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Al for Wireless

Al for Wireless
1. Go where conventional math models can’t go
Leveraging large measurement data sets

2
3. Leveraging GPUs State of the World
4

. Dealing with uncertainties ‘
= PHY applications o 7 o —
> Auto-encoding e ." .
» HI/W impairment compensation (1 bit ADC et "“‘
> Modulation detection A *\ R
— HER S
= LINK/Network level applications W 1

» Fault detection

» (Predictive) resource allocation
» SDN optimization

» Decentralized Edge Cooperation
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Decentralized Edge Cooperation

sharing/caching of
user’s data symbols

Edge Cooperation

= Pilot allocation

= Interference management
= pbeam alignment

= resource allocation

= Caching

» Robotic cooperation
<= Self-driving cars
= Factory robots

Decentralized decision under
uncertainties

» Local observations are noisy, exchanged
information are quickly outdated

» Need to predict decisions of other
devices — but other’s decisions also
based on noisy predictions ®

Al territory!
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Building up intuition for team decision:
The car crossing example

High-end car (high quality sensors) Low-end car (low quality sensors)

Problem: Optimize brake/acceleration policy at each car

Maximize traffic flow under given crash probability
threshold

Account for sensor uncertainties
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Formalizing the team decision problem

DM Actions Utility

Local Info S a
1
~ T >
Environment X1
X > > U
7 a
Xk K ‘
Tl'K >
A
X
© X~ Py * i Xj > q
hd Xl! "'!XK ~ P)?li---r)?KlX e UJ:X X H?’:lai - R
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Team decision problem: the goal

For a given distribution Py 3 and a set of
policies {r;}i—,, the average utility is

EPX:?L---:)?K [U(x, 1 (X1), ..., T (Xg)]

As system designers, our goal is to find

(m1,....,mg) =argmax Ep__  _ [U(x,m1(%1), ..., mg (Xg)]
T1,..,TK X, X1, XK
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Conventional strategies

= Benchmarck strategy 1: Naive (nhon robust)

At agent1:
(my, ...., M) = argmax [U(J?l, T(X1), .o, T (X)]
M1,...,.TK
® Benchmarck strategy 2: Naive (robust to local
noise)

At agent 1:

(1, oo, M) = a;gmna;( Epm(1 ’’’’’ XK[U(x, (X)), ..., T (X1)
1reeey
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Team Deep Neural Networks

The solution to the TD problem entails the difficult
optimization problem

(7T, ., TT) = a;lgmnaKx prj(le(K[U(x, 1 (X1), oo, T (Xg)]

Team-Deep Neural Network:

= Deep Neural Networks (DNNs) to represent policies.

= Jointly train DNNs to employ back-propagation.
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Team Deep Neural Networks

Use Deep Neural Networks (DNNs) to recast the TD problem into a
parametric optimization problem, where parameters are DNNs
weights.

Denote the policies with DM Actions  Utility
fo,(Xi) where 6; are the Local Info S

\4

DNN parameters @; 4

Environment X,

v
\4
-

X

\ 4

Xx @) ag
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Team DNN

Note that gradient ascent requires

aU(X, Aq, oen) ak)
30,

oD  g® 4y

where
aU(X,ay,...,ar) 0U(X,ay,..,ax)0a;

back-propagation demands additional info (X,a_;) at user i.
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Team DNN

CENTRALIZED TRAINING:

Links and variables in green are available onIy during the training process
Actions Utility

Local Info

Environment Xl’ § \

X

\ 4

-

\ 4

R, X @J

DNNSs can then be jointly trained using back-propagation
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Centralized Training\Decentralized Testing

Team-DNN policy design:

= Centralized Training: given a training set D sampled
from Py ¢z, use gradient ascent to find a local maximum

of the empirical utility

00,00 = ) U fo, R, fo (50)

(x,fl,...,fK)

* Decentralized Testing: Each DM i uses the DNN f; (X;)
to map local observations X; into action q;
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Intuitive Example: Distributed Power
Control

Two user SISO interference channel with fixed CSI
quality

= DMs: transmitters

ﬂ((l)g(

= Environment: channel gain matrix TX‘

6= [gn g

= Local info: CSI estimates ((')) ((‘))
0,1]

a=/1—ﬁc+qm,

A; is the noise (uncertainty) component in local
estimates
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An Example: Distributed Power Control

= Action policies: power control algorithm

;i G; = P; € [0, Ppay]

= Utility Function: Sum-rate

g1.1P1 9g22P;
U(G,P,P,) =1 1 ’ | 1+ ’
(G, Py, P;) 082( +1+92’1P2)+ 082( 1+91,2P2)

= Goal:

(m1,m3) = argmaxy, ., EPG’(,;L@2 |U(G,m,(Gy), m5(G))]
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An Example: Distributed Power Control

For different CSI quality level (04, 05), the Team-
DNNs converge to different power control

algorithms o
Bl P
Bl P | | | .
80 ___________ ___________ ___________ _________________________
“Master-Slave” example with i |
g € [0,1] e
Eiz\fl_o-zG_l_o-A %40
E; —_ G 20

0
0 01 02 03 05 06 07 08 09 1
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T-DNNs drawback

= The T-DNNs solution assumes Py ; ¢, is fixed in time.

= |In wireless environments, the noise affecting local
_ Observation is linked to time-varying processes
(speed,positioning,...)

PROBLEM: DNNs have to be frequently retrained in order
to match the current testing distribution.
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Proposed solution

= Local observations are usually noisy version of the real
environment state

)?i — fo*i(X)

where g; is a statistic of the noise that we assume can
be estimated.

= ¢ = (0y,...,0x) defines the current noise scenario.

IDEA: Train a model on a multitude of noise scenarios
that uses the current noise estimate to adapt its behavior,
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Interference channel with noise statistics

Estimate of information

noise statistic l
Noisy CGI ((l) it ((l))
cal G % R
812
G %)
821
Gy

(@7

The noise statistics are assumed to be estimated separately
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Interference channel with noise statistics

For any noise scenario o, the set of DNNs should approximate the optimal
distributed power control algorithm for the specific joint distribution induced by &.

Tx 2 avg. transmit. power

1.0

0.8

« Power control policies are
heterogeneous over the
uncertainty space (g4, 5,)

0.6

oz
avg. power

« Becomes desirable having 04
different local models specialized

in different noise regimes
0.2

0.0

O
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Mixture of Experts model

Mixture of experts (MoE):
= Ensemble learning model based on the “dividi et impera” principle

= Combines different experts (simple learning models) specialized in
different parts of the input space.

= A gating network is used to properly assign experts to different input space
regions.

Benefits:
= Simpler models converge faster and are less prone to over-fitting

= Local experts can approximate different power control policies

O
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Team Mixture of Experts

Use a Mixture of Experts (MoE) to realize the power control algorithm
at DMs in order to capture the heterogeneity of the optimal power

control policies
Gating

. aNetwo
Concurrent training:

« Each expert maximizes the sum-
R . Experts
rate optimizing its power policy .

on a specific region of the input ~ Gi:@
space

K

P:
» The gating network assigns the —— "' R
best expert to each noise
configuration G;,0
_—
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Experiments Setup

= Two user SISO interference Rayleigh fading channel with varying
CSI quality.

= Local information model for user i

G; = /1—afc+o,;a,;, o; € [0,1]

= Parameters g; are linked to the uncertainty in the local information
and we assume that can be estimated for both TXs.
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Experiments Setup

For every time-slot we compute the
average sum-rate of different power
control algorithms.

Evaluate the performance of the schemes
in various noise regimes and quantify the
impairment due to retraining.

Information Quality Trajectory

1.0 L

0.8 1 ®

0.6 [ ]

g2

0.4 4 [

0.2 1 ®

0.0 1 [ ]

0.0 0.2 0.4 0.6 0.8 1.0
a1
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Terms of comparison

Classical power control:

« Perfect CGI: optimal control scheme with perfect CSI.

« Naive WMSEE: WMSEE algorithm ran with local noisy info.
« TDMA: One TX active.

Data-driven power control:

« Team-MoE: policies at DMs are realized with MoEs and are jointly trained
during a single centralized phase over a multitude of noise scenarios.

« Team-DNN: Multi-layer perceptrons are used to represent policies at DMs
and are re-trained when the noise scenario changes.
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Training Phase

Team-MoE

= Single training * Multiple re-trainings

« Data-set size: 30k data samples

* Data-setsize: 100k data from the current noise scenario

samples for various noise (enough to have convergence)
setting + Batch size: 1k
" Batch size: 1k * Ry, gradient updates during

= 8k gradient updates each time-slot

R, o« computational power available during the re-training phase.

O
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Results R, = 10

0.8

0.6

0.24

» Team-DMoE delivers highest
sum-rate for almost every CGl L
noise configuration

4.5 1
performance
are impaired by the learning
process 240
* R,, = 10is notenough tohave  §ss
convergence in a useful time E
—— T-DMoEs
3.0 A --- TDMA
------ Centralized
— WMMSE
i —-— Retraining T-DNNs
2.5 +— ; ; ; .
0 50 100 150 200

Time slot
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Results R, = 100

What if increase the computational
power to R, = 1007
100 batch iteration every time-slot

The converges
to the T-DMoE performance in
most of the cases.

T-DMOoE is learning the optimal
power control policy

Sum-rate [Bit/s/Hz]

4.5 A

»
o

w
w

3.0 A

2.5

0.0

0.2

0.4 0.6

0.8

1.0

--- TDMA

------ Centralized

— WMMSE

—-— Retraining T-DNNs

50

100
Time slot

150 200
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Noisy estimates

Imperfect estimates —— T-DMoEs g, =0
- -=- T-DMoEs o, =0.05
c=o0+27 A priee T-DMOES 0, = 0.1

—-— T-DMoEs g,=0.2

: : . — 4.2
Where Z is a Gaussianr.v. with &
zero mean and variance o, 540
£

Graceful degradation of sum-rate as3 ;4
estimates get worse

3.6

0 50 100 150 200
Time slot
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Conclusions

= Team-DNN can learn optimally robust decentralized policies under
arbitrary uncertainties[1,2]

= Team-DNN need to estimate the amount and structure of uncertainty

= Centralized Training/Decentralized Retraining requires burdensome and
frequent retraining if noise statistics info are not employed

= By exploiting noise statistics estimates, an “universal” model can be
trained using Mixture of Experts”[3]

= Extension: finite-rate message making DNNs to exchange relevant info
among agents before decision”[4]
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Experts

= 3 hidden layers

= 10 neurons/layer

= RelLu activation

ST
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Gating Network

= |nput: uncertainty estimates

= Structure: Fully connected with 2 hidden layers, 10 neurons and RelLu
activations

= Qutput: Softmax activation to obtain a weighting vector for experts
selection
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