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Abstract— Customized semantic query answering, personal-
ized search, focused crawlers and localized search engines fre-
quently focus on ranking the pages contained within a subgraph
of the global Web graph. The challenge for these applications
is to compute PageRank-style scores efficiently on the subgraph,
i.e., the ranking must reflect the global link structure of the
Web graph but it must do so without paying the high overhead
associated with a global computation. We propose a framework
of an exact solution and an approximate solution for computing
ranking on a subgraph. The IdealRank algorithm is an exact
solution with the assumption that the scores of external pages
are known. We prove that the IdealRank scores for pages in the
subgraph converge. Since the PageRank-style scores of external
pages may not typically be available, we propose the ApproxRank
algorithm to estimate scores for the subgraph. Both IdealRank
and ApproxRank represent the set of external pages with an
external node A and extend the subgraph with links to A. They
also modify the PageRank-style transition matrix with respect
to A. We analyze the [, distance between IdealRank scores
and ApproxRank scores of the subgraph and show that it is
within a constant factor of the ; distance of the external pages
(e.g., the true PageRank scores and uniform scores assumed
by ApproxRank). We compare ApproxRank and a stochastic
complementation approach (SC) [1], a current best solution for
this problem, on different types of subgraphs. ApproxRank has
similar or superior performance to SC and typically improves
on the runtime performance of SC by an order of magnitude
or better. We demonstrate that ApproxRank provides a good
approximation to PageRank for a variety of subgraphs.

I. INTRODUCTION

The explosion of information available on the Web has
made the ranking of web pages an expensive but unavoidable
component of query answering. Since hyperlinks from one
page to another usually implies an “endorsement” or “recom-
mendation”, link analysis plays a critical role in determining
the importance of web pages. PageRank[2] and HITS[3] are
two seminal approaches in the area. PageRank iteratively
computes the score of a page based on the scores of its parent
pages. HITS separates the role of each web page into a hub
or authority. The hub score estimates the value of its links to
other pages and the authority score estimates the importance
of the page. These algorithms are expensive because of the
number of web pages/objects involved in the computation.

In January 2005, the indexable Web for search engines was
estimated to be more than 11.5 billion pages [4]. According
to [5], the Web is growing at a rate of 25% per year. To make
ranking manageable, and to reflect the diversity of clients’
information needs, web applications such as semantic search,
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focused crawlers, localized search engines, and personalized
search have emerged. They all have a common objective to
rank a subgraph.

The first intriguing application is a focused crawler [6], [7],
also called a thematic crawler. A focused crawler is interested
in collecting a subset of the Web pages that are related
to a specific topic. Compared to a standard crawler which
can easily get lost and waste resources, a focused crawler
acquires relevant pages using a Best First Search; it selects
links based on their scores [7]. In contrast to focused crawlers
which are topic specific, a localized search engine indexes a
subset of web pages that are within a specific domain. The
web fragment retrieved by the focused crawler (or localized
search engine) is a subgraph of the global web graph. Only
PageRank scores for local pages in the subgraph are of interest
to users. Figure 1 shows the typical infrastructure of a focused
crawler (or a localized search engine). Users submit queries to
the subgraph collected by a focused crawler and local query
answers are returned to the user. The ranking on this local
graph, however, should reflect the link structure of all web

pages.
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Fig. 1. The infrastructure of a focused crawler or a localized search engine.

Another interesting scenario is semantic ranking. Objec-
tRank [8] creates a schema graph to model the semantic
connections between entity sets, e.g., authors or conferences.
The semantic connections are associated with an authority
transfer assignment which can be arbitrarily set by a domain
expert based on her interpretation of the domain. Figure 2 [8]
shows an authority transfer schema graph for DBLP.

While ObjectRank is flexible and allows the tuning of Ob-
jectRank scores by a domain expert, it leads to computational
challenges if a search engine has to consider all possible
combinations of keywords and authority transfer assignments.
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Fig. 2. The DBLP authority transfer schema graph in ObjectRank ([8]).

Recent research on reformulating ObjectRank scores based on
individual user feedback [9] and a graph exploration frame-
work for the biological Web [10] highlights the optimization
challenges of query answering and ranking for the semantic
Web.

If we can model a subgraph to contain the subset of pages
associated with the entity sets of interest to some domain
expert, we can then define the ObjectRank problem as a
problem of ranking a subgraph. This problem, too, is to exploit
existing PageRank scores for other regions of the graph that are
not of interest to the domain expert, and whose scores may also
remain largely unchanged. Figure 3 shows an example where
a subgraph is associated with an authority transfer assignment
and the external pages are beyond the focus of the domain
expert.

External
pages

0% Paper A ’EﬂPaperB |
"

Conference 0.15 035
VLDB 015 . 0.7 0.10 0.05
O‘N PaperC | ‘ Author 1 |
Fig. 3. An example of subgraph semantic ranking.

Another application that involves ranking a subgraph
is peer-to-peer networks. The advent of peer-to-peer(P2P)
technology has further boosted web information retrieval
by leveraging distributed computing power, storage, and
connectivity[11], [12], [13]. A distributed or decentralized
system has multiple peers or servers, each of which stores
its own subgraph of the Web. A user may ask queries on one
peer and ranked query answers that are available locally are
presented to the user. The ranking depends on the context of
the query.

A final scenario is a reflection of the constant change of the
Web. The ranking of pages needs to be updated frequently,
especially for the subgraph of the Web that experiences the
most change. This subgraph can be either a set of dangling
pages that crawlers have not as yet crawled, referred to as
the web “frontier” [14], or the set of pages that are most
affected by updates [15]. It is desirable that any strategy to

55

update the ranking of this subgraph exploits existing PageRank
scores for other regions of the graph which may remain largely
unchanged.

In response to these many motivating applications, we
address the problem of computing ranking scores for a sub-
graph. For ease of presentation, and to compare with existing
approaches, we use the PageRank metric for explanation and
experiments. However, our general approaches can be applied
to estimate ObjectRank scores as well.

We note that current ranking techniques (to be discussed
in the next section) either pay the cost of a global compu-
tation to get an accurate ranking [16], or they have to solve
another potentially difficult problem: to determine a relevant
supergraph of web pages that impact the rank of the subgraph
[1], [17]. Our challenge is to obtain an accurate ranking that
reflects the global link structure of the Web graph and to do
so without paying the high overhead associated with a global
PageRank computation or having to solve the difficult problem
of identifying a relevant supergraph. We would also like to
exploit pre-computed PageRank scores for external pages if
and when they are available and appropriate for use.

We propose a framework based on an exact and an ap-
proximate solution to compute PageRank on a subgraph. The
IdealRank algorithm is an exact solution. It assumes that
the PageRank scores of external pages are known. We prove
that the IdealRank scores for pages in the subgraph converge
to the true PageRank scores. Since the PageRank scores of
external pages may not typically be available, we propose
the ApproxRank algorithm to estimate PageRank scores for
the subgraph. Both IdealRank and ApproxRank represent the
set of external pages with an external node A and extend the
subgraph with links to A. They also modify the PageRank
transition matrix with respect to (the links to) A.

The IdealRank and ApproxRank framework formalizes the
problem of ranking a subgraph. It allows us to model multiple
scenarios where ranking a subgraph is important. IdealRank
can be used to model scenarios where PageRank scores of
the global graph are known a priori and can potentially be
re-used. This includes the case where the subgraph represents
the pages that have been updated, or the subgraph represents
the pages that contain all the semantic types of interest to a
domain expert for a personalized or semantic ranking such as
ObjectRank [8]. ApproxRank can be applied in general to all
these problems, when we do not know the PageRank scores
of external pages.

We compare our approach with the stochastic complemen-
tation (SC) approach [1]. SC builds a supergraph by carefully
examining candidate external pages and adding them into the
supergraph if adding this page has a significant influence on
the PageRank scores of the subgraph. Our approach in contrast
models the external pages using a node A, and it can be used
in situations when a supergraph cannot be obtained easily. Our
approach also avoids the cost of a global computation [16].
The ApproxRank computation is also much cheaper than SC
[1] since SC pays the high cost of constructing the supergraph.

We experimentally study the effect of size and type of the
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subgraphs on the accuracy of ApproxRank. We study several
types of subgraphs including domain specific subgraphs, topic
specific subgraphs, and subgraphs gathered by a Breadth First
Search crawler. We compare our results with SC and two
baseline ranking algorithms; one was discussed in [18], and the
other is local PageRank on the subgraph (ignoring the external
pages). We show that ApproxRank has similar or superior
ranking accuracy to SC and typically its runtime performance
is an order of magnitude better than SC. ApproxRank also
outperforms the two baseline algorithms on ranking accuracy.
Our contributions are as follows:

1) We define an efficient algorithm, IdealRank, to compute
PageRank scores for a subgraph when PageRank scores
of the external pages are known. The random walk
defined by IdealRank utilizes these scores.

2) We prove that the IdealRank scores converge to the true
PageRank scores for all local pages in the subgraph, and
the IdealRank score for the external node A converges to
the sum of true PageRank scores for all external pages.

3) When PageRank scores of external pages are not known,
we define an efficient algorithm ApproxRank. We pro-
vide important properties of ApproxRank scores.

4) We show through empirical results that the ApproxRank
ranking accuracy is similar (sometimes superior) to the
best competitor SC, and it overwhelmingly outperforms
the runtime efficiency of SC.

The rest of the paper is organized as follows. Section II
briefly reviews the PageRank algorithm and discusses related
work. Section III defines the IdealRank algorithm. Section IV
presents the ApproxRank algorithm. Experimental results are
described in V and VI concludes.

II. RELATED WORK

We briefly describe the PageRank algorithm and summarize
research on PageRank. We refer to surveys [19], [20] and book
[21] for a more complete description of related work.

A. PageRank Review

PageRank was introduced in [2] to compute the stationary
distribution of a Markov chain from the link structure of a web
graph. The underlying assumption is that links between pages
confer authority. A link from page ¢ to page j is evidence that ¢
is suggesting that j is important. The importance contributed
to page j from i is inversely proportional to the outdegree
of i. Let D, be the outdegree of page i. The corresponding

| random walk on the directed web graph can be expressed by
a transition matrix A as follows:

A ={
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then randomly meets other peers and gradually increases
its knowledge about the global web graph by exchanging
information, and then recomputes the PageRank scores on
local peer. This meeting and recompute process is repeated
until the peer gathers enough information. The JXP scores
converge to the true global PageRank scores if peers eventually
meet sufficient number of times to exchange information. The
assumption is that the outdegree of each page in the global
graph is known.

However, these work focus on providing an approximation
for the global graph, in centralized systems or distributed
systems.

D. Computing PageRank for a subgraph

The problem of estimating PageRank values for a small
portion of the Web graph has received recent attention in
the literature [1], [17], [29]. The goal of [17] is to estimate
the PageRank value for one target node. [1] addresses the
problem of estimating the score for a subgraph. [29] aims
to do link based ranking on a small graph exploiting users’
access patterns.

The common approach in all of these papers is to expand
the subgraph to a supergraph and then run PageRank on this
augmented graph. They differ in the procedure to augment
the subgraph. The expansion in [17] proceeds backwards by
following reverse hyperlinks. PageRank scores for boundary
nodes in the augmented graph that have incoming edges
from outside of the subgraph are estimated. Then standard
PageRank is computed on this graph. [1] starts with following
the outgoing links in a given local graph of size n. A set of
k nodes are selected via stochastic complementation and the
PageRank of this expanded graph is computed. This process is
repeated for a number of iterations (e.g. 25 iterations). In [29],
besides the existing hyperlinks that indicate recommendation,
implicit recommendation links that can be determined by
mining user access patterns are also added into the supergraph.

We compare our approach with SC in [1] which is also a
solution to rank a subgraph. They introduce a new challenge to
construct a good supergraph and that has some disadvantages.
By following outgoing links it is possible that their approach
could sometimes miss important pages that link into the
subgraph. To decide if each candidate page should be included
in the supergraph, SC has to estimate PageRank scores on the
subgraph when added the candidate page. When the size of
the constructed supergraph is large, SC paid the overhead of
computing PageRank scores for pages that are not relevant to
the user. They are also not able to utilize the PageRank scores
of pages when they are known a priori and are not expected
to change significantly. This corresponds to the scenario of
customizing or personalizing the rank of a subgraph using
a metric such as ObjectRank, or the scenario where the
updates to the Web graph are confined to the subgraph. We
take a different approach through state aggregation to reduce
computation in each iteration. We will compare our approaches
in Section V.

57

E. State Aggregation Approaches

Iterative Aggregation/Disaggregation (IAD) method [30] is
applied to PageRank in [15] to update PageRank scores when
the transition probabilities or states are changed. As discussed
in Section II-B, [24] presents a graph aggregation method
to approximate PageRank for the entire graph. In contrast to
these aggregation approaches, the IdealRank and ApproxRank
framework is more general since it addresses aggregation for
a subgraph both when the PageRank scores are known and
when they are not known a priori.

III. IDEALRANK APPROACH

We formally define the IdealRank algorithm to compute
PageRank scores for a local graph. Our approach is inspired
by research on collapsing matrices with the same eigenvector
[31]. IdealRank performs a random walk on a modified local
graph called the extended local graph, where an external node
A is added to the local graph. A represents the set of pages that
are not local. The transition matrix probabilities of IdealRank
are derived from the transition matrix of PageRank for the
global graph. IdealRank assumes that the PageRank scores of
all external pages in A are known. This assumption will be
relaxed in the next section where we present an approximate
solution.

Consider two graphs; a global graph of size N, and a local
graph of size n. The local graph is a subgraph of the global
graph. The pages in the local graph are called local pages
while pages in the global graph and that are not in the local
graph are called external pages. The goal is to provide the
true PageRank for the local graph without running PageRank
on the global graph.

Table I lists the symbols used to define our algorithms.
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graph. When computing the standard Pagerank algorithm on
this graph, the probability flow from a page is proportional to
the inverse of its outdegree. Page C' which has 3 incoming
edges from the external pages is treated similarly to page
D which has only 1 incoming edge from the external pages.
Intuitively, however, we should expect a higher probability of
following links from the external pages to page C. Similarly,
the probability of following links from page A to A is 1/3.
This too is lower than the transition probability based on the
global graph.

IdealRank addresses this shortcoming with the following
solution: The first step is to add an external node A to the
subgraph to represent all external pages. The second step is to
construct the extended local graph G, the A enriched graph
of size n+ 1. There is an edge from A to a local page in G,
if there is an edge from an external page to that local page.
The same hold for edges out of local pages. Similarly, there
is an edge from A to A if there is an edge between external
pages. The next step is to define a transition matrix A;geq; and
a personalization vector Pj4.q;. The details will be discussed
in Section III-B. Finally, a random walk is performed on G..
The IdealRank vector R;4eq; is defined as follows:

Rideal = EA'L/'I(;eal . Rideal + (]- - E)Pideal (l)

Algorithm IdealRank(G;, G)

1. Add external node A to Gj.

2. Create edges associated with A and get G..

3. Assign values to Pigeq; and Ajgeai-

4. Perform a random walk on the extended local graph

according to Formula (1).
B. Aideal and Pideul

We define an (n+1) x (n+ 1) transition matrix A;geq; and
a length (n+ 1) personalization vector Pij.q;. Let A represent
the N x N transition matrix for PageRank on the global graph.
Entry A, ; has the value of the inverse outdegree of page ¢, if
there is an edge (7, j); the value is the probability of a random
surfer following this edge from <. Without loss of generality,
we consider the local pages to be the first contiguous n pages
in A and the external pages are indexed from n + 1 to N in
A.

Assume that the PageRank scores for all external pages
are known. The values are {R[n + 1], R[n + 2],--- , R[N]},
respectively. Let EXT Sum = Zf;nﬂ RJ[i]. Ajdeal is defined
as follows, based on the entries in the original PageRank
transition matrix A:

A1l Al n
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Fig. 4. A global graph of both local pages
and external pages.

Fig. 5.
graph without a strategy to ad-
just transition probabilities

N]i\, if page 4 is local,
~— if page i is the external node A.

Pideal [l] = { (5)

C. Convergence of IdealRank

Let R;jcq: be the final ranking vector of IdealRank, where
the first n elements are scores for local pages and the (n+1)-th
element is the score for the external node A. We show that the
scores of first n elements are identical to the true PageRank
scores.

Theorem 1: In R;geq1, scores for the first n pages converge
to the true PageRank scores. The score for the (n + 1)th
element, A, converges to the sum of true PageRank scores
for all external pages.

Proof: Let R be the true PageRank vector such that
R=¢AT -R+ (1 —¢)P, ie., R is the converged stationary
distribution for A. Let R' = QIR be a vector with n + 1
entries. We also know that R = QT R’. It is obvious that
R'[i] = R][i] for first n elements and R'[n+1] = 31 | Rli].
We will show that R’ is the IdealRank vector.

We know that eA” R + (1 — €) P = R. Next consider a left
multiply with Q7 to obtain the following:

eATR+ (1 —¢)P R =
QTeATR+ QY (1 —¢)P = QIR =
€QFATQTR +(1-€)Q3P = QIR =
G(QlAQg)TR/ + (1 — €)Pz‘deal = R’ =
€Aigear R + (1 — €) Pigear = R

Since A;geq; is stochastic and Markov Chain defined by
IdealRank is irreducible and aperiodic, there is a unique
stationary distribution for A;4eq;. Therefore, R’ = Rigeq;. M

The IdealRank algorithm addresses several applications.
One is where some subgraph of the Web graph has been
updated. A second case is when the personalized author-
ity transfer is limited to the subgraph. In these cases, the
knowledge of PageRank scores can be potentially relied on
to estimate new ranking scores.

..ans

An extended local Fig. 6. An extended local

graph marked with transition
probabilities in ApproxRank

IV. THE APPROXRANK ALGORITHM

Unlike the previous scenario where PageRank values for ex-
ternal pages are known, we now consider scenarios where the
PageRank scores are not known a priori. To cover this situa-
tion, our framework has an approximate solution ApproxRank.
The key difference is that for ApproxRank, the algorithm is
not able to differentiate the (previously weighted) contribution
of authority from each individual external page (since these
PageRank scores are unknown). Instead, ApproxRank will
consider the authority flow from external pages assuming they
are equally important. We analyze the L; distance between
IdealRank scores and ApproxRank scores of the subgraph and
reveal that it is within a constant factor of L; distance between
the true PageRank scores and uniform scores of the external
pages. We will show through experiments that ApproxRank is
a good approximation.

A. The ApproxRank algorithm
The ApproxRank vector R,pproq is defined as follows:
Rapproz = EAprroz * Rapproz + (1 - E)]Dideal (6)
ApproxRank adopts the same personalization vector as Ide-
alRank. It however, defines its own transition matrix Aqpproz-
B. Auppros definition

Agpproz 18 an (n + 1) x (n + 1) matrix. It is defined as
follows:

N
Al Aln > Al
i=n+t1
N
Ap1 An,n > An
i=nt1
N N N N
> Aja > Ajn 22 Ay
j=n+1 j=n+1 i=n+41j=n+1
N—n N—n N—n

Agppros s different from A;gqeq; in the last row (see
Section III-B), since IdealRank does not utilize knowledge
about PageRank scores of external pages in the first n rows.
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For the first n entries in the last row, the value represents the
(average) probability flow accumulated from (N — n) external
pages to each local page. The last entry in this n-th row of the
matrix is the (average) probability flow from external pages
to other external pages. Similar to A;geqr = Q1 AQ2, Aappros
can be formally defined as Agpproz = Q1 AQ2, where the
vector E is replaced by a vector Egpprog in Q1:

Eapprom = ( -+

v‘nﬁw
ity
|
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matrix A is row stochastic, ZZ=1 Aji, < 1. The definition of
L, distance concludes the proof. ]
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the absolute value of the differences between the PageRank
estimation and the global PageRank scores, for the subgraph.

| R1— Rz [|1= %7, [Ra[i] — Ra[d]|

Other research [16], [35] use the Spearman’s footrule dis-
tance to measure the success of their PageRank approxima-
tions. Thus, we also report on the Spearman’s footrule distance
between the ApproxRank vector o2 and the global PageRank
vector o1.

Note that there may be a substantial number of tied pages
with the same score. A ranking with ties is referred to as a
partial ranking. We consider an extension of the Spearman’s
footrule distance for ranking with ties [36].

The set of pages in ties is called a bucket. Each list o4,
and o2 can be viewed as ranked buckets By, By, -+, B;. The
bucket position for bucket B;, pos(B;), is defined as follows:

pos(Bs) = (3 By)) + 1L

7<i
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F. Runtime Performance

We compare the runtime efficiency of ApproxRank in com-
parison to the SC approach. We also report on the runtime of
the global PageRank algorithm and local PageRank to provide
a context.

The disadvantage for SC runtime performance is that it
computes the supergraph for each subgraph. In the process
of creating the supergraph, it expands the local graph of size
n by estimating the influence of each candidate outgoing page
on the local graph. To decide the influence of each page, it
estimates the PageRank for a graph of size (n+1). This implies
that the creation of the supergraph involves the PageRank
estimation for many graphs of size (n + 1). ApproxRank,
on the other hand, processes the global graph for one time
and determines the transition matrix Aqpproq, for its random
walk. When the rankings on multiple subgraphs need to be
computed, we can preprocess the global graph for one time,
and decide Aqppro. for each subgraph with only local cost.

Table V and VI provide runtime details for ApproxRank,
SC, and local PageRank, for the TS subgraphs and the DS
subgraphs. The second column, #nodes in local graph, reports
on the number of pages in the subgraph; the third column to
the fifth column report on the runtime of local PageRank,
ApproxRank, and SC, respectively. The sixth column, the
value k, shows the number of external pages selected by SC
and added to the local graph through each expansion. The last
3 columns report the number of external pages in the first three
expansions of SC, which reveal the cost of SC to some extent.

For the global graph politics with 4382829 pages, the
global PageRank computation takes 5480 seconds. Approx-
Rank shows an order of magnitude or better runtime perfor-
mance, and its execution ranges from 484 to 571 seconds.
The runtime of the SC approach largely depends on the
number of external pages reached by the local graph through
expansions. For example, for TS subgraph socialism, the
initial graph is 12991 pages and SC considers 15936 pages
in the third expansion. The runtime for SC is 652 seconds and
is slightly worse than ApproxRank. However, for the larger TS
subgraphs, conservatism of 42797 pages, and liberalism of
61724 pages, the SC solution is at least five times as expensive
compared to ApproxRank.

Table VI report the runtime on DS subgraphs for the AU
dataset. The cost of global PageRank on this global graph
of 3884199 pages is 7035 seconds with 131 iterations. The
runtime for ApproxRank ranges from 110 to 468 seconds. SC
shows very poor runtime performance. For the first few rows
of the table the runtime ranges from 894 to 2047 seconds.
However, for the last rows, where the graph is much larger,
the performance of SC sharply degrades. In some cases, e.g.,
the last two rows, the SC performance is even worse than the
exact computation of global PageRank. The high overhead of
SC is a trade-off with the lack of access to the global graph.

The runtime for SC on BFS subgraphs is much higher than
the runtime on TS and DS subgraphs. The running time of
SC was 14655 seconds for the BFS subgraph of size 19420,
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while for the other types of subgraphs of similar size, the
runtime of SC was 652 seconds for TS subgraph socialism of
size 12991 and 1310 seconds for DS subgraph bond.edu.au
of size 19559. ApproxRank, on the other hand, seems not
as sensitive to the subgraph types. For example, the runtime
for ApproxRank on the BFS subgraph of size 19420 is 142
seconds, and ApproxRank takes 484 seconds on socialism and
110 seconds on bond.edu.au.

VI. CONCLUSIONS

We propose a framework of an exact solution and an
approximate solution for computing PageRank on a sub-
graph. The IdealRank algorithm is an exact solution, and
the ApproxRank algorithm estimates PageRank scores for the
subgraph. We show that IdealRank scores converge to the true
PageRank scores that are obtained through global computation.
We conduct error analysis for the ApproxRank scores and
test ApproxRank algorithm on various types of subgraphs
on two datasets. We compare ApproxRank and a stochastic
complementation (SC) approach and show ApproxRank has
similar or superior performance to SC but with lower overhead.
We demonstrate that ApproxRank predict PageRank scores
accurately for a variety of subgraphs. The ApproxRank out-
performs two baseline algorithms in an order of magnitude.
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