Formula (1).
B. Aideal and Pideal

We define an (n+1)× (n+1) transition matrix Aideal and
a length (n+1) personalization vector Pideal. Let A represent
the N×N transition matrix for PageRank on the global graph.
Entry Ai,j has the value of the inverse outdegree of page i, if
there is an edge (i, j); the value is the probability of a random
surfer following this edge from i. Without loss of generality,
we consider the local pages to be the first contiguous n pages
in A and the external pages are indexed from n + 1 to N in
A.

Assume that the PageRank scores for all external pages
are known. The values are {R[n + 1], R[n + 2], · · · , R[N ]},
respectively. Let EXTSum =

∑N

i=n+1 R[i]. Aideal is defined
as follows, based on the entries in the original PageRank
transition matrix A:



















A1,1 · · · A1,n

.

.

.

An,1 · · · An,n

NX

i=n+1

An,i

NX

j=n+1

R[j]Aj,1

EXT Sum
· · ·

NX

j=n+1

R[j]Aj,n

EXT Sum

NX

j=n+1

R[j]

NX

i=n+1

Aj,i

EXT Sum



















Next we explain the elements in Aideal. These values are
as follows:

1) The n × n submatrix at upper left is identical to the
corresponding elements in transition matrix A for the
global graph. They represent the probability of transition
between edges in the local graph.

2) The n × 1 submatrix at upper right represents the
probability flow from a local page to the node Λ. We
note that the probability of reaching Λ is the sum of the
probability of reaching any external page from the local
page. For local page k, the value is

∑

N

i=n+1 Ak,i.
3) The 1 × n submatrix at lower left corresponds to the

probability flow from Λ to local pages. For local page
k, the value is

P

N
j=n+1 R[j]Aj,k

EXTSum .
4) The entry at the lower right corner denotes the proba-

bility flow from Λ to Λ.
The last row has entries that are each a weighted sum of

probabilities summed over all external pages. The weight is
determined by the PageRank score of the external page. This
is a key feature of Aideal and will be discussed next.

We define Aideal formally as follows: Aideal = Q1AQ2,
where Q1 is an (n+1)×N matrix and Q2 is an N × (n+1)
matrix. Let Q2 be an N × (n + 1) matrix as follows:

(

In B
C D

)

(2)

where In is an n×n identity matrix, B is an n× 1 0-matrix,
C is a (N − n)× n 0-matrix, and D is a (N − n)× 1 matrix
with all 1’s. The effect of AQ2 on the ranking vector is to
aggregate the authority flow from local pages to all external
pages, which indicates the authority goes to Λ.

Let Q1 be the following (n + 1) × N matrix:
(

In C
T

B
T

E

)

(3)

where In is an n×n identity matrix, C
T

is an n× (N −n)
0-matrix and B

T
is a 1 × n 0-matrix.

The matrix of interest is E, a 1 × (N − n) matrix. It
considers the PageRank scores for all external pages. Recall
that EXTSum is the sum of PageRank scores for all external
pages, EXTSum =

∑

N

i=n+1 R[i]. Then, E can be expressed
as follows:

E =
(

R[n+1]
EXTSum ,

R[n+2]
EXTSum , · · · ,

R[N ]
EXTSum

)

(4)

The idea of multiplying the values of entries in A with
the two matrices Q1 and Q2, where Q1 derived from the
ranking vector for external pages, is key to the approach of
Aideal. It has the effect of distributing the probability flow
from the external nodes, in a manner that is proportional to
the importance of each of the external pages in the original
PageRank vector.

Recall that the personalization vector in the original PageR-
ank is defined as a uniform vector P = [

1
n ]n×1. Instead,

for IdealRank we define the personalization vector Pideal

according to the number of external pages and total number of
pages in the graph. More specifically, the i-th entry of Pideal,
Pideal[i] can be expressed as follows:
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Pideal[i] =

{

1
N

if page i is local,
N−n

N
if page i is the external node Λ. (5)

C. Convergence of IdealRank
Let Rideal be the final ranking vector of IdealRank, where

the first n elements are scores for local pages and the (n+1)-th
element is the score for the external node Λ. We show that the
scores of first n elements are identical to the true PageRank
scores.

Theorem 1: In Rideal, scores for the first n pages converge
to the true PageRank scores. The score for the (n + 1)th
element, Λ, converges to the sum of true PageRank scores
for all external pages.

Proof: Let R be the true PageRank vector such that
R = εAT · R + (1 − ε)P , i.e., R is the converged stationary
distribution for A. Let R′ = QT

2 R be a vector with n + 1
entries. We also know that R = QT

1 R′. It is obvious that
R′[i] = R[i] for first n elements and R′[n+1] =

∑N

i=n+1 R[i].
We will show that R′ is the IdealRank vector.

We know that εAT R + (1− ε)P = R. Next consider a left
multiply with QT

2 to obtain the following:

εAT R + (1 − ε)P = R ⇒
QT

2 εAT R + QT
2 (1 − ε)P = QT

2 R ⇒
εQT

2 AT QT
1 R′ + (1 − ε)QT

2 P = QT
2 R ⇒

ε(Q1AQ2)
T R′ + (1 − ε)Pideal = R′ ⇒

εAidealR
′ + (1 − ε)Pideal = R′

Since Aideal is stochastic and Markov Chain defined by
IdealRank is irreducible and aperiodic, there is a unique
stationary distribution for Aideal. Therefore, R′ = Rideal.

The IdealRank algorithm addresses several applications.
One is where some subgraph of the Web graph has been
updated. A second case is when the personalized author-
ity transfer is limited to the subgraph. In these cases, the
knowledge of PageRank scores can be potentially relied on
to estimate new ranking scores.

IV. THE APPROXRANK ALGORITHM

Unlike the previous scenario where PageRank values for ex-
ternal pages are known, we now consider scenarios where the
PageRank scores are not known a priori. To cover this situa-
tion, our framework has an approximate solution ApproxRank.
The key difference is that for ApproxRank, the algorithm is
not able to differentiate the (previously weighted) contribution
of authority from each individual external page (since these
PageRank scores are unknown). Instead, ApproxRank will
consider the authority flow from external pages assuming they
are equally important. We analyze the L1 distance between
IdealRank scores and ApproxRank scores of the subgraph and
reveal that it is within a constant factor of L1 distance between
the true PageRank scores and uniform scores of the external
pages. We will show through experiments that ApproxRank is
a good approximation.

A. The ApproxRank algorithm
The ApproxRank vector Rapprox is defined as follows:

Rapprox = εAT
approx · Rapprox + (1 − ε)Pideal (6)

ApproxRank adopts the same personalization vector as Ide-
alRank. It however, defines its own transition matrix Aapprox.

B. Aapprox definition
Aapprox is an (n + 1) × (n + 1) matrix. It is defined as

follows:



















A1,1 · · · A1,n

N
X

i=n+1

A1,i

.

.

.
.
.
.

.

.

.

An,1 · · · An,n

N
X

i=n+1

An,i

N
X

j=n+1

Aj,1

N−n
· · ·

N
X

j=n+1

Aj,n

N−n

N
X

i=n+1

N
X

j=n+1

Ai,j

N−n



















Aapprox is different from Aideal in the last row (see
Section III-B), since IdealRank does not utilize knowledge
about PageRank scores of external pages in the first n rows.
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For the first n entries in the last row, the value represents the
(average) probability flow accumulated from (N −n) external
pages to each local page. The last entry in this n-th row of the
matrix is the (average) probability flow from external pages
to other external pages. Similar to Aideal = Q1AQ2, Aapprox

can be formally defined as Aapprox = Q′

1AQ2, where the
vector E is replaced by a vector Eapprox in Q′

1:

Eapprox =
(

1

N−n , · · · ,
1

N−n

)

(7)

In Aapprox, the values at the last row are as follows:
1) For the first n values, (1 <= k <= n), the probability

from Λ to a local page k is assigned the summation of
flow from all external pages to k, divided by the number
of external pages. For local page k, it is

P

N
j=n+1 Aj,k

N−n .
2) For the (n+1)-th value, the probability for the self-loop

edge is determined by the total authority flow among
external pages, divided by the number of external pages.

Given the global graph example in Figure 4, the probabili-
ties assigned by Aapprox are shown in Figure 6. We provide
some examples of edge weight calculation following these
rules. According to rule 1, the authority flow on edge AB, AC,
CB, BD, CD, DA are the outdegree inverse. Since A points
to page X , Z, the authority flow on edge (A, Λ) is 1/2. The
authority flow on edge (Λ, C),

1
DX

+
1

DY
+

1
DZ

3 =
1
3+

1
2 +

1
2

3 =
4
9 .

The self-loop edge authority flow will be
2

DX
+

1
DY

3 =
2
3+

1
2

3 =
7
18 .

An advantageous quality about ApproxRank is that it is
suitable to adopt precomputation for various subgraphs. With
the same global graph, Aapprox can be figured out easily from
the difference between the local values and the global values.
This is especially beneficial for applications where there are
multiple subgraphs.

ApproxRank scores converge to a unique vector Rapprox.
There are two reasons. First, the transition matrix A

T
approx

is a column stochastic matrix, as the sum of each column
is 1. Second, since we complement the random walk with
jumps from dangling pages, the Markov Chain we defined
is irreducible and aperiodic. ApproxRank satisfies the two
conditions of being irreducible and aperiodic of the Ergodic
Theorem for Markov chains [22]. Next we will investigate how
close is Rapprox to Rideal, which we have shown to be the
true PageRank scores for local pages.

C. Error analysis of ApproxRank ranking vector Rapprox

In this section we provide important properties of Ap-
proxRank scores through iterations. We show that the L1

distance between IdealRank scores and ApproxRank scores
of the subgraph is within a constant factor of L1 distance
between the true PageRank scores and assumed scores of the
external pages. This relationship can be utilized to improve
ApproxRank algorithm, which will be our future work. Our
experiments show that, however, even assume that the external
pages are equally important, ApproxRank behaves well and
produces comparable results to existing approach. To our best

knowledge, similar analysis has not been conducted in previ-
ous work for PageRank estimation [1], [17], [18]. There are
analysis results of the same flavor through different approaches
in the area of stable analysis of PageRank [32] and in the area
of updating PageRank scores [33].

Let Rideal and Rapprox be the ranking vectors from Ideal-
Rank and ApproxRank respectively, each with length n + 1,
where the (n + 1)th elements in vectors are scores for the
external node Λ. We abuse notations and let Rideal and
Rapprox be the subvector of the first n elements, as we are
interested in accuracy of ApproxRank for the n local pages.
Let R

m
ideal and R

m
approx be the ranking vectors after the m-th

iteration from IdealRank and ApproxRank.
Let E and Eapprox in Equation (4) and (7) be the vector

used to define Aideal and Aapprox. Both E and Eapprox are
vectors of length N − n, where each element denotes the
relative importance of N − n external pages. We note that
we index these elements with n + 1, · · · , N to reference the
scores for the corresponding external pages.

Theorem 2 states that after m iterations,

‖ R
m
ideal−R

m
approx ‖1≤ (ε

m
+ε

m−1
+· · ·+ε) ‖ E−Eapprox ‖1

When the number of iterations goes to infinity, this becomes

‖ R
∞

ideal − R
∞

approx ‖1≤
ε

1 − ε
‖ E − Eapprox ‖1

This shows that the accuracy of ApproxRank is dependent on
the knowledge of relative importance of external pages. When
ε is set to be 0.85, which is usually the case, the error of
ApproxRank is bounded by a constant factor of 5.67 of the
error of Eapprox.

We first derive the base case and recurrence relation for
the L1 distance between ApproxRank ranking vector and
IdealRank ranking vector. Then an error bound are obtained
based on a priori error of the external pages in Theorem 2.

Lemma 1: After the first iteration, the ApproxRank ranking
vector R

1
approx satisfies:

‖ R
1
ideal − R

1
approx ‖1≤ ε ‖ E − Eapprox ‖1

Proof:

‖ R
1
ideal − R

1
approx ‖1

=
∑

n

k=1 |R
1
ideal[k] − R

1
approx[k]|

=
∑

n
k=1 |ε

∑

n
i=1 Aik · 1 + ε

∑

N
j=n+1 AjkE[j] + (1 − ε)

1
N

−ε
∑

n

i=1 Aik · 1 − ε
∑

N

j=n+1 AjkEapprox[j] − (1 − ε)
1
N |

= ε
∑

n

k=1 |
∑

N

j=n+1 Ajk(E[j] − Eapprox[j])|

≤ ε
∑

n
k=1

∑

N
j=n+1 Ajk |E[j] − Eapprox[j]|

≤ ε
∑

N

j=n+1

∑

n

k=1 Ajk |E[j] − Eapprox[j]|

≤ ε
∑

N

j=n+1 |E[j] − Eapprox[j]|

≤ ε ‖ E − Eapprox ‖1

To derive the inequality, we first express the L1 distance
based on its definition, then calculate R

1
ideal[k] and R

1
approx[k]

assuming that the initial vectors for IdealRank and Approx-
Rank are the same (e.g. 1) for local pages. Because transition
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matrix A is row stochastic,
∑n

k=1 Ajk ≤ 1. The definition of
L1 distance concludes the proof.

N − ε
∑

n
i=1 Aik · R

m−1
approx[i]

−ε
∑

N

j=n+1 AjkEapprox[j] − (1 − ε)
1
N |

= ε
∑

n

k=1 |
∑

n

i=1 Aik · (R
m−1
ideal[i] − R

m−1
approx[i])

+
∑

N

j=n+1 Ajk(E[j] − Eapprox[j])|

≤ ε
∑

n
k=1 |

∑

n
i=1 Aik · (R

m−1
ideal[i] − R

m−1
approx[i])|

+ε
∑

n

k=1 |
∑

N

j=n+1 Ajk(E[j] − Eapprox[j])|

≤ ε
∑

n

k=1

∑

n

i=1 Aik|R
m−1
ideal[i] − R

m−1
approx[i]|

+ε
∑

n

k=1

∑

N

j=n+1 Ajk |E[j] − Eapprox[j]|

≤ ε
∑

n
i=1

∑

n
k=1 Aik|R

m−1
ideal[i] − R

m−1
approx[i]|

+ε
∑

N
j=n+1

∑

n
k=1 Ajk |E[j] − Eapprox[j]|

≤ ε
∑

n

i=1 |R
m−1
ideal[i] − R

m−1
approx[i]|

+ε
∑

N

j=n+1 |E[j] − Eapprox[j]|

≤ ε ‖ R
m−1
ideal − R

m−1
approx ‖1 +ε ‖ E − Eapprox ‖1

Theorem 2:

‖ R
m
ideal−R

m
approx ‖1≤ (ε

m
+ε

m−1
+· · ·+ε) ‖ E−Eapprox ‖1

Proof: The proof is straightforward by combining
Lemma 1 and Lemma 2.

‖ R
m
ideal − R

m
approx ‖1

≤ ε(ε ‖ R
m−2
ideal − R

m−2
approx ‖1 +ε ‖ E − Eapprox ‖1)

+ε ‖ E − Eapprox ‖1

≤ ε
m−1

‖ R
1
ideal − R

1
approx ‖1 +

(ε
m−1

+ ε
m−2

+ · · · + ε) ‖ E − Eapprox ‖1

≤ (ε
m

+ ε
m−1

+ · · · + ε) ‖ E − Eapprox ‖1

V. EVALUATION

An experimental evaluation of both ApproxRank and Ide-
alRank would be fairly extensive since we would have to
consider a variety of scenarios where we would be able to
apply one or both solutions. Due to space limitations, we limit
our experimental evaluation in this paper to ApproxRank. We
note that for the scenarios considered here, IdealRank is not
applicable since the PageRank scores of the external pages are
not known a priori.

A. Experiment Description
To evaluate our approach, we consider two goals in exper-

iments. The first goal is to compare the ApproxRank with
the stochastic complementation (SC) approach [1], which is
the best existing approach for the problem. The second goal
of experiments is to study the effect of size and type of the
subgraphs on accuracy of the ApproxRank vector.

Ideally we would run experiments on the whole web
graph, which is obviously infeasible. In choosing appropriate
datasets, we first surveyed a few recent ranking papers and we
list the key characteristics of their datasets in Table II. We will
take a similar approach of crawling a relatively small portion
of the Web, and let it reflect the whole Web.

Paper data #pages #links
description (million) (million)

[1] “edu”: crawl of 100 CS domains 4.7 22.9
“politics”: crawl under politics hierarchy 4.4 17.3

[34] web objects including papers, authors etc 1.65 7

[16] Amazaon.com data 0.055 0.237
Web crawl 0.103 1.63

[18]
A breadth first search
crawl within domain 1.05 4.98
www.standford.edu

TABLE II
DATASET CHARACTERISTICS FROM RECENT RANKING PAPERS.

We consider the following three types of subgraph in our
experiments:

• TS subgraph: The first type of subgraph is a topic
specific subgraph.

• DS subgraph: This type of subgraph is a domain specific
subgraph, where each subgraph contains all pages from
the domain and hyperlinks between local pages within
the local domain.

• BFS subgraph: This subgraph is constructed by a
Breadth First Search (BFS) crawler which starts from
a seeded URL. The crawler may follow hyperlinks and
fetch Web pages across multiple domains.

For ApproxRank and PageRank implementation, we set the
damping factor ε to be 0.85. The convergence of the algorithms
is identified when the absolute value of the L1 norm is less
than 0.00001. For SC experiments for a subgraph of size n, we
use the similar setting in [1] and expand the subgraph for 25
iterations to select another n external pages. The experiments
were run on a Solaris machine with 12 GB RAM.

B. Evaluation Method
We compute the PageRank vector for the global graph. This

ranking vector for the global graph is then limited to pages
in the subgraph, denoted by ranking vector R1. Let R2 be
the PageRank estimation on the local graph. We evaluate the
difference between R1 and R2. Without considering the actual
scores, these two ranking vectors produce two ranked list σ1

and σ2.
We use two ranking metrics in our experiments. The SC

approach [1] reported on the L1 distance. The L1 distance is
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the absolute value of the differences between the PageRank
estimation and the global PageRank scores, for the subgraph.

‖ R1 − R2 ‖1= Σn
i=1|R1[i] − R2[i]|

Other research [16], [35] use the Spearman’s footrule dis-
tance to measure the success of their PageRank approxima-
tions. Thus, we also report on the Spearman’s footrule distance
between the ApproxRank vector σ2 and the global PageRank
vector σ1.

Note that there may be a substantial number of tied pages
with the same score. A ranking with ties is referred to as a
partial ranking. We consider an extension of the Spearman’s
footrule distance for ranking with ties [36].

The set of pages in ties is called a bucket. Each list σ1,
and σ2 can be viewed as ranked buckets B1, B2, · · · , Bt. The
bucket position for bucket Bi, pos(Bi), is defined as follows:

pos(Bi) = (
∑

j<i

|Bj |) +
|Bi| + 1

b|σ1|2/2c

.
We use the following symbols in our figures and tables:
• ApproxRank is labeled (N).
• The first baseline algorithm, local PageRank, is labeled

(�).
• The second baseline algorithm, LPR2, is labeled (•).

The LPR2 algorithm is a component of the ServerRank
algorithm [18]. For a subgraph of size n, an artificial page
ξ is added to construct a local graph with n + 1 pages.
If there is an edge connecting local page i to an out-
of-domain page, then page i and ξ are connected in the
constructed graph. The standard PageRank is computed
on this graph.

• SC is labeled (�).

C. Performance on the TS Subgraphs
We conduct experiments on the same dataset used by the SC

approach and compare the distance from the global PageRank
for the two approaches. The dataset we consider is labeled
politics. Starting from the set of pages under the “politics”
hierarchy in the dmoz open directory project [37], the dataset
is a crawl of pages up to four links away from the set of seeded
pages. This dataset contains 4.4 million pages and 17.3 million
links. Within the politics dataset, we consider the following
three TS subgraphs, liberalism, conservatism, socialism.
These subgraphs pages are identified by their corresponding
dmoz categories, as well as by crawling to all pages within
three links.

We report on the L1 distance and the Spearman’s footrule
distance for SC and ApproxRank in Table III. We note that
we have two values for the L1 distance for SC. The values in
column SC (KDD) were reported in [1] and SC (Implemented)
was our implementation of SC. Since the SC approach expands
subgraphs based on the influence scores of external pages,
which may have ties, it is possible that a subgraph is expanded
to different supergraphs. This explains our SC implementation
may produce different L1 distance compared to results in [1].

For the L1 distance, ApproxRank has slightly superior
behavior to SC for the subgraphs liberalism and conser-
vatism. SC outperforms ApproxRank for socialism. For all
the subgraphs reported in Table III, ApproxRank significantly
outperforms SC for the Spearman’s footrule distance value.

To summarize, ApproxRank shows similar (sometimes su-
perior) behavior to SC for the L1 distance and outperforms
SC for the Spearman’s footrule distance. We note that in many
applications, e.g., Top-K query answering, the accuracy of the
ordering (measured by Spearman’s footrule distance) is more
important than the accuracy of the scores (measured by L1

distance).

D. Performance on the DS Subgraphs
Next, we present results of experiments on dataset AU. We

report on the Spearman’s footrule distance on each of the
DS subgraphs from the AU dataset for ApproxRank, SC, and
the two baseline algorithms, in Table IV. The performance
of ApproxRank (N), in the last column, is typically an order
of magnitude better compared to local PageRank (�) and
significantly outperforms the SC (�) and LPR2 (•) – the
distance values are at least 5 times smaller.

In AU dataset, the global graph consists of 38 domains and
there are 3884199 pages and 23898513 links. Table IV lists
12 domains in ascending order of number of pages in AU
dataset. The second column, (%) of global graph, reports on
the size of the domain as a percentage of the global graph;
the size ranges from 0.35% to 10.42%. We note that this is
an independent variable, i.e., the domains are pre-defined.

First, we observe that as the size increases (as a percentage
of the global graph), the distance decreases, for all algorithms.
For example, the first row of Table IV is domain acu.edu.au
which is 0.35% of the global graph. The distance for local
PageRank is as poor as 0.19171 whereas the distance for
ApproxRank is 0.012112. The last row is domain anu.edu.au
which is 10.42% of the global graph. The distance for local
PageRank has now improved to 0.04516 while the distance
for ApproxRank is 0.004945.

The second and more interesting observation is that based
on the Spearman’s footrule distance, SC shows poor accuracy
of ranking compared to ApproxRank The performance of SC
lies between LPR2 and local PageRank in these domains. For
example, the distance for SC ranges from 0.02048 to 0.15654;
it is similar to the distance for LPR2 which ranges from
0.02022 to 0.10938. In contrast, the corresponding distances
for ApproxRank is significantly better (distance is less) and
ranges from 0.003934 to 0.013611.
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SC (KDD) SC (Implemented) ApproxRank SC (Implemented) ApproxRank
L1 distance L1 distance L1 distance Spearman’s Spearman’s

footrule footrule
conservatism 0.0496 0.0476 0.0450 0.0632 0.0255

liberalism 0.0622 0.0733 0.0494 0.0917 0.0293
socialism 0.04318 0.0442 0.104 0.0316 0.0193

TABLE III
THE DISTANCE COMPARISON FOR TS SUBGRAPHS ON THE POLITICS DATASET.

(%) of Average local
Domain global PageRank SC (�) LPR2 (•) ApproxRank

graph outdegree (�) (N)
acu.edu.au 0.35 4.71 0.19171 0.15654 0.10938 0.012112
bond.edu.au 0.50 5.31 0.11049 0.09679 0.09102 0.013611
canberra.edu.au 0.66 5.92 0.10839 0.09197 0.07839 0.012554
cdu.edu.au 0.75 8.74 0.11999 0.09418 0.07898 0.012589
ballarat.edu.au 0.82 5.80 0.07317 0.06471 0.05762 0.006625
cqu.edu.au 0.95 3.80 0.11344 0.09033 0.06722 0.011167
csu.edu.au 2.58 4.26 0.07583 0.05745 0.04826 0.008273
adelaide.edu.au 2.91 5.27 0.08901 0.08321 0.06970 0.009757
curtin.edu.au 2.91 5.55 0.05306 0.03118 0.02771 0.005799
jcu.edu.au 5.04 4.44 0.04823 0.02957 0.02719 0.004614
monash.edu.au 8.45 6.54 0.04101 0.02048 0.02022 0.003934
anu.edu.au 10.42 5.03 0.04516 0.02446 0.02760 0.004945

TABLE IV
THE SPEARMAN’S FOOTRULE DISTANCE FOR DS SUBGRAPHS ON THE AU DATASET.

To summarize, ApproxRank significantly outperforms SC
and both baseline algorithms for the DS subgraphs.

E. Performance on the BFS Subgraph
We next experiment on graphs created by a Breadth First

Search crawler, BFS subgraphs. We use a BFS crawler, where
the crawl starts from seeded page http://www.sounddesign.un
imelb.edu.au/web/biogs/gallery/P000517g.htm. We consider a
sequence of BFS subgraphs, as the subset of pages that are
reached by the crawler ranges from 0.1%, 0.5%, 2%, 5%, 8%,
10%, 12%, 15%, to 20%. We note that the pages in a BFS
subgraph can be in different domains.

Since a majority of links in the Web graph are intra-domain
links [27], and these intra-domain links may connect local
pages and external pages in BFS subgraphs, the interaction
between local pages and the external pages can have a more
significant impact on the ranking of the subgraph. If this is
true, we can expect a negative impact on the performance of
the algorithms for BFS subgraphs.

Figure 7 reports on the distances for the BFS datasets. We
first observe that the distances are much larger compared to
those in Table IV that reports on DS graphs, for the same
AU dataset. For example, for the BFS subgraph of size 10%,
the distances of ApproxRank and local PageRank are 0.0197
and 0.153, respectively. The corresponding values for the DS
subgraph for anu.edu.au, of size 21.86%, (the last row of
Table IV), is 0.004945 and 0.04516, respectively. In general,
the distances on the BFS subgraphs appear to be an order of
magnitude greater, compared to a DS subgraph of similar size.

Our second observation is that ApproxRank generally shows
an order of magnitude improvement in comparison to the
two baseline algorithms. Since the interaction between local
pages and external pages may be intra-domain links, there are
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Fig. 7. Spearman’s footrule distance for BFS subgraphs on AU dataset.

much more number of external pages for BFS subgraphs. SC
becomes very expensive to estimate the influence scores for
all external pages so we did not obtain the SC ranking for
the larger subgraphs. For the smallest two BFS subgraphs in
Figure 7, ApproxRank outperforms SC significantly.

We also note that the worst accuracy was shown by LPR2
for all BFS subgraphs. This again can be explained by the
heavy connectivity between the subgraph and external pages.
Unlike ApproxRank that modifies the transition probabilities,
LPR2 simply connects a local page to the artificial page even
when there are multiple links in the global graph. Hence on
BFS subgraphs, LPR2 further underestimates this connectivity.
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F. Runtime Performance

We compare the runtime efficiency of ApproxRank in com-
parison to the SC approach. We also report on the runtime of
the global PageRank algorithm and local PageRank to provide
a context.

The disadvantage for SC runtime performance is that it
computes the supergraph for each subgraph. In the process
of creating the supergraph, it expands the local graph of size
n by estimating the influence of each candidate outgoing page
on the local graph. To decide the influence of each page, it
estimates the PageRank for a graph of size (n+1). This implies
that the creation of the supergraph involves the PageRank
estimation for many graphs of size (n + 1). ApproxRank,
on the other hand, processes the global graph for one time
and determines the transition matrix Aapprox for its random
walk. When the rankings on multiple subgraphs need to be
computed, we can preprocess the global graph for one time,
and decide Aapprox for each subgraph with only local cost.

Table V and VI provide runtime details for ApproxRank,
SC, and local PageRank, for the TS subgraphs and the DS
subgraphs. The second column, #nodes in local graph, reports
on the number of pages in the subgraph; the third column to
the fifth column report on the runtime of local PageRank,
ApproxRank, and SC, respectively. The sixth column, the
value k, shows the number of external pages selected by SC
and added to the local graph through each expansion. The last
3 columns report the number of external pages in the first three
expansions of SC, which reveal the cost of SC to some extent.

For the global graph politics with 4382829 pages, the
global PageRank computation takes 5480 seconds. Approx-
Rank shows an order of magnitude or better runtime perfor-
mance, and its execution ranges from 484 to 571 seconds.
The runtime of the SC approach largely depends on the
number of external pages reached by the local graph through
expansions. For example, for TS subgraph socialism, the
initial graph is 12991 pages and SC considers 15936 pages
in the third expansion. The runtime for SC is 652 seconds and
is slightly worse than ApproxRank. However, for the larger TS
subgraphs, conservatism of 42797 pages, and liberalism of
61724 pages, the SC solution is at least five times as expensive
compared to ApproxRank.

Table VI report the runtime on DS subgraphs for the AU
dataset. The cost of global PageRank on this global graph
of 3884199 pages is 7035 seconds with 131 iterations. The
runtime for ApproxRank ranges from 110 to 468 seconds. SC
shows very poor runtime performance. For the first few rows
of the table the runtime ranges from 894 to 2047 seconds.
However, for the last rows, where the graph is much larger,
the performance of SC sharply degrades. In some cases, e.g.,
the last two rows, the SC performance is even worse than the
exact computation of global PageRank. The high overhead of
SC is a trade-off with the lack of access to the global graph.

The runtime for SC on BFS subgraphs is much higher than
the runtime on TS and DS subgraphs. The running time of
SC was 14655 seconds for the BFS subgraph of size 19420,

while for the other types of subgraphs of similar size, the
runtime of SC was 652 seconds for TS subgraph socialism of
size 12991 and 1310 seconds for DS subgraph bond.edu.au
of size 19559. ApproxRank, on the other hand, seems not
as sensitive to the subgraph types. For example, the runtime
for ApproxRank on the BFS subgraph of size 19420 is 142
seconds, and ApproxRank takes 484 seconds on socialism and
110 seconds on bond.edu.au.

VI. CONCLUSIONS

We propose a framework of an exact solution and an
approximate solution for computing PageRank on a sub-
graph. The IdealRank algorithm is an exact solution, and
the ApproxRank algorithm estimates PageRank scores for the
subgraph. We show that IdealRank scores converge to the true
PageRank scores that are obtained through global computation.
We conduct error analysis for the ApproxRank scores and
test ApproxRank algorithm on various types of subgraphs
on two datasets. We compare ApproxRank and a stochastic
complementation (SC) approach and show ApproxRank has
similar or superior performance to SC but with lower overhead.
We demonstrate that ApproxRank predict PageRank scores
accurately for a variety of subgraphs. The ApproxRank out-
performs two baseline algorithms in an order of magnitude.
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