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Networks are everywhere

Social interactions

nodes : users
edges : interactions

Correspondence

nodes : accounts
edges : communication

Drug compounds

nodes : substances
edges : same drug

Authorship

nodes : authors
edges : collaboration

DELFT
UNIVERSITY OF
TECHNOLOGY
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Most of them exhibit “higher-order” interactions

Correspondence Social interactions
M nodes : accounts nodes : users
emails have many recipients people gather in small groups

Drug compounds

nodes : substances
several substances in a drug

Authorship

nodes : authors
papers have several authors

DELFT
UNIVERSITY OF
TECHNOLOGY
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Today:

How can we learn such
higher-order interactions?

[in a principled, data-driven manner]

DELFT
UNIVERSITY OF
TECHNOLOGY
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Example: Musical interaction

Wu-tang Clan ::Reborn::

V Nodes: Rappers
‘Y Measurements: [attributes] (features)

DELFT
UNIVERSITY OF
TECHNOLOGY
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Example: Musical interaction

Wu-tang Clan ::Reborn::

V Nodes: Rappers
‘Y Measurements: [attributes] (features)

n4: xXx

DELFT
UNIVERSITY OF
TECHNOLOGY

Who interact with whom?
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Classical link learning

Task

Let 6 = (V,E) heagraph. Givenaset £ .. c &, and possibly various attributes

obs

V
{x; € IRd}li=|1- learn Episs:= €\ Eobs

Common Approaches
o Informal scoring methods ILiben-Nowell, et al., 03]

o (Partial) correlation networks [Efron, 07; Giannakis, 18]

o Regression-based methods [Hoff, 05]

o Graphical models [pempster, 72; Meinshausen, 06; Kumar, 19]

o Hypothesis test methods [prton, et al., 04]

o Graph signal processing methods [Kalofolias, 16; Dong, 16; Mateos 19] .

UNIVERSITY OF
TECHNOLOGY
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How to extend this task to
higher-order interactions?

[in a principled, data-driven manner]

DELFT
UNIVERSITY OF
TECHNOLOGY
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Example: Music collaboration

Wu-tang Clan ::Reborn::

V Nodes: Rappers
‘Y Measurements: [attributes] (features)

n4: xXx

Which are the collahs? e UNIVERS[I)TE(LOF-IE

TECHNOLOGY
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Many ways to represent “higher-order" interactions

o Hypergraphs [Berge 89] :: edges join multiple nodes

®© Set systems [Frank 95]

® Tensors [Kolda-Bader 09] :: tensor entries represent multinodal interactions

o Affiliation networks (e s1, newman+ 021

© Multipartite networks wina: o7,

o Abstract simplicial complexes [sarbarossa 18] :: fully-connected subgraphs
o Multilayer networks [kivela 89]

© Meta-paths [sun-Han 12]

o Projected representations [senson+ 15, 17] :: weighted graph representation

DELFT
UNIVERSITY OF
TECHNOLOGY
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Representations of “higher-order” interactions

Common pitfalls of current models
o Make use of network structure directly, e.g., motif structures
o Physics-hased assumptions that might not hold, e.g., flow assumptions

What is needed?

o Modeling tool based on the networked-data itself

o Expressibility to capture the role of the higher-order interactions

o Interpretability for predicting the appearance of higher-order relations

[Higher-order link learning in a principled, data-driven manner]

DELFT
UNIVERSITY OF
TECHNOLOGY
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How to model then higher-order interactions?

Structural Equation Models Volterra Series
+ Successful accounting interactions + Widely-used for nonlinear dynamics
+ Model self-driven behaviors + Captures complex dependencies
+ Extended to capture nonlinearities + Theoretical guarantees
- Lack of higher-order link interpretability - Lack of self-driven relations
= Tt YO =ho+ 5 3 = 3 hy(ry o tp) [12(E— 1)
JEV\i KEV p=1t1=a Tp=a j=1
[J. Hox 98][X. Cai, 13][Giannakis 18] [M. Schetzen, 80][V. Ketatos, 11]

Combining the best of both worlds. ..

DELFT
UNIVERSITY OF
TECHNOLOGY
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Modeling higher-order interactions

Key idea:
Description of the ith nodal feature in terms of a set of subsets of nodes

DELFT
UNIVERSITY OF
TECHNOLOGY
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Modeling higher-order interactions

Key idea: (i
Description of the ith nodal feature in terms of a set of subsets of nodes &5

. P . . Ly .
sO:= {59, with s9:= (50

/ p=1 P’ ’ =1

Set of subsets upto order P denotes the lth set of p nodes related to
the ith node in the graph

Nodal features x; =f (x, 5;">),vl- € {1,..,N} [X]; = x;

~

Nonlinear mapping nvERe ERET
TECHNOLOGY
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Self-driven graph Volterra models

Instantiation of model _— Absorbs S set dependency

= fi(x)
Series Expansion — Order P expansion
fi®) = by + z Hy [x] + €;

Permutation invariant

Expansion Module / nonlinearity
: Ly

Hy Ix):= % hyp - 9({xq:9 € Sp)D)

DELFT

. UNIVERSITY OF
[Coutino, et al, 20] TECHNOLOGY
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Self-driven graph Volterra models

Nodal measurement model

@), < g0
Xi — ho + Zal [X] + Ei
p:

As S ,gi) it is usually unknown, we can expand the graph Volterra module

Dre1 — v . v (D p
HPxl= % o % h$ (kg k) g (iYoo)

and associate the nonzero coefficients with the active sets. ..

[sparse coefficient expansion]
[for higher-order interaction discovery] DELFT

UNIVERSITY OF
TECHNOLOGY
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Now: |ldentification]

Topology identification
from nodal attributes

[using self-driven graph Volterra models ]

DELFT
UNIVERSITY OF
TECHNOLOGY
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SU-GVM Application: Distribution Networks

Task:
|dentify the network topology from nodal voltages

Key ideas:

Bus 71 voltage depends on its parent bus [zhang, '13]

Bus 1 voltage also influences its children buses down the network [vang, 20]
Model captures

nth node parent interactions between
1 / subset of buses
Un = VUr, + gn({vi}icc,)

Nodal voltage nonlinear branch-flow moEN

nth node children
DELFT

Linearization yields suboptimal performance: nonlinear models needed *TECHNOLOGY
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SU-GVM Application: Distribution Networks

Interactions among nodal voltages

Nodal voltage nonlinear branch-flow model

Up = Ur, + gn({vi}iécn)

Self-driven graph Volterra model

Up = Z pE”)vi -+ Z Z ng)ij + €n

i€ENy I €Ny je{k:keNy,k>i} I

First-order coeffs. Second-order coeffs.

Nonzero coefficients capture interactions among pairs and triplets of nodal voltages

enhancing the topology identification task [Yang, '20] SELET

UNIVERSITY OF
TECHNOLOGY
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SU-GVM Application: Distribution Networks

Higher-order interactions aware

Performance /

o SCE 47-bus distribution grid

. 08 £
* Real solar data from Smart* project o '
©
* Voltage magnitudes from MATPOWER ¢ o6 |/
o Baselines Rl
|._
_ | o7 |—e—This
* Linear PC [Bolognani et al. 13] 0.2 | s —5— MKPC
- 7 &~ Linear PC-based method
»  Multi-kernel PC (MKPC) (Zhang etal 17 [+7 S R e
0 0.2 0.4 0.6 0.8 1
e Concentration matrix [Deka etal. 17] Falsesalam Fale
[Yang et al.”20]
DELFT
UNIVERSITY OF

TECHNOLOGY
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Now: |Prediction]

Predicting "group” Interactions from
previous Interaction data

[using self-driven graph Volterra models ]

DELFT
UNIVERSITY OF
TECHNOLOGY
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Example: Music collaboration

Wu-tang Clan ::Reborn::

V Nodes: Rappers
Y Measurements: [joint works] (collabs)

song_2

song_3 DELFT
UNIVERSITY OF

TECHNOLOGY
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Simplices as data
n1: mrT
Release Authors

t, song_] {mrT, syL} S
t, Song_2 (w200 s,
t3 song_3 {wa2, xXx, soulMe} Sa
t, SONG_4  (soulme, syL) 5 n‘.
......................................... s
te Song_5 17 n3: soulMe

Simplex: set of ohserved nodes at a given time instant, e.g., S,

Higher-order link (HO link) prediction: Who are writing the next songs? DELFT

UNIVERSITY OF
TECHNOLOGY
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Simplified HO link prediction
Task:
Given {S;}{—,.andaset A c Tghey, predictif 37,7 > T: A € T geq
7},7£,en = {open triangles upto time T}

Tiosed = {closed triangles upto time T}

AETE

closed

T
A € Jopen

"From historical data, predict if an open triangle becomes closed.”
still challenging, but more realistic

DELFT
UNIVERSITY OF
TECHNOLOGY
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Iriangle-link prediction: Scoring-based method
Task:

Given {S;}{—, .and aset A < T, . predictif 37,7 > T: A C T oeq

m
Approach:
1. compute scores for each open triangle |
2. rank triangles by score many Olfltlont§ for
3. select highest scores as candidates. Score function

s(i,j, k) = f{iJ, k}) DELFT

UNIVERSITY OF
score TECHNOLOGY
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Scoring: Projected representation

Interactions graph Projected graph
Simplices A € {0,1}VIxIVI w e RV

t1:{1,2,3,4}
t,:{1,3,5}
t3:{1,6}
ty:{2,6}
ts:{1,7,8}
te:{3,9}
t-:{5,8}

t: 1,2,6) Initial Connectivity
/\ Closed triangle Weighted projected graph from ‘filled structures’

26

DELFT

AOpen triangle [W];; = |{Stk: {i,j} C Stk}l NIVERe ST
[Benson, et al, 18] TECHNOLOGY
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ocoring: Common candidate functions

Possible score function candidates [Benson, et al, 18]

o Function of projected adjacency matrix, e.g.,
s(i,j, k) = ([W];; * [W]jx * [W])Y? Geometric mean

o Function of one-hop neighbours, e.g.,

s(i,j, k) = :xg; 8 xg% 8 xgg: Generalized Jaccard coefficient

o '‘Global’ similarity function, e.g.,

s(i,j,k)= Y [Slm PageRank

LmELLT K] S:= (I— aWDy!)™?
o Learned function ( w

s(i,j, k) = gy(W,{i,j, k}) ML Approach

DELFT
UNIVERSITY OF
TECHNOLOGY
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Can we use self-driven Volterra
models to define scoring functions?

[linking existence of link with graph Volterra kernels]

DELFT
UNIVERSITY OF
TECHNOLOGY
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SU-GVM Application: Triangle-link prediction

graph Volterra

Let us consider the latent-variable modej/(coiﬂgﬂj:fgrij "

zi(t) = hy; + hiT,1St + hiT,z (s: X s¢),

to model the probability

sigmoid function

ith nodf active /
P([s:]i = 1]z;(t)) = a(z;(t))

where s; = S;

[binary N-dimensional representation of a simplex]

model can be fitted using logistic regression techniques

DELFT

_ T2 21T UNIVERSITY OF
— a =
g(A) agq alX a:=|af,aia,, ..., ay_1ay, ay] TECHNOLOGY
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SU-GVM Application: Triangle-link prediction

Task:

Given {S;}{—, .and aset A < T, . predictif 37,7 > T: A C T oeq
M

Approach:

1. From inttial connectivity, find nonzero SD-GVM coefficients candidatesiopen triangles)
2. Fitthe logistic regression S6-GVM to the simplex data
J. Select triads with highest absolute value coefficients as candidates

working assumption: ‘hé 3, k)‘ < p({i,j, k} S :Tgosedl{st}tll) UNIVERSITY OF

TECHNOLOGY
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Application: Triangle-link prediction

Performance

Harmonic mean
Geometric mean
Arithmetic mean
Katz,

Preferential Attachment
Adamic-Adar,
Katz
Common Neighbors,
PPR

PPR

u
J accardgw

0.3

Enron Emails dataset

Arithmetic mean

Geometric mean
Katz,
PPR
PPR

u
Harmonic mean
J accard3w

Adamic-Adarg
Common Neighbors, |
Katz

Preferential Attachment

31

0.3

[Coutino et al., 20]

0.4 0.5 0.6

(b) AUC
Primary school dataset

0.7

0.8

DELFT
UNIVERSITY OF
TECHNOLOGY
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Open Venues

[Montanari, et al. 16]
® Symmetric tensor completion for Triangle-link prediction

X (L), k) = [{Se, L), k} < Se, 3 X(1,),0) = [{S¢,: 1L, J} © Se, 3

X e RS_W|+1)><|V|><|V|

o Adaptive diffusions for Triangle-link prediction [gerberidis, et al. 19]

L
s(i,J, k) = h(F, {i,J, kD) F:= 3 6,(WDy)*

® Point process modelling...

DELFT
UNIVERSITY OF
TECHNOLOGY
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Simplices as (orrelztepoint process

Simplices
t1:{1,2,3,4}
t,:{1,3,5}
t3:{1,6}
ty:{2,6}
ts:{1,7,8}
te:{3,9}
t-:{5,8}
tg: {1,2,6}

Activation profile

—

s, St,
ml 11010 0 1
10 01 00 0 1
{11 0001 0 0
10 0000 0 0
S={0f1 0 00 0 1 0 w = ol
0 1100 01 projected adj. matrix
0000100 O
00001010 Ls: =SS
nelo 00 0 0 1 0 O
St, Stg

DELFT

Hypergraph incidence matrix
UNIVERSITY OF

S:= [S¢,,St,s ) Sty TECHNOLOGY
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Wrapping up
o Pair-wise network modelling is not enough

» higher-order interactions are missing

o Combination of SEMs and VSMs
» expressibility and interpretability
o Including effects from HO interactions
» benefits topology identification based on nodal attributes
o SD-GVMs are directly applicable to HO link prediction
» however, there is a complexity challenge
o Incidence matrix representation of simplices

» allows spatio-temporal point process-based analysis

34
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GEERT LEUS Questions?
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LEARNING
HIGHER-ORDER INTERACTIONS

WITH GRAPH VOLTERRA MODELS

Thanks!



