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Centralized distributed learning

All functions are assumed to be L-Lipschitzian

How to reduce communication cost?
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Compression




Algorithm

C(-) Compression operator (maybe randomized)

g\ = VF(x; a(i))

Worker 1 (SGD) x % X ,yg
= 1
g(l)l I g g = g( (1) + g(2) + g(3)) (Standard)

Exchange 2N full vectors

/ (1)) 4+ C(g(Q)) + C(g(?’))) (Single compression)
2) (3)
Exchange N(1+c) full vectors

Worker 2 Worker 3

g=0C (; (C(gM) 4+ C(g?) + C(g(3)))) (Double compression)

Exchange 2cN full vectors




Unfortunately

To ensure convergence, it should satisfy E(C(X)) — X

Early methods only work for C(-) compression operator
- Randomized quantization (unbiased)

——Randomized-guantization—ibiasedt—
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Can we relax it to allow more aggressive or even arbitrary compression?




Double Squeeze: Error Compensated SGD
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Essential updating rule of DoubleSqueeze g ~n Z gi
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DoubleSqueeze Fi+1 =F0 — 7295 . Much smaller




Convergence

Assumption
E[|C(x) — x| < o™

Convergence rates
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C-SGD (C(.) needs to be unbiased)

Double squeeze
EC-SGD




ResNet-18. CIFAR-10. 8 workers
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Iteration (epoch) is consistent with SGD Running time in each iteration is faster



Decentralization




- alpha: latency per message
- beta: transfer time per byte

@ - N: # workers @

- B: # bytes of the message
© ® © © ©
How does the
© © |“wpowh | ©® ©

compare to the

Centralized communication centralized Decentralized communication
(fully exchanged) approach? (partially exchanged)
O(N * alpha + NB * beta) O(alpha + B * beta)
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Centralized-SGD:
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shared model
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local sample




Centralized-SGD: L | i (w a(z))
Decentralized-SGD: /yn =1 o Local sample
(D] ( (D] g(
2(2) - 2(2) . g(x?;a®)
()| \ |z g(z™;a™)] )
T ——
e it g X (<0 8)

neighbor’s, e.g.,
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Decentralized L r g(iB , a )
SGD T N L
() \_wm)_ g(z™;a™) )

weight matrix: symmetric, doubly stochastic
(W1 =1, W'1=1, nonnegative, W=WT)
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N
“ D

Assumptions
- Lipschitzian All fi(+) are withL—Lipschitzian gradient data variance within
- Bounded variance each worker

Eo~p, |VF(x;a) — Vfi(z)|* <o?, Vi, Va
IVfi(z) = V(=)|® <¢*, Vi, Va
w
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~~.__data variance among
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Assumptions
- Lipschitzian All fi(+) are withL—Lipschitzian gradient
- Bounded variance

Eo~p; |VF(z;a) — V fi(2)|? <0°, Vi, V&
IV fi(x) — Vf(z)||* <3, Vi, Vo

- Spectral gap
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Fully connected network Ring network Disconnected network
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eorem [DSGD] Choose the learning rate approximately. When T is
sufficiently large, we have
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Average of local models
Convergence rate of CSGD Cost of using decentralized

\\ communication (minor) /




DECENTRALIZED METHOD
Ring Topology

N
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Decentralized

Training Loss

Centralized
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Decentralized algorithms outperform centralized algorithms for
networks with low bandwidth and high latency




Take Away Message

Theoretical view

Practical view

Decentralized-SGD achieves the same
convergence rate as Centralized-PSGD

When the network is with high latency,
decentralized communication can
outperform its centralized counterpart.



Compression + Decentralization




Naive compression does not work

‘ Can we further reduce the communication cost? ‘

Naive compression for D-SGD

)| = PR (w§j>) —yVF(z}”;a®)

—I‘Z)—PSGD‘ with nai‘ve comp‘ression
—D-PSGD

Training Loss
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DCD-SGD
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IIMH

Store a copy of its neighbors” models

Z Wi_ nyF(wg )

A<)+‘c
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Compress the difference and send to its neighbors

E(|Vf(@)]?) <
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2
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E(C(x)) =x

042

Consistent with D-SGD

[NIPS 2018]




Experiments
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Limitation of DCD-SGD

Two Issues of DCD-SGD:

Require E(C(x)) =x

Diverges when using 4-bit compression in most cases

‘ Can we fix it by using error compression strategy? ‘




How About

Xt_|_1 :<Xt — ’)/Gt)w

Share this with Error Compensation




One More Thing: DeepSqueeze

‘ DCD-SGD + Error Compensation ‘

Error Compensation

Local: (4) (4) (4) (4)
tilzc( Y=g, Ho, ’
5521 = ’051)1 - (mgz) vg¢” + 51@)
Communicate:
() — _fygt +IZ 1] 7,]
FEN;

Control the compression error explicitly




DeepSqueeze V.S. DCD-PSGD

DCD-SGD DeepSqueeze
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z Bk - z |||
E(C(x)) =x Compression can be biased
Fails for 4-bit compression Robust to 2-bit compression
2 2 2 o (1 + O‘Qﬁ) 2 2
1 o(l+a®)  (3(1+ad) 1 ) dasa)
O p— _|_ _|_ 2 O e + —I_ 2
T VT T3 T VnT T3




Experiments
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