Communication Efficient Distributed Training

Ji Liu, Ph.D.

Objective

All functions are assumed to be L-Lipschitzian

Centralized distributed learning

How to reduce communication cost?

Summary

Foundations and Trends® in Databases

Distributed Learning Systems with First-Order Methods

An Introduction

Suggested Citation: Ji Liu and Ce Zhang (2020), "Distributed Learning Systems with First-Order Methods", Foundations and Trends® in Databases: Vol. 9, No. 1, pp 1–97. DOI: 10.1561/1900000062.

Ji Liu

University of Rochester and Kuaishou Inc., USA ji.liu.uwisc@gmail.com

Ce Zhang

ETH Zurich, Switzerland ce.zhang@inf.ethz.ch

Coming Soon.

This article may be used only for the purpose of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval.

Nom

the essence of knowledge Boston — Delft

Compression

Algorithm

 $\mathbf{C}(\cdot)$ Compression operator (maybe randomized)

(Standard)

$$g^{(i)} := \nabla F(x; a^{(i)})$$

$$\mathbf{x} \leftarrow \mathbf{x} - \gamma \bar{\mathbf{g}}$$

$$\bar{\mathbf{g}} = \frac{1}{3}(\mathbf{g}^{(1)} + \mathbf{g}^{(2)} + \mathbf{g}^{(3)})$$

9

Exchange 2N full vectors

$$\bar{\mathbf{g}} = \frac{1}{3} (\mathbf{C}(\mathbf{g}^{(1)}) + \mathbf{C}(\mathbf{g}^{(2)}) + \mathbf{C}(\mathbf{g}^{(3)}))$$
 (Single compression)

Exchange N(1+c) full vectors

$$ar{\mathbf{g}} = \mathbf{C}\left(rac{1}{3}(\mathbf{C}(\mathbf{g}^{(1)}) + \mathbf{C}(\mathbf{g}^{(2)}) + \mathbf{C}(\mathbf{g}^{(3)}))
ight)$$
 (Double compression)

Exchange 2cN full vectors

Unfortunately

To ensure convergence, it should satisfy $\mathbb{E}(\mathbf{C}(\mathbf{x})) = \mathbf{x}$

Early methods only work for $\mathbf{C}(\cdot)$ compression operator

- Randomized quantization (unbiased)
- 1bit quantization
- Clipping
- Top-k sparsification

Can we relax it to allow more aggressive or even arbitrary compression?

Double Squeeze: Error Compensated SGD

Worker i

$$\boldsymbol{g}^{(i)} \leftarrow \nabla F(\boldsymbol{x}; \boldsymbol{a^{(i)}})$$

$$oldsymbol{v}^{(i)}\!\leftarrow\!\!\mathcal{C}\left(\!oldsymbol{g}^{(i)}+oldsymbol{\delta}^{(i)}\!
ight)$$

$$oldsymbol{\delta^{(i)}} \leftarrow \left(oldsymbol{g}^{(i)} + oldsymbol{\delta}^{(i)}
ight) - oldsymbol{v}^{(i)}$$

$$oldsymbol{x} \leftarrow oldsymbol{x} - \gamma \overline{oldsymbol{v}}$$

Master s

$$\overline{\boldsymbol{g}} \leftarrow \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{v}^{(i)}$$

$$egin{array}{c} \overline{oldsymbol{v}} \leftarrow \mathcal{C} \left[\overline{oldsymbol{g}} + \overline{oldsymbol{\delta}}
ight] \end{array}$$

$$\overline{oldsymbol{\delta}} \leftarrow \left(\overline{oldsymbol{g}} + \overline{oldsymbol{\delta}}
ight) - \overline{oldsymbol{v}}$$

Local gradient

Error compensation

Compression error

Pull $\overline{\mathbf{V}}$ to update model

Aggregate compressed gradient

Compress the error compensated g

Compression error

Intuition

Essential updating rule of DoubleSqueeze (SGD alike)

$$egin{align} oldsymbol{x}_{t+1} = & oldsymbol{x}_t - \gamma \overline{oldsymbol{g}}_t + \gamma (\hat{oldsymbol{\delta}}_t - \hat{oldsymbol{\delta}}_{t-1}) \ ar{oldsymbol{g}}_t = & rac{1}{n} \sum_{i=1}^n oldsymbol{g}_t^i \ \hat{oldsymbol{\delta}}_t = & rac{1}{n} \sum_{i=1}^n oldsymbol{\delta}_t^{(i)} + \overline{oldsymbol{\delta}}_t \ \end{aligned}$$

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_0 - \gamma \sum_{s=0}^{t} \overline{\boldsymbol{g}}_s$$

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_0 - \gamma \sum_{s=0}^{t} \overline{\boldsymbol{g}}_s + \gamma \sum_{s=0}^{t} \hat{\boldsymbol{\delta}}_s$$

$$oldsymbol{x}_{t+1} = oldsymbol{x}_0 - \gamma \sum_{s=0}^{\hat{oldsymbol{\sigma}}} \overline{oldsymbol{g}}_s + \gamma \hat{oldsymbol{\delta}}_t$$

Much smaller

Convergence

Assumption

$$\mathbb{E}[\|\mathbf{C}(\mathbf{x}) - \mathbf{x}\|^2] \le \sigma'^2$$

Convergence rates

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left(\|\nabla f(\overline{x}_t)\|^2 \right) \lesssim \frac{1}{T} + \frac{\sigma}{\sqrt{nT}}$$

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left(\|\nabla f(\overline{x}_t)\|^2 \right) \lesssim \frac{1}{T} + \frac{\sigma}{\sqrt{nT}} + \frac{\sigma}{\sqrt{nT}}$$

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left(\|\nabla f(\overline{x}_t)\|^2 \right) \lesssim \frac{1}{T} + \frac{\sigma}{\sqrt{nT}} + \frac{\sigma'}{\sqrt{T}}$$

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left(\|\nabla f(\overline{x}_t)\|^2 \right) \lesssim \frac{1}{T} + \frac{\sigma}{\sqrt{nT}} + \left(\frac{\sigma'}{T} \right)^{\frac{2}{3}}$$

SGD

C-SGD (C(.) needs to be unbiased)

Double squeeze **EC-SGD**

better

Experiments

ResNet-18. CIFAR-10. 8 workers

Iteration (epoch) is consistent with SGD

Running time in each iteration is faster

Decentralization

- beta: transfer time per byte

- N: # workers

- B: # bytes of the message

Centralized communication (fully exchanged)

O(N * alpha + NB * beta)

How does the decentralized approach compare to the centralized approach?

Decentralized communication (partially exchanged)

$$\underbrace{ \begin{array}{ccc} \textit{Objective} & & \min \\ \boldsymbol{x} & f(\boldsymbol{x}) := \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{E}_{\boldsymbol{a}^{(i)} \sim \mathcal{D}_i} F(\boldsymbol{x}; \boldsymbol{a}^{(i)})}_{=:f_i(\boldsymbol{x})} \end{array} }_{}$$

Centralized-SGD:

 $m{x} \leftarrow m{x} - \gamma \frac{1}{n} \sum m{g}(m{x}; m{a}^{(i)})$

Decentralized-SGD:

n individual models

Average the local model with neighbor's, e.g.,

with
$$\mathbf{x}^{(2)} \leftarrow rac{1}{3} \sum_{i=1,2,3} \left(\mathbf{x}^{(i)} - \gamma \mathbf{g}^{(i)}
ight)$$

Local sample

Decentralized SGD
$$\begin{bmatrix} \boldsymbol{x}^{(1)} \\ \boldsymbol{x}^{(2)} \\ \vdots \\ \boldsymbol{x}^{(n)} \end{bmatrix} \leftarrow W \begin{pmatrix} \begin{bmatrix} \boldsymbol{x}^{(1)} \\ \boldsymbol{x}^{(2)} \\ \vdots \\ \boldsymbol{x}^{(n)} \end{bmatrix} - \gamma \begin{bmatrix} \boldsymbol{g}(\boldsymbol{x}^{(1)}; \boldsymbol{a}^{(1)}) \\ \boldsymbol{g}(\boldsymbol{x}^{(2)}; \boldsymbol{a}^{(2)}) \\ \vdots \\ \boldsymbol{g}(\boldsymbol{x}^{(n)}; \boldsymbol{a}^{(n)}) \end{bmatrix} \end{pmatrix}$$

weight matrix: symmetric, doubly stochastic

 $(W1 = 1, W^T1=1, nonnegative, W=W^T)$

ring network
$$W = \begin{pmatrix} 1/3 & 1/3 & & & 1/3 \\ 1/3 & 1/3 & 1/3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1/3 & 1/3 & 1/3 \\ 1/3 & & & & 1/3 & 1/3 \end{pmatrix}$$

Assumptions

- **Lipschitzian** All $f_i(\cdot)$ are with L-Lipschitzian gradient data variance within each worker
- **Bounded variance**

$$\mathbb{E}_{\boldsymbol{a} \sim \mathcal{D}_i} \|\nabla F(\boldsymbol{x}; \boldsymbol{a}) - \nabla f_i(\boldsymbol{x})\|^2 \leq \sigma^{2}, \forall i, \forall \boldsymbol{x}$$

$$\|\nabla f_i(\boldsymbol{x}) - \nabla f(\boldsymbol{x})\|^2 \leq \zeta^2, \ \forall i, \ \forall \boldsymbol{x}$$

data variance among workers

Assumptions

- **Lipschitzian** All $f_i(\cdot)$ are with I -Lipschitzian gradient
- Bounded variance

$$\mathbb{E}_{\boldsymbol{a} \sim \mathcal{D}_i} \|\nabla F(\boldsymbol{x}; \boldsymbol{a}) - \nabla f_i(\boldsymbol{x})\|^2 \leq \sigma^2, \ \forall i, \ \forall \boldsymbol{x}$$
$$\|\nabla f_i(\boldsymbol{x}) - \nabla f(\boldsymbol{x})\|^2 \leq \zeta^2, \ \forall i, \ \forall \boldsymbol{x}$$

Spectral gap

$$\underset{j \ge 2}{\rho} := \max_{j \ge 2} |\lambda_j(W)|$$

Measure how fast the information can spread across the network

Fully connected network

Ring network

 $W = \begin{pmatrix} D & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{pmatrix}$

$$W = \frac{\mathbf{1}\mathbf{1}^\top}{N}$$

$$\rho = 0$$

Theorem [DSGD] Choose the learning rate approximately. When T is sufficiently large, we have

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left(\|\nabla f(\overline{x}_t)\|^2 \right) \lesssim \frac{1}{T} + \frac{\sigma}{\sqrt{nT}} + \left(\frac{\zeta \rho}{T(1-\rho)} \right)^{\frac{2}{3}}$$

Average of local models

Convergence rate of CSGD

Cost of using decentralized communication (minor)

Laining Foss2.5 2.5 1.5 1 0.5 2.5 1.5 **Decentralized Centralized** 0 200 0 100 300 400 500 600 **Epochs**

Centralized includes PS and AllReduce!

DECENTRALIZED METHOD Ring Topology

100 GPUs

ResNet

CIFAR10

Decentralized algorithms **outperform** centralized algorithms for networks with low bandwidth and high latency

Take Away Message

Theoretical view

Decentralized-SGD achieves the same convergence rate as Centralized-PSGD

Practical view

When the network is with high latency, decentralized communication can outperform its centralized counterpart.

Compression + Decentralization

Naïve compression does not work

Can we further reduce the communication cost?

Naïve compression for D-SGD

$$\boldsymbol{x}_{t+1}^{(i)} = \sum_{j} W_{ij} \mathcal{C}\left(\boldsymbol{x}_{t}^{(j)}\right) - \gamma \nabla F(\boldsymbol{x}_{t}^{(i)}; \boldsymbol{a}^{(i)})$$

DCD-SGD

Store a copy of its neighbors' models

$$egin{aligned} \hat{oldsymbol{x}}_{t+1}^{(i)} &= \sum_{j} W_{ij} oldsymbol{x}_{t}^{(j)} - \gamma
abla F(oldsymbol{x}_{t}^{(i)}; oldsymbol{a}^{(i)}) \ oldsymbol{x}_{t+1}^{(i)} &= \hat{oldsymbol{x}}_{t}^{(i)} + oldsymbol{\mathcal{C}}\left(\hat{oldsymbol{x}}_{t}^{(i)} - oldsymbol{x}_{t}^{i}
ight) \end{aligned}$$

Compress the difference and send to its neighbors

$$\sup_{oldsymbol{x}} rac{\mathbb{E}\|\mathcal{C}(oldsymbol{x}) - oldsymbol{x}\|^2}{\|oldsymbol{x}\|^2} \leq lpha^2$$
 $\mathbb{E}(\mathcal{C}(\mathbf{x})) = \mathbf{x}$

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left(\|\nabla f(\overline{\boldsymbol{x}}_t)\|^2\right) \lesssim \frac{1}{T} + \frac{\sigma(1+\alpha^2)}{\sqrt{nT}} + \frac{\zeta^{\frac{2}{3}}(1+\alpha^2)}{T^{\frac{2}{3}}}$$

Consistent with D-SGD

Experiments

Limitation of DCD-SGD

Two Issues of DCD-SGD:

Require
$$\mathbb{E}(\mathcal{C}(\mathbf{x})) = \mathbf{x}$$

Diverges when using 4-bit compression in most cases

Can we fix it by using error compression strategy?

How About

$$X_{t+1} = (X_t - \gamma G_t)W$$

$$= X_t - \gamma G_t + (X_t - \gamma G_t)(W - I)$$

Share this with Error Compensation

One More Thing: DeepSqueeze

DCD-SGD + Error Compensation

Local:

$$oldsymbol{v}_{t+1}^{(i)} = \mathcal{C}\left(oldsymbol{x}_t^{(i)} - \gamma oldsymbol{g}_t^{(i)} + oldsymbol{\delta}_t^{(i)}
ight)$$

$$m{\delta}_{t+1}^{(i)} = m{v}_{t+1}^{(i)} - \left(m{x}_t^{(i)} - \gamma m{g}_t^{(i)} + m{\delta}_t^{(i)}
ight)$$

Communicate:

$$m{x}_{t+1}^{(i)} = m{x}_{t}^{(i)} - \gamma m{g}_{t}^{(i)} + m{\eta} \sum_{j \in \mathcal{N}_{i}} (W_{ij} - I_{ij}) m{v}_{t+1}^{(j)}$$

Control the compression error explicitly

DeepSqueeze V.S. DCD-PSGD

DCD-SGD

$$\sup_{\boldsymbol{x}} \frac{\mathbb{E} \|\mathcal{C}(\boldsymbol{x}) - \boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2} \le \alpha^2$$

$$\mathbb{E}(\mathcal{C}(\mathbf{x})) = \mathbf{x}$$

Fails for 4-bit compression

$$\mathcal{O}\left(\frac{1}{T} + \frac{\sigma(1+\alpha^2)}{\sqrt{nT}} + \frac{\zeta^{\frac{2}{3}}(1+\alpha^2)}{T^{\frac{2}{3}}}\right)$$

DeepSqueeze

$$\sup_{\boldsymbol{x}} \frac{\mathbb{E} \|\mathcal{C}(\boldsymbol{x}) - \boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2} \le \alpha^2$$

Compression can be biased

Robust to 2-bit compression

$$\mathcal{O}\left(\frac{1}{T} + \frac{\sigma\left(1 + \frac{\alpha^2\sqrt{n}}{\sqrt{T}}\right)}{\sqrt{nT}} + \frac{\zeta^{\frac{2}{3}}(1 + \alpha^2)}{T^{\frac{2}{3}}}\right)$$

Experiments

Summary

Foundations and Trends® in Databases

Distributed Learning Systems with First-Order Methods

An Introduction

Suggested Citation: Ji Liu and Ce Zhang (2020), "Distributed Learning Systems with First-Order Methods", Foundations and Trends® in Databases: Vol. 9, No. 1, pp 1–97. DOI: 10.1561/1900000062.

Ji Liu

University of Rochester and Kuaishou Inc., USA ji.liu.uwisc@gmail.com

Ce Zhang

ETH Zurich, Switzerland ce.zhang@inf.ethz.ch

Coming Soon.

This article may be used only for the purpose of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval.

Nom

the essence of knowledge Boston — Delft

