
Frequent Subgraph Pattern Mining
on Uncertain Graph Data

Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang
Department of Computer Science and Technology

Harbin Institute of Technology
90 West Dazhi Street, Harbin, China

{znzou, lijzh, honggao, zhangshuocn}@hit.edu.cn

ABSTRACT
Graph data are subject to uncertainties in many applications due to
incompleteness and imprecision of data. Mining uncertain graph
data is semantically different from and computationally more chal-
lenging than mining exact graph data. This paper investigates the
problem of mining frequent subgraph patterns from uncertain graph
data. The frequent subgraph pattern mining problem is formalized
by designing a new measure called expected support. An approx-
imate mining algorithm is proposed to find an approximate set of
frequent subgraph patterns by allowing an error tolerance on the ex-
pected supports of the discovered subgraph patterns. The algorithm
uses an efficient approximation algorithm to determine whether a
subgraph pattern can be output or not. The analytical and exper-
imental results show that the algorithm is very efficient, accurate
and scalable for large uncertain graph databases.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [data mining]

General Terms
Algorithms, Performance

1 INTRODUCTION
Recently, graph mining has become an increasingly important re-
search issue. Existing studies on graph mining are only concerned
with exact graphs that are precise and complete. However, graph
data are generally subject to uncertainties caused by noise, incom-
pleteness and inaccuracy in practice. We call such kinds of graphs
uncertain graphs.
Example 1. In bioinformatics, interactions between proteins are
generally represented as a graph, called protein-protein interaction
(PPI) network, where vertices represent proteins, and edges repre-
sent interactions between proteins. Currently, there are large col-
lections of PPIs detected by a variety of methods. It has been noted
that all methods produce a significant amount of noisy interactions
that don’t really exist and miss a fraction of real interactions. Due
to the inaccurate nature of PPI detection methods, it is more appro-
priate to represent a PPI network as an uncertain graph, where the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

uncertainty of each edge represents the chance of the interaction
existing in reality [2]. Many methods have been proposed to derive
uncertainties of protein interactions [20].

Mining uncertain graph data is important in many applications.
For example, [2] predicts the membership of a protein in a partially
known protein complex by mining a PPI network as an uncertain
graph; [6] models a wireless networks as an uncertain graph and
extracts the most probable delivery subgraph to aid the design of
routing protocols. In mining uncertain graph data, each discovered
knowledge is associated with a confidence value computed from
uncertainties to indicate the possibility of the knowledge existing
in reality. Only knowledge occurring with high confidence can be
regarded as useful.

As a central problem in graph mining, frequent subgraph pattern
mining on exact graph data has gained a lot of attention [8, 14, 18,
27]. For uncertain graph data, frequent subgraph pattern mining is
also a useful tool for analyzing uncertain graph data.
Example 2. Biologists are often interested in identifying functional
modules and evolutionarily conserved subnetworks from biological
networks such as PPI networks. Frequent subgraph pattern mining
has been shown to be an effective approach [13]. However, as
shown above, biological networks are generally subject to uncer-
tainties. So, it is important to find subgraph patterns that not only
occur frequently in uncertain graphs but also have high confidence
in terms of uncertainty to exist in reality.

An uncertain graph database D containing 2 uncertain graphs,
G1 and G2, is shown in Figure 1. The text on each vertex is the
label of the vertex, the text on each edge is the label of the edge,
and the real number on each edge is the existence possibility of the
edge. The existence possibility of an edge means the possibility of
the edge existing between the endpoints in an exact graph instance.
Following the uncertain graph data model presented in Section 3,
G1 can be viewed as a succinct representation of 16 exact graphs,
called implicated graphs in this paper, as shown in Figure 2. The
probability distribution over the 16 implicated graphs is derived
from the existence possibilities of the edges in G1. Similarly, G2

represent 8 implicated graphs. By combining any implicated graph
of G1 with any implicated graph of G2, we obtain an exact graph
database, called an implicated graph database. Due to the various
combinations of implicated graphs, D has totally 16 × 8 = 128
implicated graph databases. Following this model, a subgraph pat-
tern is an exact graph that is contained in at least one implicated
graph databases. Under this new model, the significance of a sub-
graph pattern should be determined by considering both the num-
ber of occurrences of the subgraph patterns in the implicated graph
databases and the probabilities of the implicated graph databases.

This paper investigates the problem of mining frequent subgraph
patterns on uncertain graph data. The problem poses several new

583

v1�������	
A

v2�������	
B

v3�������	
B

v4�������	
B

v5�������	
B

x

0.5

����

y

0.6
��

��
x

0.7

��
��

y

0.8

����

G1

v6�������	
A

v7�������	
B

v8�������	
B

y

0.1

x0.8
z

0.7

�����������

G2

©
A

©
B

©
B

y

x

S

Figure 1: An example of uncertain graph database D =
{G1, G2} and subgraph pattern S.

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

Pr=0.012

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���
x

Pr=0.012

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

��
�
y

Pr=0.018

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

��
�

x

Pr=0.028

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B
���y

Pr=0.048

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���
��

�
x

y

Pr=0.018

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���

��
�

x

x

Pr=0.028

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���
��� xy

Pr=0.048

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

��
�

��
�

yx

Pr=0.042

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

��
�

���

y

y

Pr=0.072

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

��
�

���

x

y

Pr=0.112

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���
��

�
��

�

x

yx

Pr=0.042

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���
��

�

��� x

y

y

Pr=0.072

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���

��
�

��� x

x

y

Pr=0.112

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

��
�

��
�

���

yx

y

Pr=0.168

v1
��
����A

v2
��
����B

v3
��
����B
v4
��
����B

v5
��
����B

���
��

�
��

�

��� x

yx

y

Pr=0.168

Figure 2: The probability distribution of all implicated graphs
of uncertain graph G1 in Figure 1.

challenges. On exact graph data, the significance of a subgraph pat-
tern is measured by support, i.e. the proportion of graphs contain-
ing the subgraph pattern. However, such definition doesn’t make
sense on uncertain graph data because the containment relationship
between uncertain graphs is uncertain. To address this challenge
in semantics, the support of a subgraph pattern S in an uncertain
graph database D should be defined as a random variable over the
support values of S in all implicated graph databases of D. Then,
the significance of S can be measured by the expected value, called
expected support, of the support values of S in all implicated graph
databases ofD. If the expected support of S is no less than a thresh-
old specified by users, then S is frequent. Therefore, the frequent
subgraph pattern mining problem can be stated as follows. Given
an uncertain graph databaseD and an expected support threshold,
find all frequent subgraph patterns in D.

Discovering all frequent subgraph patterns in an uncertain graph
database is a very challenging problem. Firstly, we prove that it is
#P-complete [22] to compute the expected support of a subgraph
pattern in an uncertain graph database, i.e. there exist no efficient
algorithms to determine whether a subgraph pattern is frequent or
not. Secondly, the number of all subgraph patterns in an uncertain
graph database is extremely large in general, and it is even #P-hard
to count the number of all subgraph patterns. So, it is unaffordable
to examine all of them to find the frequent ones.

Due to the hardness of the problem, an approximate mining al-
gorithm, called MUSE (Mining Uncertain Subgraph pattErns), is
proposed to find an approximate set of frequent subgraph patterns
in an uncertain graph database. It approximates the set of all fre-
quent subgraph patterns in the following manner. Let minsup be
the expected support threshold and ε ∈ [0, 1] be a relative error
tolerance. In MUSE, all subgraph patterns with expected support
at leastminsup are output, but all subgraph patterns with expected

support less than (1 − ε)minsup are not output. Moreover, deci-
sions are arbitrary for subgraph patterns with expected support in
[(1− ε)minsup,minsup).

The MUSE algorithm adopts two critical techniques. The first
one is the efficient method to determine whether a subgraph pat-
tern can be output or not. It first approximates the expected support
of a subgraph pattern by an interval enclosing the expected sup-
port of the subgraph pattern and then makes decision on whether
the subgraph pattern can be output or not by checking the overlap-
ping relationship between the approximated interval and [(1− ε) ·
minsup,minsup). In this way, it avoids the difficulty in exactly
computing the expected support of the subgraph pattern. The sec-
ond technique is the efficient method to examine subgraph patterns.
We prove that the expected support satisfies the apriori property,
that is, all supergraphs of an infrequent subgraph patterns are also
infrequent. To take advantage of this property, all subgraph patterns
are organized into a tree, and the tree is traversed in the depth-first
strategy. If a subgraph pattern can not be output as a result, then all
its descendants in the tree need not to be examined.

Extensive experiments were carried out to evaluate the efficiency,
approximation quality and scalability of MUSE and the impact of
uncertainties on the efficiency of MUSE. The analysis and the ex-
perimental results show that MUSE is very efficient, accurate and
scalable on large uncertain graph databases.

2 RELATED WORK
A number of algorithms have been proposed to discover frequent
subgraph patterns from exact graph data [8, 10, 14, 18, 23, 24, 27].
To reduce the number of redundant subgraph patterns, [28] pro-
posed CloseGraph to discover frequent closed subgraph patterns,
[9] developed SPIN to discover frequent maximal subgraph pat-
terns, and [15] presented the RP-GD and RP-FP algorithms to sum-
marize subgraph patterns. In addition, some variants of the frequent
subgraph pattern mining problem have been studied, such as the
discovery of frequent closed cliques [25], frequent closed quasi-
cliques [29], cross-graph quasi-cliques [19], correlated subgraph
patterns [12] and significant subgraph patterns [26]. However, all
these algorithms are designed only for mining exact graph data and
can not be extended to uncertain graph data.

Existing work on mining uncertain data has focused on cluster-
ing [4], frequent item/itemset mining [1, 3, 30], classification [21],
and so on. However, all the algorithms investigate mining struc-
tured data in uncertain relational data models rather than mining
uncertain graph data and can not be shifted to uncertain graph data
mining.

To the best of our knowledge, there is no literature to date on
mining frequent subgraph patterns from uncertain graph data. This
paper is the first one to investigate this problem.

3 PROBLEM STATEMENT
In this paper, the vertex set and edge set of a graph G are denoted
by V (G) and E(G), respectively.

3.1 Model of Uncertain Graphs
Definition 1. An uncertain graph is a system G = ((V,E), Σ,
L, P), where (V,E) is an undirected graph, Σ is a set of labels,
L : V ∪E → Σ is a function assigning labels to vertices and edges,
and P : E → (0, 1] is a function assigning existence possibility
values to edges.

The existence possibility, P ((u, v)), of an edge (u, v) is the pos-
sibility of the edge existing between vertices u and v. Specifically,
P ((u, v)) = 1 indicates that edge (u, v) definitely exists. Thus,

584

an exact graph1 is a special uncertain graph with existence pos-
sibilities of 1 on all edges. Unlike an exact graph, an uncertain
graph implicates a set of exact graphs. Formally, an exact graph
I = ((V ′, E′),Σ′, L′) is an implicated graph of an uncertain graph
G = ((V,E),Σ, L, P), denoted byG⇒ I , if and only if V ′ = V ,
E′ ⊆ E, Σ′ ⊆ Σ and L′ = L|V ′∪E′ , where L|V ′∪E′ is the func-
tion obtained by restrictingL to V ′∪E′. For simplicity, we assume
that all existence possibilities of edges are independent. The inde-
pendence assumption has been shown to be reasonable in many real
applications [2, 6, 7]. Based on this assumption, the possibility of
an uncertain graph G implicating an exact graph I is

P (G⇒ I) =
∏

e∈E(I)

P (e)
∏

e′∈E(G)\E(I)

(1− P (e′)), (1)

where P (e) is the existence possibility of edge e. Eq. (1) holds
because all edges in E(I) are included in I but all in E(G) \E(I)
are not included in I . Let I(G) denote the set of all implicated
graphs of an uncertain graph G. Apparently, |I(G)| = 2|E(G)|.
Moreover, it is easy to show that function P (G ⇒ I) defines a
probability distribution over I(G).

An uncertain graph database is a set of uncertain graphs. It es-
sentially represents a set of implicated graph databases. Formally,
an implicated graph database of an uncertain graph database D =
{G1, G2, . . . , Gn} is a set of exact graphs d = {I1, I2, . . . , In}
such that Gi ⇒ Ii for 1 ≤ i ≤ n. The set of all implicated
graph databases of D is denoted by I(D). Obviously, |I(D)| =∏n

i=1 2|E(Gi)|. Assuming that the uncertain graphs in an uncertain
graph database are mutually independent, the possibility of a graph
database d = {I1, I2, . . . , In} being implicated by an uncertain
graph database D = {G1, G2, . . . , Gn} is

P (D ⇒ d) =
∏n

i=1
P (Gi ⇒ Ii), (2)

where P (Gi ⇒ Ii) is the probability of Gi implicating Ii. It is
easy to prove that function P (D ⇒ d) defines a probability distri-
bution over I(D).
Example 3. Figure 1 shows an example of uncertain graph database
D = {G1, G2}. G1 represents the probability distribution over the
16 implicated graphs ofG1 as shown in Figure 2. G2 represents the
probability distribution over the 8 implicated graphs ofG2. D rep-
resents the probability distribution over the 128 implicated graph
databases of D.

3.2 Problem Definition
Definition 2. An exact graph G = (V,E,Σ, L) is subgraph iso-
morphic to another exact graph G′ = (V ′, E′,Σ′, L′), denoted by
G �ex G′, if there exists an injection f : V → V ′ such that
(1) L(v) = L′(f(v)) for any v ∈ V , (2) (f(u), f(v)) ∈ E′ for
any (u, v) ∈ E, and (3) L((u, v)) = L′((f(u), f(v))) for any
(u, v) ∈ E. The injection f is called a subgraph isomorphism from
G to G′. The subgraph (V ′′, E′′) of G′ with V ′′ = {f(v)|v ∈ V }
and E′′ = {(f(u), f(v))|(u, v) ∈ E}) is called the embedding of
G in G′ under f .

In conventional frequent subgraph pattern mining, a subgraph
pattern is defined as a connected subgraph that is subgraph isomor-
phic to at least one exact graph in the input exact graph database,
and the support of a subgraph pattern S in an exact graph database
D is defined as supD(S) = |{G| S�exG and G∈D}|

|D| . However, such
concepts don’t make sense in uncertain graph databases since an

1A conventional labeled graph [14, 27] is called an exact graph in
this paper, which is a 3-tuple G = ((V,E),Σ, L), where (V,E) is
an undirected graph, Σ is a set of labels, and L : V ∪ E → Σ is a
labeling function of the vertices and edges.

exact subgraph is embedded in an uncertain graph in a probabilis-
tic sense. Hence, these concepts should be redefined in the context
of uncertain graph databases.

In an uncertain graph database D, a subgraph pattern is a con-
nected exact graph that is subgraph isomorphic to at least one im-
plicated graph in some implicated graph database of D. Let S and
S′ be two subgraph patterns in D. We call S a subpattern of S′,
or S′ a superpattern of S, if S �ex S′, and call S a direct sub-
pattern of S′, or S′ a direct superpattern of S, if S �ex S′ and
|E(S)|+ 1 = |E(S′)|.

Let I(D) be the set of all implicated graph databases of D. The
support of a subgraph pattern S in D is a random variable over
I(D) with probability distribution

s1 s2 · · · sm

P (s1) P (s2) · · · P (sm)
where m = |{supd(S)|d ∈ I(D)}|, si = supd(S) is the conven-
tional support of S in an implicated graph database d ∈ I(D), and
P (si) =

∑
d∈I(D) and supd(S)=si

P (D ⇒ d) is the probability of
support value si for 1 ≤ i ≤ m.

The significance of the subgraph pattern S can be measured by
the expected value of the support of S as defined above, called the
expected support of S in D, i.e.

esupD(S) =

m∑
i=1

siP (si) =
∑

d∈I(D)

supd(S)P (D ⇒ d). (3)

A subgraph pattern S is frequent in an uncertain graph database D
if the expected support of S in D is not less than a user-specified
threshold minsup ∈ [0, 1]. Then, the problem of discovering fre-
quent subgraph patterns on an uncertain graph database can be
defined as follows.
Input: an uncertain graph database D and an expected support
threshold minsup.
Output: the set of all frequent subgraph patterns in D, i.e. {S|S
is a subgraph pattern in D and esupD(S) ≥ minsup}.
4 COMPLEXITY OF THE FREQUENT SUB-

GRAPH PATTERN MINING PROBLEM
Before proving the computational complexity of the frequent sub-
graph pattern mining problem, we first reformulate the expected
support measure.

Given an uncertain graph databaseD, a subgraph pattern S inD
is said to occur in an uncertain graphG ∈ D, denoted by S �U G,
if S is subgraph isomorphic to at least one implicated graph of G.
The probability of S occurring in G is

P (S �U G) =
∑

I∈I(G)

P (G⇒ I)ψ(I, S), (4)

where I(G) is the set of all implicated graphs of G, and ψ(I, S) =
1 if S is subgraph isomorphic to I and ψ(I, S) = 0 otherwise.
Then, Eq. (3) can be rewritten as follows.

esupD(S) =
∑

d∈I(D)
supd(S)P (D ⇒ d)

=
∑

d={I1,I2,...,I|D|}∈I(D)

⎛
⎝P (D ⇒ d)

|D|
|D|∑
i=1

ψ(Ii, S)

⎞
⎠

=
1

|D|
|D|∑
i=1

∑
I∈I(Gi)

ψ(I, S)P (Gi ⇒ I)

=
1

|D|
|D|∑
i=1

P (S �U Gi).

(5)

585

Hence, the expected support of S in D can be efficiently computed
using Eq. (5) instead of using Eq. (3).
Theorem 1. It is #P-complete to compute the probability of a sub-
graph pattern occurring in an uncertain graph.
Proof. We prove the theorem by reducing the #P-complete DNF
counting problem [22] to the problem of computing the probability,
P (S �U G), of a subgraph pattern S occurring in an uncertain
graph G.

The DNF counting problem can be formulated as follows. Let
F = C1 ∨ C2 ∨ · · · ∨ Cn be a boolean formula in disjunctive
normal form (DNF) on m boolean variables x1, x2, . . . , xm. Each
clauseCi is of the formCi = l1∧l2∧· · ·∧lk, where lj is a boolean
variable in {x1, x2, . . . , xm}. Let Pr(xi) be the probability of xi

being assigned true. The DNF counting problem is to compute the
probability of F being satisfied by a randomly and independently
chosen truth assignment to the variables, denoted by Pr(F). Given
an instance of the DNF counting problem, an instance of the prob-
lem of computing P (S �U G) can be constructed as follows.

First, construct an uncertain graph G. The vertex set of G is
V (G) = {c1, c2, . . . , cn, u1, u2, . . . , um, v1, v2, . . . , vm}. The
labels of c1, c2, . . . , cn are α, and the labels of u1, u2, . . . , um and
v1, v2, . . . , vm are β. The edge set of G is constructed as follows.
For each variable xi in the DNF formula F , add an edge (ui, vi)
associated with existence possibility of Pr(xi) toG. For each vari-
able xj in each clause Ci, add an edge (ci, uj) associated with
existence possibility of 1 to G. All edges of G are labeled γ.

Next, construct a subgraph pattern S. The vertex set of S is
V (S) = {c′, u′

1, u
′
2, . . . , u

′
k, v

′
1, v

′
2, . . . , v

′
k}. The label of c′ is α,

and the labels of u′
1, u

′
2, . . . , u

′
k and v′1, v

′
2, . . . , v

′
k are β. The edge

set of S is E(S) = {(c′, u′
1), (c

′, u′
2), . . . , (c

′, u′
k), (u′

1, v
′
1), (u

′
2,

v′2), . . . , (u
′
k, v

′
k)}. All edges of S are labeled γ.

For example, given a DNF formula (x1∧x2∧x3)∨(x2∧x3∧x4)
and the probabilities Pr(x1),Pr(x2), . . . ,Pr(x4) of the variables
being assigned true, the uncertain graphG and the subgraph pattern
S constructed from the DNF formula are shown in Figure 3, where
the labels of the edges are omitted for clarity.

G : c1�������	α c2�������	α

u1�������	β u2�������	β u3�������	β u4�������	β

v1�������	β v2�������	β v3�������	β v4�������	β

1 1 1 1 1 1

Pr(x1) Pr(x2) Pr(x3) Pr(x4)

S : c′��������α

u′
1
�������	β u′

2
�������	β u′

3
�������	β

v′1�������	β v′2�������	β v′3�������	β

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Figure 3: The uncertain graph G and subgraph pattern S con-
structed for (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4).

Each truth assignment to the variables in F one-to-one corre-
sponds to an implicated graph of G, i.e. edge (ui, vi) exists in
the implicated graph if and only if xi = true. The probability of
each truth assignment is equal to the probability of the implicated
graph that the truth assignment corresponds to. A truth assignment
satisfies F if and only if the implicated graph that the truth assign-
ment corresponds to contains subgraph pattern S. Thus, Pr(F) is
equal to the probability, P (S �U G), of S occurring in G. This
completes the polynomial time reduction. �

By Theorem 1 and Eq. (5), we obtain the following corollary.
Corollary 1. It is #P-complete to compute the expected support of
a subgraph pattern in an uncertain graph database.

The number of frequent subgraph patterns in an uncertain graph
database is generally exponential to the size of the uncertain graph
database. Naturally, the complexity of any algorithm to mine fre-

quent subgraph patterns is exponential with respect to the size of
the input. More formally, we have the following theorem.
Theorem 2. The problem of counting the number of frequent sub-
graph patterns in an uncertain graph database for an arbitrary
expected support threshold is #P-hard.
Proof. We prove the theorem by giving a polynomial time reduc-
tion from the #P-complete problem of counting the number of sat-
isfying truth assignments of a monotone k-CNF formula [22] to
the problem of counting the number of frequent subgraph patterns
in an uncertain graph database. A monotone k-CNF formula is a
boolean formula in conjunctive normal form (CNF) in which every
clause has at most k literals and every literal is not negated.

Let F = D1 ∨ D2 ∨ · · · ∨ Dn be a monotone k-CNF formula
on m boolean variables x1, x2, . . . , xm. Each clause Di is of the
form Di = l1 ∧ l2 ∧ · · · ∧ lri , where each lj is an unengaged
boolean variable and ri ≤ k. An uncertain graph database D can
be constructed as follows. For each clause Di = l1 ∧ l2 ∧ · · · ∧ lri

in F , construct an uncertain graph Gi. The vertex set of Gi is
V (Gi) = {vi

0, v
i
1, . . . , v

i
m−ri

}. The edge set of Gi is E(Gi) =

{(vi
0, v

i
1), (v

i
0, v

i
2), . . . , (v

i
0, v

i
m−ri

)}. All vertices of Gi are la-
beled α. Each edge of Gi is associated with a distinct label in
{x1, x2, . . . , xm} \ {l1, l2, . . . , lri}. Each edge of Gi has exis-
tence possibility of 1. For example, given a monotone 2-CNF for-
mula (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x4, the uncertain graph database D
constructed is shown in Figure 4.

G1 : v1
0
�������	α

v1
1
�������	α v1

2
�������	α

x3
1

��
��
��
�

x4
1 ��

��
��

� G2 : v2
0
�������	α

v2
1
�������	α v2

2
�������	α

x1
1

��
��
��
�

x4
1 ��

��
��

� G3 :

v3
0
�������	α

v3
1
�������	
α

v3
3
�������	
α

v3
2
�������	α

x1

1

x21

x3

1

Figure 4: The uncertain graph database, D = {G1, G2, G3},
constructed for (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x4.

We establish the correspondence between the number of sat-
isfying truth assignments of F and the number of frequent sub-
graph patterns in D. Each truth assignment π to the variables
in F one-to-one corresponds to an exact graph gπ . In particu-
lar, suppose the variables in π assigned true are x1, x2, . . . , xl.
The vertex set of gπ is {v0, v1, . . . , vl}. The edge set of gπ is
{(v0, v1), (v0, v2), . . . , (v0, vl)}. All vertices of gπ are labeled α.
The edge (v0, vi) is labeled xi for 1 ≤ i ≤ l. Note that the ex-
pected support of a subgraph pattern in D is identical to the tra-
ditional support of the subgraph pattern in D since D is an exact
graph database at this time. A truth assignment π doesn’t satisfy
F if and only if the exact graph, gπ , corresponding to π is a fre-
quent subgraph pattern in D with respect to threshold 1/n. Thus,
the number of frequent subgraph patterns in D is 2m minus the
number of satisfying truth assignments of F . This completes the
polynomial time reduction. �

From the #P-hardness of the problem of counting the number
of frequent subgraph patterns, the NP-hardness of the problem of
finding all frequent subgraph patterns can be readily derived [5].

5 APPROXIMATE MINING ALGORITHM
5.1 Overview of the Algorithm
Due to the NP-hardness of the frequent subgraph pattern mining
problem, an approximate mining algorithm is proposed to find an
approximate set of frequent subgraph patterns. More formally, let
minsup be the input expected support threshold and ε ∈ [0, 1]
be a relative error tolerance. All subgraph patterns with expected

586

support at least minsup will be output, but all subgraph patterns
with expected support less than (1− ε)minsup will not be output.
Decisions are arbitrary for subgraph patterns with expected support
in [(1− ε)minsup,minsup).

The approximate mining algorithm has two main objectives.
1. Determine as efficiently as possible whether a subgraph pat-

tern can be output or not.
2. Examine the subgraph patterns as efficiently as possible to

find the frequent ones.

5.1.1 Method to Complete Objective I
To complete the first objective, we approximate the expected sup-
port, esupD(S), of a subgraph pattern S in the uncertain graph
database D by a closed interval, denoted [esup

D
(S), esupD(S)],

such that esupD(S) ∈ [esup
D

(S), esupD(S)] and then determine
whether S can be output or not by testing the following conditions.
Condition 1. If esupD(S) ≥ minsup and esup

D
(S) ≥ (1 −

ε)minsup, then output S since it is certain that esupD(S) ≥ (1−
ε)minsup and it is probable that esupD(S) > minsup. This
condition is illustrated on the top of Figure 5.
Condition 2. If esupD(S) < minsup, then don’t output S since it
is certain that esupD(S) < minsup. This condition is illustrated
in the middle of Figure 5.
Condition 3. If esupD(S) ≥ minsup and esup

D
(S) < (1 −

ε)minsup, then approximate esupD(S) by a smaller interval and
test the conditions again since we are unable to decide whether
esupD(S) > minsup or esupD(S) < (1 − ε)minsup using
the current interval. This condition is illustrated at the bottom of
Figure 5.

It is interesting to note that if the width of the interval [esup
D

(S),
esupD(S)] is less than ε ·minsup, then either condition 1 or con-
dition 2 will be satisfied. For this reason, it is sufficient to approxi-
mate esupD(S) by an interval with width at most ε ·minsup.

��
(1 − ε)minsup minsup

Condition 1
� �

� �
�����������������������

Condition 2
� �

� �
�����������������������

Condition 3
� �

Figure 5: Illustrations of conditions for deciding whether to
output a subgraph pattern or not.

5.1.2 Method to Complete Objective II
To fulfill the second objective, we first study the property of the
expected support measure. For any uncertain graph G ∈ D and
any subgraph patterns S and S′ in D, if S is a subpattern of S′,
then ψ(I, S) ≥ ψ(I, S′) for any implicated graph I of G, where
ψ(I, S) = 1 if S is subgraph isomorphic to I and ψ(I, S) = 0
otherwise. Then, we have P (S �U G) ≥ P (S′ �U G) by Eq.
(4). This is called the apriori property of the probability of a sub-
graph pattern occurring inG. Following this property, we also have
esupD(S) ≥ esupD(S′). This is called the apriori property of the
expected support measure. A direct conclusion from the apriori
property is that all subpatterns of a frequent subgraph pattern are
also frequent, and all superpatterns of an infrequent subgraph pat-
tern are also infrequent. This result can be utilized to reduce the
complexity of the mining algorithm.

Then, we organize all subgraph patterns in the uncertain graph
database by a structure and search the structure systematically to

find all frequent subgraph patterns by taking advantage of the apri-
ori property of the expected support. Based on the direct subpattern
relationship, all subgraph patterns in the uncertain graph database
D can be organized as a directed acyclic graph (DAG) with nodes
representing subgraph patterns, and edges representing direct sub-
pattern relationships. Figure 6 shows the DAG of the subgraph
patterns in the uncertain graph database D in Figure 1. In a DAG
of subgraph patterns, a subgraph pattern may have more than one
parent. By requiring each subgraph pattern, except those having no
parents, to keep only one parent using some specific schemes, the
DAG can be simplified to a tree. A number of such schemes have
been proposed [8, 10, 14, 18, 27]. For example, using the DFS cod-
ing scheme [27], the DAG in Figure 6 can be simplified to the tree
highlighted by the solid directed arcs in Figure 6. We call such tree
a search tree of subgraph patterns. The advantage of organizing
subgraph patterns into a search tree is that if a subgraph pattern is
known to be infrequent, then all its descendants in the search tree
can be pruned due to the apriori property of the expected support.

Empty subgraph pattern

Edge in search tree

Edge in DAG

xA B yA B zB B

x
A

Bx

B

y
A

Bx

B

z
B

Bx

A

y
A

By

B

z
B

By

A

x
A

Bx

B

y
B y

A

By

B

x
B z

B

Bx

A
y

x A
B

x
B

y

B

y
B

Figure 6: The search tree of the subgraph patterns in the un-
certain graph database D in Figure 1.

Thus, the problem of mining frequent subgraph patterns from
an uncertain graph database is to traverse the search tree to find
all frequent subgraph patterns with low computational complexity.
The proposed approximate mining algorithm employs depth-first
strategy to traverse the search tree. It works as follows.
Step 1. Let T be an empty stack. Scan the edges of the uncertain
graphs in D to get all subgraph patterns consisting of only one
edge, and push them into T .
Step 2. Pop the subgraph pattern S on the top of T . Find the
subgraph isomorphisms from S to every uncertain graph G ∈ D
and get the embeddings of S in G under the subgraph isomor-
phisms just found. Approximate the expected support, esupD(S),
of S in D by an interval, denoted [esup

D
(S), esupD(S)], such

that esupD(S) ∈ [esup
D

(S), esupD(S)] and that the width of
[esup

D
(S), esupD(S)] is at most ε ·minsup.

Step 3. Determine whether S can be output or not by testing con-
ditions 1 and 2 given above using [esup

D
(S), esupD(S)]. If S

can not be output, then the subtree rooted at S can be pruned due to
the apriori property of the expected support, thus we skip this step
and go to step 4. If S can be output, then output S and generate
all direct superpatterns of S based on the embeddings of S in the
uncertain graphs in D. For each generated superpattern S′, if S′ is
a child of S in the search tree, then push S′ into T , otherwise S′

must be a child of another subgraph pattern S′′ and should not be
examined in the subtree rooted at S.
Step 4. If T = ∅, then terminate, otherwise go to step 2.

587

edge var. prob.
(v1, v2) x1 0.5
(v1, v3) x2 0.6
(v1, v4) x3 0.7
(v1, v5) x4 0.8

embed. clause
1 C1 = x1 ∧ x2

2 C2 = x1 ∧ x4

3 C3 = x3 ∧ x4

4 C4 = x2 ∧ x3

F = C1 ∨ C2 ∨ C3 ∨ C4

C1 C2 C3 C4 total
Pr 0.3 0.4 0.56 0.42 1.68

C1 ∧ C2 C1 ∧ C3 C1 ∧ C4 C2 ∧ C3 C2 ∧ C4 C3 ∧ C4 total
Pr 0.24 0.168 0.21 0.28 0.168 0.336 1.402

C1 ∧ C2 ∧ C3 C1 ∧ C2 ∧ C4 C1 ∧ C3 ∧ C4 C2 ∧ C3 ∧ C4 total
Pr 0.168 0.168 0.168 0.168 0.672

C1 ∧ C2 ∧ C3 ∧ C4 total
Pr 0.168 0.168

Pr(F) = 1.68 − 1.402 + 0.672 − 0.168 = 0.782.

Figure 7: A running example of the exact algorithm for computing P (S �U G).

As can be seen from the discussion above, the approximation of
expected supports is substantial for reducing the complexity of the
mining algorithm. In the rest of this section, we propose efficient
algorithms to compute expected supports.

5.2 Algorithm for Computing Expected
Supports

Eq. (5) shows that the expected support of a subgraph pattern S
in an uncertain graph database D can be computed by averaging
the probability of S occurring in every uncertain graph G ∈ D, i.e.
P (S �U G). However, it is #P-complete to compute P (S �U G).
To overcome the difficulty, we propose an optimized exact algo-
rithm to exactly compute P (S �U G) for small instances of the
problem and an approximation algorithm to approximate P (S �U

G) for large instances of the problem.

5.2.1 Fundamental Technique

To compute P (S �U G) exactly based on its definition, i.e. Eq.
(4), we must compute the probability distribution over all 2|E(G)|

implicated graphs ofG and perform 2|E(G)| subgraph isomorphism
testings from S to all implicated graphs of G, which is intractable
even if G is of moderate size. Note that this naive method can’t
scale if G has more than 30 edges in practice. In this paper, we
develop a new approach to compute P (S �U G) based on the
embeddings of S in G.2

The fundamental technique of the new approach is to transform
the problem of computing P (S �U G) to the DNF counting prob-
lem. Let {S1, S2, . . . , Sn} be the set of all embeddings of S in the
exact graph ((V (G), E(G)),Σ(G), L(G)), i.e. the exact graph
obtained by removing the uncertainties from G, where Σ(G) de-
notes the set of labels of G, and L(G) denotes the labeling func-
tion of G. Let the edge set of each embedding Si be E(Si) =
{ei1 , ei2 , . . . , ei|E(S)|}, where subscript ij ∈ {1, 2, . . . , |E(G)|}.
Note that all embeddings have the same number of edges, |E(S)|.
The DNF counting problem is constructed as follows.
Step 1. For each edge ej in the embeddings, create a boolean vari-
able xj . The probability, Pr(xj), of xj being assigned true is equal
to the existence possibility, P (ej), of edge ej .
Step 2. For each embedding Si, construct a conjunctive clause
Ci = xi1 ∧ xi2 ∧ · · · ∧ xi|E(S)| , where xij is the boolean variable
created for edge eij ∈ E(Si) in step 1.
Step 3. The output DNF formula F is the disjunction of all con-
junctive clauses constructed for all n embeddings in step 2, i.e.
F = (x11∧x12∧· · ·∧x1|E(S)|)∨· · ·∨(xn1∧xn2∧· · ·∧xn|E(S)|).

2See Definition 2. Note that the number of all embeddings of S in
G is no larger than the number of all subgraph isomorphisms from
S to G since two distinct subgraph isomorphisms may map S to
the same subgraph in G.

The construction can be done in Θ(n|E(S)|) time using a hash
table to store the variable created for each edge, where n is the
number of embeddings of S in G, and |E(S)| is the number of
edges in S. It is easy to prove that P (S �U G) is equal to the
probability of F being satisfied by a randomly and independently
chosen truth assignment to the variables in F , denoted as Pr(F).
Thus, the problem of computing P (S �U G) is transformed to the
problem of computing Pr(F).
Example 4. Consider uncertain graph G1 and subgraph pattern S
in Figure 1. S has 4 embeddings in G1 as illustrated by the dotted
circles in Figure 7. Four variables x1, x2, x3, x4 are created for
edges (v1, v2), (v1, v3), (v1, v4) and (v1, v5) in the embeddings,
respectively. The probabilities of x1, x2, x3, x4 being assigned true
are Pr(x1) = 0.5, Pr(x2) = 0.6, Pr(x3) = 0.7 and Pr(x4) =
0.8, respectively. The clauses constructed for the embeddings are
shown in Figure 7. Thus, the constructed DNF formula is F =
(x1 ∧ x2) ∨ (x1 ∧ x4) ∨ (x3 ∧ x4) ∨ (x2 ∧ x3).

Note that if F can be divided into several DNF subformulas
F1, F2, . . . , Fk such that F = F1 ∨ F2 ∨ · · · ∨ Fk and that Fi

and Fj don’t contain any common variables for i
= j, then we
can first compute Pr(Fi) for each subformula Fi and then com-
pute Pr(F) by Pr(F) = 1−∏k

i=1(1− Pr(Fi)). Without loss of
generality, we assume F is indivisible in the following discussion.

Based on this technique, an exact algorithm and an approxima-
tion algorithm are developed to compute P (S �U G) in sequel.

5.2.2 Exact Algorithm
To compute P (S �U G) exactly, we first construct a DNF formula
F = C1 ∨ C2 ∨ · · · ∨ Cn using the method given previously. By
the Inclusive-Exclusive Principle [17], we have

Pr(F) =
∑

1≤i≤n

Pr(Ci)−
∑

1≤i<j≤n

Pr(Ci ∧ Cj) + · · ·

+ (−1)n−1
∑

1≤i1<i2<···<in≤n

Pr(Ci1 ∧ Ci2 ∧ · · · ∧ Cin),
(6)

where Pr(Ci1 ∧Ci2 ∧ · · · ∧Cik) denotes the probability of Ci1 ∧
Ci2 ∧ · · · ∧ Cik being satisfied. Since each clause Ci in F is a
conjunction of unengaged variables, we have

Pr(Ci1 ∧ Ci2 ∧ · · · ∧ Cij) =
∏
x

Pr(x), (7)

where x is over all variables in Ci1 ∧ Ci2 ∧ · · · ∧ Cij .
Example 5. Also consider the example illustrated in Figure 7. We
have Pr(F) = 0.782 by Eq. (6).

It takes Θ(k|E(S)|) time to compute Pr(Ci1 ∧Ci2 ∧· · ·∧Cik),
so Pr(F) can be computed by Eq. (6) in Θ(

∑n
k=1

(
n
k

)
k|E(S)|) =

Θ(2n−1n|E(S)|) time, where n is the number of embeddings of
S in G, and |E(S)| is the number of edges in S. Thus, the time
complexity of the exact algorithm is Θ(2n−1n|E(S)|).

588

5.2.3 Approximation Algorithm

The time complexity of the exact algorithm is exponential, so it
can’t scale for more than 30 embeddings. When S has a large num-
ber of embeddings inG, we propose an approximation algorithm to
approximate P (S �U G) by an interval efficiently. The algorithm
consists of two steps.
Step 1. Transform the problem of computing P (S �U G) to the
DNF counting problem by constructing a DNF formula F as pre-
sented previously.
Step 2. Approximate the satisfaction probability Pr(F) in polyno-
mial time using an interval [l, u] such that the width of [l, u] is at
most ε ·minsup and that Pr(F) ∈ [l, u].

Note that the width of the interval [l, u] is required to be at most
ε ·minsup in step 2. This is due to the following reason. For an
uncertain graph database D = {G1, G2, . . . , Gn} and a subgraph
pattern S in D, let [li, ui] be an approximated interval of P (S �U

Gi) such that P (S �U Gi) ∈ [li, ui] and |ui − li| ≤ ε ·minsup
for 1 ≤ i ≤ n, and let l̄ = 1

n

∑n
i=1 li and ū = 1

n

∑n
i=1 ui.

We have that the expected support, esupD(S), of S in D must be
contained in the interval [l̄, ū] and |ū − l̄| ≤ ε ·minsup. Hence,
when determining whether S can be output or not using the approx-
imated interval [l̄, ū] of esupD(S), either condition 1 or condition
2 in Figure 5 will be satisfied, so S can be determined whether to
be output or not efficiently.

A number of algorithms [11,16] have been proposed to compute
the interval [l, u] in step 2. Although the deterministic approxi-
mation algorithms such as [16] can produce the desired intervals
that certainly enclose the expected support, all these algorithms
have too high time complexity to be applicable in practice. For
this reason, we use the fully polynomial randomized approxima-
tion scheme (FPRAS) proposed by Karp and Luby [11] to achieve
both high accuracy and high efficiency. For a given DNF formula
F , an absolute error ε and a real number δ ∈ [0, 1], the FPRAS can
find an interval [l, u] such that Pr(F) ∈ [l, u] and |u− l| ≤ ε with
probability 1− δ in polynomial time.

Algorithm 1 illustrates the proposed approximation algorithm,
called Approx-Exp-Sup. Line 1 constructs the DNF formula F .
Line 2 set the absolute error ε′ = ε ·minsup/2. Lines 3–12 are
the FPRAS, which returns an estimate p̂ of Pr(F) such that |p̂ −
Pr(F)| ≤ ε′ with probability 1 − δ. Line 13 returns interval [p̂ −
ε′, p̂ + ε′] to approximate Pr(F). It is evident that the returned
interval has width 2ε′ = ε · minsup and Pr(F) is contained in
[p̂− ε′, p̂+ ε′] with probability 1− δ.

The time complexity of the approximation algorithm is analyzed
as follows. The construction at line 1 can be done in Θ(n|E(S)|)
time. Line 2 computes Z in Θ(n|E(S)|) time. Lines 7–11 loop for
N times. For each loop, line 8 spendsO(n|E(S)|) time to generate
a random assignment, and the condition at line 10 can be tested in
O(i|E(S)|) time. Since i is uniformly randomly picked out from
{1, 2, . . . , n}, line 10 can be tested expectedly in O(n|E(S)|/2)
time. Thus, the expected time complexity of the approximation
algorithm is O(Nn|E(S)|), where N = 4n ln(2/δ)

ε′2 = 16n ln(2/δ)

ε2minsup2

is the number of samplings, i.e. loops, carried out by the FPRAS.

5.2.4 Trade-off between Exact Algorithm and Approx-
imation Algorithm

Here, we discuss how to adaptively decide which algorithm should
be used to compute P (S �U G) for an input uncertain graph G
and an input subgraph pattern S. As analyzed previously, the time
complexity of the exact algorithm is Texact = Θ(2n−1n|E(S)|),
and the time complexity of the approximation algorithm is Tapprox

Algorithm 1: The Approx-Occ-Prob procedure.

Input: a subgraph pattern S, an uncertain graph G, the set,
{S1, S2, . . . , Sn}, of all embeddings of S in G, a
threshold minsup ∈ [0, 1], a relative error tolerance
ε ∈ [0, 1] and a real number δ ∈ [0, 1].

Output: an interval that approximates the probability of S
occurring in G.

Construct the DNF formula F = C1 ∨ C2 ∨ · · · ∨ Cn;1.

ε′ ← ε ·minsup/2;2.

/* Estimate Pr(F) by the FPRAS [11] using ε′ and δ. */
N ← 4n ln(2/δ)/ε′2;3.

Z ← Pr(C1) + Pr(C2) + · · ·+ Pr(Cn);4.

X ← Y ← 0;5.

for loop← 1 to N do6.

i← a uniform random integer in {1, 2, . . . , n};7.

Randomly choose a truth assignment π satisfying Ci;8.

Y ← Y + Pr(π);9.

if π doesn’t satisfy Cj for all 1 ≤ j ≤ i then10.

X ← X + Pr(π);11.

p̂← XZ/Y ;12.

return [p̂− ε′, p̂+ ε′];13.

= O(16n2 ln(2/δ)|E(S)|
ε2minsup2). Therefore, if Texact ≥ Tapprox, that is,

2n−5

n
≥ ln(2/δ)

ε2minsup2
,

then we choose the approximation algorithm to compute P (S �U

G), otherwise we use the exact algorithm.
Example 6. Consider uncertain graph G1 and subgraph pattern S
in Figure 1. The number of edges in S is |E(S)| = 2. As shown
in Figure 7, S has 4 embeddings in G, i.e. n = 4. If we use the
exact algorithm to compute P (S �U G), the number of operations
need to be done is Θ(2n−1n|E(S)|) = Θ(64). Supposing that
minsup = 0.1, ε = 0.1 and δ = 0.1, the approximation algorithm

need to do O(16n2 ln(2/δ)|E(S)|
ε2minsup2) = O(15338150) operations to

approximate P (S �U G). In this case, the exact algorithm is
much more efficient than the approximation algorithm.

5.2.5 Algorithm for Computing Expected Supports

By integrating the exact algorithm and the approximation algo-
rithm proposed above, we develop the Approx-Exp-Sup algorithm
to compute the expected support of a subgraph pattern as shown
in Algorithm 2. Initially, the interval [l, u] is set to [0, 0] at line 1.
Then, for each uncertain graphGi ∈ D, we first determine whether
to use the exact algorithm or the approximation algorithm to com-
pute P (S �U Gi) at line 3. Let [α, β] be the resulting approxi-
mated interval ofP (S �U Gi) produced by the selected algorithm.
Specificially, α = β = P (S �U Gi) for the exact algorithm.
Then, α and β are added to l and u at lines 8 and 9, respectively.
Finally, [l/n, u/n] is output at line 10 as the approximated interval
of esupD(S). It is easy to prove that l/n ≤ esupD(S) ≤ u/n and
|u/n− l/n| ≤ ε ·minsup.

5.3 Complete Algorithm
The complete algorithm, called MUSE (Mining Uncertain Subgraph
pattErns), is outlined in Algorithm 3. The input of MUSE is an un-
certain graph database D, a threshold minsup ∈ [0, 1], a relative
error tolerance ε ∈ [0, 1] and a real number δ ∈ [0, 1]. The output
of MUSE is an approximate set of frequent subgraph patterns in
D. The algorithm works as follows.

589

Algorithm 2: The Approx-Exp-Sup procedure.

Input: a subgraph pattern S, an uncertain graph database
D = {G1, G2, . . . , Gn}, a threshold minsup, a
relative error tolerance ε, a real number δ and the set
Xi of all embeddings of S in Gi for 1 ≤ i ≤ n.

Output: an interval approximating esupD(S).
l← u← 0;1.

for i← 1 to n do2.

if 2|Xi|−5/|Xi| ≥ ln(2/δ)/(ε ·minsup)2 then3.

[α, β]← Approx-Occ-Prob(S, Gi, Xi, minsup, ε, δ);4.

else5.

Construct the DNF formula F based on Xi;6.

α← β ← Pr(F) computed by Eq. (6);7.

l← l + α;8.

u← u+ β;9.

return [l/n, u/n];10.

First, initialize the result set F to be empty at line 1. Then, scan
the edges of the uncertain graphs in D to obtain all subgraph pat-
terns with one edge and push them into an empty stack T at line
2. Next, perform depth-first search on the search tree of subgraph
patterns to discover an approximate set F of frequent subgraph pat-
terns at lines 3 to 14. Finally, line 15 outputs F as an answer.

The depth-first search on the search tree is performed as follows.
While T is not empty, run the following steps.
Step 1. Pop the subgraph pattern S on the top of T at line 4. For
each uncertain graph Gi ∈ D, find the subgraph isomorphisms
from S to Gi at line 6 and get the set Xi of all embeddings of
S in Gi under the subgraph isomorphisms from S to Gi at line
7. The subgraph isomorphism problem has been extensively stud-
ied. Here, we take advantage of the depth-first search to find the
subgraph isomorphisms from S to Gi incrementally based on the
subgraph isomorphisms from its parent in the search tree to Gi.
Our method is briefly introduced in Appendix A.
Step 2. Call the Approx-Exp-Sup procedure to approximate the
expected support of S in D by an interval [l, u] at line 8. If u <
minsup, i.e. condition 2 in Figure 5 is satisfied, then S will not be
output, and the following step 3 will be skipped. By skipping step
3, all descendants of S will not be examined, i.e. they are pruned.
Step 3. If l ≥ (1 − ε)minsup and u ≥ minsup, i.e. condi-
tion 1 in Figure 5 is satisfied, then add S to F at line 10 and scan
the edges incident on the vertices of the embeddings of S in the
uncertain graphs to obtain all direct supergraphs of S at line 11.
For each direct superpattern S′ of S, if S is the parent of S′ in the
search tree, then push S′ into stack T at line 14, otherwise S′ is a
child of another subgraph pattern S′′ and should not be examined
in the subtree rooted at S. Note that Parent(S′) on line 13 returns
the parent of S′ in the search tree. The detailed procedure of func-
tion Parent depends on the scheme used to build the search tree.
For example, if the scheme in [27] is used, then Parent(S′) returns
the subgraph pattern with its minimum DFS code [27] being the
longest prefix of the minimum DFS code of S′.

6 EXPERIMENTS
The MUSE algorithm was implemented in C, and experiments were
performed to evaluate the efficiency, approximation quality and
scalability of MUSE, and the impact of uncertainties on the effi-
ciency of MSUE. In our implementation, we use the DFS coding
scheme proposed in [27] to construct search trees. All experiments
were performed on an IBM ThinkPad T61 notebook with 2GHz
CPU and 2GB RAM, running Windows XP.

Algorithm 3: The MUSE algorithm.

Input: an uncertain graph database D = {G1, G2, . . . , Gn}, a
threshold minsup ∈ [0, 1], a relative error tolerance
ε ∈ [0, 1] and a real number δ ∈ [0, 1].

Output: an approximate set of frequent subgraph patterns in
D.

F ← ∅;1.

T ← {all subgraph patterns in D with one edge};2.

while T
= ∅ do3.

S ← Pop(T);4.

for i← 1 to n do5.

Find the subgraph isomorphisms from S to Gi;6.

Xi ← {all embeddings of S in Gi};7.

[l, u]← Approx-Exp-Sup(S, D, minsup, ε, δ,8.

X1, X2, . . . , Xn);
if l ≥ (1− ε)minsup and u ≥ minsup then9.

F ← F ∪ {S};10.

Y ← {all direct superpatterns of S};11.

foreach S′ ∈ Y do12.

if Parent(S′) = S then13.

Push(S′, T);14.

return F ;15.

We experimented using a real uncertain graph database. The real
uncertain graph database was obtained from the STRING database3.
It contains the PPI networks of six organisms, which are summa-
rized in Table 1. In Table 1, |V | indicates the number of vertices,
|E| indicates the number of edges, and Avg(P) indicates the aver-
age value of existence possibilities of edges. Moreover, all vertices
are labeled with COG protein functions4.

Table 1: Summary of the real uncertain graph database.
organism |V | |E| Avg(P)
fission yeast 162 300 0.148
fruit fly 3751 7384 0.456
house mouse 199 286 0.413
rat 130 178 0.374
thale cress 513 1168 0.444
worm 514 960 0.190

6.1 Time Efficiency of MUSE
We first investigated the time efficiency of MUSE on the real un-
certain graph database with respect to the threshold minsup and
the parameters ε and δ. Figure 8(a) shows the execution time of
MUSE while minsup varies from 0.2 to 0.4, ε = 0.1 and δ =
0.1. The execution time decreases substantially while minsup in-
creases. This is because the number of output frequent subgraph
patterns decreases rapidly as minsup becomes larger. Figure 8(b)
shows the execution time of MUSE while ε varies from 0.01 to
0.3, minsup = 0.3 and δ = 0.1. The execution time decreases
rapidly while ε increases. The reason is that the time spent by the
Approx-Occ-Prob procedure decreases quadratic to the increase of
ε as analyzed in Section 5.2.3. Figure 8(c) shows the execution
time of MUSE while δ varies from 0.01 to 0.3,minsup = 0.3 and
ε = 0.1. The execution time decreases rapidly while δ increases.
This is because the time complexity of the Approx-Occ-Prob pro-
cedure is proportional to ln(2/δ) as analyzed in Section 5.2.3.
3http://string-db.org
4http://www.ncbi.nlm.nih.gov/COG/

590

(a) Varying minsup (b) Varying ε (c) Varying δ

Figure 8: Execution time of MUSE with respect to threshold minsup and parameters ε and δ.

6.2 Approximation Quality of MUSE

Since MUSE is an approximate mining algorithm, we evaluated
its approximation quality with respect to ε and δ on the real un-
certain graph database. The approximation quality is measured by
the precision and recall metrics. Precision is the percentage of true
frequent subgraph patterns in the output subgraph patterns. Recall
is the percentage of returned subgraph patterns in the true frequent
subgraph patterns. Since it is NP-hard to find all true frequent sub-
graph patterns, we regarded the subgraph patterns discovered using
ε = 0.01 and δ = 0.01 as the true frequent subgraph patterns.
Figure 9(a) shows the details of the output subgraph patterns while
ε varies from 0.01 to 0.3, δ = 0.1 and minsup = 0.3. Each
percentage above in the figure indicates the precision, and each
percentage below indicates the recall. We can see that the pre-
cision of MUSE decreases and the recall remains stable while ε
increases. This is because (1) when ε becomes larger, more false
frequent subgraph patterns will be returned, so reducing the pre-
cision; (2) when δ is fixed, the probability of a frequent subgraph
pattern being returned is also fixed, thus the number of output true
frequent subgraph patterns don’t change significantly. Figure 9(b)
shows the experimental results while δ varies from 0.01 to 0.3,
ε = 0.1 and minsup = 0.3. The precision remains stable but
the recall decreases while δ increases. The reason is that (1) the
fixed ε determines the expected number of false frequent subgraph
patterns to be returned, so the precision remains stable; (2) while δ
increases, the probability of a frequent subgraph pattern being out-
put decreases, thus the number of returned true frequent subgraph
patterns decreases, reducing the recall. All the experimental results
verify that MUSE can have very high approximation quality.

(a) Varying ε (b) Varying δ

Figure 9: Approximation quality of MUSE with respect to pa-
rameters ε and δ.

6.3 Scalability of MUSE
We also examined the scalability of MUSE with respect to the
number of uncertain graphs in an uncertain graph database. We
controlled the number of uncertain graphs by duplicating the un-
certain graphs in the database. Figure 10 shows the execution time
and the memory usage of MUSE on the duplicated real uncertain
graph database while the number of duplications varies from 1 to
10, minsup = 0.3, ε = 0.1 and δ = 0.1. Both the execution
time and the memory usage increase linearly to the increasing of
the number of uncertain graphs. The experimental results verify
that MUSE is very scalable to large uncertain graph databases.

(a) Execution time (b) Memory usage

Figure 10: Scalability of MUSE with respect to the number of
uncertain graphs.

6.4 Impact of Uncertainties on MUSE
This experiment investigated the impact of distributions of uncer-
tainties on the efficiency of MUSE. To vary the distribution of un-
certainties, we imposed mathematical transformations to the uncer-
tainties of each uncertain graph. The transformation is of the form

f(x) =

⎧⎪⎨
⎪⎩

1 if c1x+ c0 > 1,

0 if c1x+ c0 < 0,

c1x+ c0 otherwise,

where c0, c1 ∈ [0, 1]. It transforms the existence possibility value
x ∈ [0, 1] of an edge to f(x) ∈ [0, 1].

We ran MUSE with minsup = 0.3, ε = 0.1 and δ = 0.1
on the transformed real uncertain graph databases. Figure 11(a)
shows the execution time of MUSE while the coefficient c0 of the
transformation varies from 0 to 0.5, and the coefficient c1 = 0.5.
Each integer on the line indicates the number of output subgraph
patterns. We can see that the execution time increases as c0 be-
comes larger. This is because the larger c0 leads to the increase
in the existence possibilities of edges, thus increasing the expected

591

supports of all subgraph patterns. Since minsup is fixed, more
subgraph patterns will be output as frequent subgraph patterns, so
increasing the execution time. Figure 11(b) shows the execution
time of MUSE while the coefficient c1 of the transformation varies
from 0.5 to 1 and c0 = (1 − c1)μ, where μ is the mean value of
the existence possibilities of the edges in the uncertain graph to be
transformed. It is easy to show that the mean value of the existence
possibilities after transformation is also μ. The execution time in-
creases as c1 becomes larger. This is because with the increasing
of c1, the variance of the existence possibilities becomes larger,
and more edges will have high existence possibilities. It increases
the number of subgraph patterns with high expected supports, thus
increasing the execution time consequently.

(a) Varying c0 (b) Varying c1

Figure 11: Impact of uncertainties on the efficiency of MUSE.

7 CONCLUSIONS
This paper investigates the problem of mining frequent subgraph
patterns on uncertain graph data. The frequent subgraph pattern
mining problem is formalized by introducing the expected support
measure. An approximate mining algorithm, called MUSE, is pro-
posed to discover an approximate set of frequent subgraph patterns
from an uncertain graph database. The analysis and the experimen-
tal results show that MUSE has high efficiency, high approximation
quality and high scalability.

8 ACKNOWLEDGMENTS
This research work was supported in part by the NSF of China un-
der Grant No. 60773063, the NSFC-RGC of China under Grant
No. 60831160525, the National Grand Fundamental Research 973
Program of China under Grant No. 2006CB303000 and the Key
Program of the NSF of China under Grant No. 60533110.

9 References

[1] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with
uncertain data. In KDD, pages 29–38, 2009.

[2] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein
complex membership using probabilistic network reliability. Genome Research,
14(6):1170–1175, 2004.

[3] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Züfle. Probabilistic
frequent itemset mining in uncertain databases. In KDD, pages 119–128, 2009.

[4] G. Cormode and A. McGregor. Approximation algorithms for clustering
uncertain data. In PODS, pages 191–200, 2008.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[6] J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao. On a routing problem within
probabilistic graphs and its application to intermittently connected networks. In
INFOCOM, pages 1721–1729, 2007.

[7] P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large
probabilistic graphs. Data Min. Knowl. Discov., 17(1):3–23, 2008.

[8] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the
presence of isomorphism. In ICDM, page 549, 2003.

[9] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent
subgraphs from graph databases. In KDD, pages 581–586, 2004.

[10] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In PKDD, pages 13–23, 2000.

[11] R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration and
reliability problems. In FOCS, pages 56–64, 1983.

[12] Y. Ke, J. Cheng, and W. Ng. Correlation search in graph databases. In KDD,
pages 390–399, 2007.

[13] M. Koyutürk, A. Grama, and W. Szpankowski. An efficient algorithm for
detecting frequent subgraphs in biological networks. Bioinformatics, 20(Suppl.
1):i200–i207, 2004.

[14] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages
313–320, 2001.

[15] Y. Liu, J. Li, and H. Gao. Summarizing graph patterns. In ICDE, pages
903–912, 2008.

[16] M. Luby and B. Velickovic. On deterministic approximation of dnf. In STOC,
pages 430–438, 1991.

[17] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[18] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a
difference. In KDD, pages 647–652, 2004.

[19] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In KDD,
pages 228–238, 2005.

[20] S. Suthram, T. Shlomi, E. Ruppin, R. Sharan, and T. Ideker. A direct
comparison of protein interaction confidence assignment schemes. BMC
Bioinformatics, 7(1):360, 2006.

[21] S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee. Decision trees for
uncertain data. In ICDE, pages 441–444, 2009.

[22] L. G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[23] N. Vanetik. Discovering frequent graph patterns using disjoint paths. TKDE,
18(11):1441–1456, 2006.

[24] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable mining of large
disk-based graph databases. In KDD, pages 316–325, 2004.

[25] J. Wang, Z. Zeng, and L. Zhou. Clan: An algorithm for mining closed cliques
from large dense graph databases. In ICDE, page 73, 2006.

[26] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by
leap search. In SIGMOD, pages 433–444, 2008.

[27] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM,
page 721, 2002.

[28] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD,
pages 286–295, 2003.

[29] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent closed
quasi-clique mining from large dense graph databases. TODS, 32(2):13, 2007.

[30] Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In
SIGMOD, 2008.

APPENDIX

A INCREMENTAL METHOD FOR FIND-
ING SUBGRAPH ISOMORPHISMS

We briefly introduce our method for finding subgraph isomorphisms
from a subgraph pattern S to a graph G. If S contains only one
edge, then we trivially scan all edges of G to find the subgraph
isomorphisms. If S consists of more than one edge, we can find
the subgraph isomorphisms in an incremental manner. Let S′ be
the parent subgraph pattern of S in the search tree, and let (u, v)
be the only edge in E(S) \ E(S′). Note that a subgraph isomor-
phism from S toGmust contains a subgraph isomorphism from S′

to G. Thus, we can find the subgraph isomorphisms from S to G
incrementally based on the subgraph isomorphisms from S′ to G.

Suppose both u and v are contained in S′. For every subgraph
isomorphism f ′ from S′ toG, if edge (f ′(u), f ′(v)) is contained in
E(G) and the label of (u, v) is identical to the label of (f ′(u), f ′(v)),
then f ′ is also a subgraph isomorphism from S to G.

Suppose u ∈ V (S′) but v
∈ V (S′). For every subgraph iso-
morphism f ′ from S′ to G, if there exists an edge (f ′(u), w) in G
such that the label of (u, v) is identical to the label of (f ′(u), w)
and that w
= f ′(x) for all vertices x ∈ V (G), then f ′ ∪ {u →
f ′(u), v → w} is a subgraph isomorphism from S to G.

It is obvious that our method is more efficient than the methods
that find subgraph isomorphisms from scratch.

592

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

